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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

27,4 (1986) 

ON POINTWISE LIMITS OF SEQUENCES 
OF l-CONTINUOUS FUNCTIONS 

Marak BALCERZAK, Ewa -LAZAROW 

Abstract: In the paper, the family B^Sfj) of pointwise li­
mits of sequences of I-continuous functions is considered. We 
formulate a condition necessary for a function to be in B,(1?.r), 

analogous to that given by Grande. Moreover, we show that B,(<^--) 

essentially contains the Baire class 1 and is essentially con­
tained in the Baire class 2. 

Key words: I-continuous functions, Baire classes. 

Classification : 26A21 

for any family 3 of functions which map R (the real line) 

into R, we denote by BA& ) the family of pointwise limits of 

sequences of functions taken from -T . Then we define B^CSO5 

= B1(B1(9T )), B3(T)=B1(B2(-T )) and so on. 

Denote by *-t the family of all continuous functions from R 

into R (with the natural topologies). 

In the sequel, 33 will denote the family of all subsets of 

R having the Baire property, I will denote the 6^-ideal of sets -

of the first category. In [33 there were introduced notions of 

I-density point and I-dispersion point of a set E € -8 (one can 

also consider left- or right-hand I-density points or I-disper­

sion points). 

Let $(A) denote the set of I-density points of A . It turns 

out (see t33) that the family ( T - O I S J A C 9KA)} is a topology. 

It is called the I-density topology. Continuous functions map­

ping R with the topology T into R with the natural topology are 

called I-continuous. The family of these functions will be deno­

ted by < j . 

In 113 Grande investigated the family -^(JL^Sfc) where A ,3 
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denote respectively the families 'of approximately continuous 

functions, and functions whose sets of points of discontinuity 

have the Lebesgue measure zero. Let us consider 1?T instead of 

A , and 5j , instead of $ , where 2 ! j is the family of functi­

ons whose sets of points of discontinuity belong to I. Then we 

have f- A &.,= «£.. since fjC B1(
ctf ) (see 13 J> and B1(

<f ) c 2>T • 

Our paper shows that B,( ̂ ,) behaves similarly as BAJLnS)). 

Grande formulated a condition necessary for a function to 

be in B,(AnS)). We shall prove the analogous result in the case 

of B-^Vj). 

For EcR, let int E, E denote, respectively, the interior 

and closure of E in the natural topology . 

For any x€R, we denote by ^P(x) the collection of all in­

tervals Ca,b3 such that xe(a,b) and of all sets of the form 

E= \JA i a„,b 3 yjJ^A £c .d 3 u-txI where, for every n , a < b„ < 
TV*I n* n TL-.1 n' n ' 3 ' n n 

< a n + l
< x < d n + l

< c n < d n a n d X ^ ( E ) ' 

In 123, there was introduced a topology t which consists 

of all sets U e T such that if x€ U, then there exists a set 

P € :P(x) included in {x] u int U. It was proved that -xf is the 

coarsest topology for which all I-continuous functions are conti­

nuous. 

For any subset M of R, define A(M) as the set of all x 

such that, for each PfeCrKx), we have H 4 P n M * { x l 

lemma 1 (123). Let NcR. If U e t and U r\ A(M)4-0, then 

(itit U)n M40. ~ 

If atR and f:R—•» R, then we write shortly \f< a] instead of 

4x:f(x)< a^ and analogously, for the inequalities > ,& , ̂  . 

Theorem 1. Let f C B , ( V T ) . Then the following condition 

(I^j) holds: 

For any a,beR, a<b, and nonempty sets U, V, if 

(1) U d f < a } , 
(2) V c 4 f > b } , 

(3) U c M U ) and V c & ( V ) , 

then U \ V 4 0 or V \ 0 * 0 . 

- 706 -



Remark. The condition U c A(U) means that the closure of U 
in the topology f is a perfect set in this topology (see [2.1). 

Proof. Suppose on the contrary that there are a,b£R, a<b, 
and nonempty sets U and V fulfilling conditions (1),(2),(3), 
such that U \ V=0 and V\U=0. These equations easily give U=V. 
Let f(x)= lim fr,(x), x€.R, where f_ € *fT for every n. We have 

o--->«9o n n l 10. -> •» 
m 00 

j f f éa\ = CY C\ U 4 f < r a + i j 

and {£„< a-»- A } & t f o r a l l m, r. So, -if-= a } can be expressed i n 
4c. 

the form t r\ U. where U,. € ̂  for all k. Analogously, nf^b? can 

be expressed in the form aJ^X Vk where Vk 6 r for all k. Let F = 

= A(U). Observe that each of the sets Tn int Uk, Fnint Vk, k=L, 
2,..., is dense in F with the natural topology. 
Indeed, let G be an open set in the natural topology, such that 
G o ? # 0 . Then GnF=i=0 and from Lemma 1 it follows that G0U-H8, 
G n V # 0 . Conditions (1),(2),(3) imply that 

U c { f < a } n F , Vc-(f>b$oF. 

Consequently, for all k, we have 

0 * G n U c G M f < a } o F c G n U ^ F , 

0 4 - G n V c G M f > b } n F c G n V k n F . 

Thus, i n v i r t u e of Lemma 1 , we ob ta in 

i n t ( G n U k ) n U * 0 , . i n t ( G n V k ) n V=£0, 

f o r a l l k, and, us ing ( 3 ) , we e a s i l y deduce t h a t 

G n U n t U k ) n F 4 - 0 , © n ( i n t V k ) n F * 0 , f o r a l l k. 

So, we have proved t ha t T n i n t U k , F"n i n t Vk are dense i n T f o r 

a l l k. Now, the Baire Category Theorem imp l i es 

£ ^ ( i n t U k A i n t V 1 ) A T * 0 , 

which gives a contradiction since -if ia) ,{f £ b} are disjoint. 

Corollary. B 1 ( * e i ) | B 2 ( ^ ) . 

Proof. Since ^ j C B - ^ ^ ) , the inclusion B 1 ( ^ I ) c B 2 ( ^ ) is 
obvious. Let , .« w .& „»4.4„„„i 

{1 11 x is rational 

0 if x is irrational 
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Then feB . - , (< t f ) . On the other hand, f does not satisfy condition 
1 3 (I*£-) of Theorem 1 (it suffices to consider a= 4-» D= x» U equal 

to the set of all irrational numbers, V=R\U). Thus f ^ B ^ f j ) . 

For any interval I with endpoints a, b (a<b), let us deno­

te: l(I)=a, r(I)=b,. |l|=b-a. 

In the sequel, we shall say that AcR is a right-hand (left-

hand) interval set at a point x if and only if A=^L-^ (a ,b ) 

where b„ , < a„< b„ for all n and a,.,^ x . b„^ xn (a, < bn < a^^-for n+l n n n o' n o n , n n+l 

all n and *nS x , b /* x ). A right-hand (left-hand) interval set 
will be called, normal if and only if, for every n, the intervals 

^ n + l ^ n + P * (xo'an} (resD- K + l ' t W ' ^ n ' V * h a v e tne same 

centres . 

In 1.4.1 there was given an example of a right-hand interval 
00 

set mU^ (a ,b )e (0,1) at the point 0, such that 0 is its right-
hand I-dispersion point. Then, obviously, the set 
*-* 
UA (b„ ,,a ) is a right- hand interval set at the point 0, and 

mT i n+i n 

0 is its right- hand I-density point. In a similar way, for any 

point x, we can construct a right-hand (left-hand) interval set 

at x for which x is a right-hand (left-hand) I-density point. 
Qc 

Lemma 2. There exist right-hand interval sets A= UA (c .d„), 

' ' ° «iv» A n' n * 

A* s .nVt ^cn»drp a* tne P° i n t °f sucn *bat A* is normal, 

Cc ,dR3 c (c*,ct}|)c (0,1) for all n, and 0 is a right-hand I-densi­

ty point of A. 

Proof. We shall base ourselves, on the construction descri­

bed in £43. Let (a1,b1)c (0,l),a-.>0 be an arbitrary interval 

and let q1=E(a1f)+l (E(x) stands for the entier of x). 

Choose b2c(0,l) such that q-. b2=2 and put a2= £ b2, 

q2*E(a2 )+l. Suppose that we have already defined numbers a,, 
bi» qi *or isi>2» • • • »k* Choose b k + 16(0,l) such that Q|<*bk+1 = 

=2~k~1 and put ak+1= ^ b k + 1, qk+1=E(akJ1)+l. Thus, by inducti­

on, we have defined the numbers a , b , q for each integer nirl. 

Consider the set 0* J*JA (a^,b„). As in £.41 we can show that 0 is 
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a right-hand 1-dispersion point of 0. Thus 0 is a right-hand I-

dfchsity point of the set ^UA
 ( b

n+l>
an ) * Put cn=bn+l' dnsan> 

n=l,2,... . Observe that the construction implies 

bn +l
< 2" n< E( an 1 ) + 1>" 1<2 _ na n<n-

1
a n=

bn" an-

for all n. Let s = 7(D
n-

a
n~

D
n+i)» n = l,2,... . Define a sequence ?rn\ 

by induction as follows: Let O-tfr-̂ c ̂  and having defined r k > 0 , 

k=l,...,n, such that , 1 r. <: £.. for k=l,...,n, choose r , > 0 

such that ?̂-jk r, < £.. for k = l,...,n+l. Next, put 

b* =bn - , X rk, n=l,2,... . for all n, we have 

b n - b n x V - b n - b n x r r n > b n ^ x r 2& n=a n. Let c*=b* ,, d* =b£-b* - ,n«1»2,.... n n+I n n+1 n n n+1 n n n n+1* n n n+1* l l ' 
It is easy to check that the sets A= ̂ W ^ (c ,d ) , A* = LJ (^/O 

fulfil the assertion. 

In the proof of the following theorem we try to apply the 
scheme presented by Grande (see til, the proof of Th. 3). How­
ever, while he uses an arbitrary perfect nowhere dense set of 
measure zero, we use some special perfect nowhere dense set. 

Let 2 < w be the set of all finite sequences with terms from 

-10,1"̂  (including the empty sequence 0). For €e 2<co, let | 6" I 

denote the number of terms in 6 . If n is 0 or 1, then # A n 

stands for the member of 2*w, with length 16 |+1, whose first 
|6 | terms form the sequence £ and the last term is n. 

Theorem 2. Bx(<€ ) % B1( ̂ j ) . 

Proof. Since the inclusion B ^ J c B , ! ^ ) is obvious, we 

ought to show that the equality does not hold here. 

We shall start from the construction of some perfect now-

here dense set. Let A= M*UA (c^d^), A* = VJ. (c**d*) be the sets
 x 

/*v»i n' n * m.»4 n' n 

obtained i n Lemma' 2. Put P*= 10,13 and l e t P<rr>t P<1v be^ closed 

intervals such that 1(P<Q>)
SS0, r(P<1>)=l, |P<o>l«!P<i>l«c?i-

The set Pg \(P <g>
u *Vi>^ is an °PBn interval denoted by V*. 

Let n.;> 1 and assume that the intervals P̂» have already been de­
fined for all ere 2*w, | 0 |=n. Fix an arbitrary tfc 2<c*\ |ef|=n. 
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Let fW, k=0,l, be closed intervals such that K^AQ )= 1(P 6') , 

r(I^A1)=r(Pt5) and l
P£*kl=c*+1 for k = 0 , l . The set ?&\ (P^A Q u P^A X) 

is an open interval denoted by V# . In this way, we define by in­

duction intervals P* , V* for all <o e 2<CJ. Let P= f\ JJ £ 
o » 6 .w- .i \tf\z* <Y%, €T 

It is easy to verify that P is a perfect nowhere dense set. 
Let H denote the set of endpoints of all intervals P$ , €e 2 < > 

excluding the points 0 and 1. For each xeH, we shall define two 
sequences fln(x)}, -C3 (x)? of intervals such that I (x) are clo­
sed, 3 (x) are open, I (x)c 3 (x)c (0,1) \ P for all n, and x is 

too 

an I-density point of the set \J^ I (x). Thus, let x€H and as­

sume, for instance, that x = l(Pg.), I tf |=m. Choose two left-hand 
00 GO interval sets . U< (a.,b.), , U, (at,b?) at the point x, such that 

* * i l' l '• .v =• i 1 1 ' 

Ea.,b.Jc (a^,bp c (0,x)\ P for all n and x is a left-hand I-den-
oo 

sity point of .U (ai,b.). Denote €.-B and, for each i>l, 

let 6';+i=
 6i An- 0 D s e r v e that the construction implies that 

V ( x + c m + i > x+dm+i>
 for ---.-•••• • Let 

\'ix*cm*i> x+tW> i = 1>2  

CO 

Since 0 is a right-hand I-density point of \J^ (c ,d ) , there­
to 

fore x is B right-hand I-density point of ̂ L/^ Ug . At last, let 
Jl n(x)$ consist of all intervals la. ,b.] , U^ i = l,2,... , 

and let {3„(x)^ consist of (a^,b?), V_, , i = l,2,... . These sequen-
n l i o. 

ces have the required properties. 

Now, we construct a function f e B,( *€ j) \ B1(lf ) . Let f be 
the characteristic function of the set H. Evidently, f^B,(<£). 
We shall show that f cB 1( <£--). Let H= {x1,x2,.. . } . Let 
^ n * be the sequence of all intervals taken from ^3 (x,)} 
which are included in (x*-l/2,x,+l/2). Assume that i>l and that 
we have already defined sequences * 3*' **} ̂ , j = l,2,...,i. Put 

^ 4 min - U / U + D ; |xk~x1 | for k,l e U,2,... ,i+l? , k-^Xj. 

For each 3=1,2,... ,i+l, let 43 n
+ $n7>i De the sequence of all 

intervals taken from f3 (x*)} >jL which are included in 
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(x.-cT, x.+ o ^ ) . In such a way, we define by induction a family 

of closed intervals ^J-.'3?, where i,n = l,2,... , and 3=1,2,...,i, 
which has the following properties (comp. E 1.1): 

(1) for fixed i and j, we have 

sup 4 |x-x. | :x €j^»J} —^ o if n —> CO ; 

(2) for fixed i and j, the intervals 3*'3 are pairwise 
disjoint; 

(3) for fixed i and j, the diameter of n 0^ j*'J 

does not exceed 1/i; 

(4) for fixed i and j, x. is an I-density point of 

<nVl Jn 
oo *v eo . . 

(5) P^.U .\JA U, J*'J = 0; 

(6) for fixed j 4i, 

A J n + 1 , ^ m ^ ^'- If 1-1,2,...; 
(7) for fixed i, 

^ 3n ° ^ J
n = 0 if J1*J2' 

For each interval JJ!,'3- denote by I*'3 that term of the sequence 

^Ii^(x.)}. ,*, which is contained in O^'3. By the construction, x. 
K j K_ l n j 

00 i i 
is an I-density point of any set ^L^ Ij-j » --- j • For i = l,2,..., 

define 

1 if x e .U ( U li'3u U A ) 
•ft* r «J <*. « 4 n J 

f.(x) =J 0 if x 4 .U. ( U , J*'3u h . } ) 

extended linearly on 3|!j,3\ In'J» ~0T J**1*---!* and 

n=l,2,... . 

It is easy to verify that all the functions f, belong to <€p 

and lim f,(x)=f(x) for each xeR. This ends the proof. 
i - y <x> -» 

Now, we may ask about a characterization of the class B, (*€--); 

in particular, we may ask whether each function f€B2(^) having 

the property (I *€,) belongs to B^( *£-•). 
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