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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

27,4 (1986) 

O N ONE CONSTRUCTION OF ALL QUASIF1ELDS OF ORDER 9 
Frantisek KNOFLlCEK 

Abstract: An alternative construction of all quasifields 

of order 9 is given based on one concept of Dempwolff and 

Reifart ([1] t p. 138). 

Key words: Dispersing matrices over GP(3), quasigroups„ 

quasifields. 

AMS subject classification (1980)t Primary: 51A40, 51E15 

An approach to the construction of all quasifields of order 

9 is given by M. Hall in [2] r reconstructed by H. Luneburg in 

[3]i § 8. As a main tool, there is used in [3] a convenient 

representation of a spread (describing a translation plane P) 

with help of some admissible subset of GL(X) where X is a vector 

space over the kernel of P. In the sequel we give an alternative 

construction of all quasifields of order 9 stimulated by some 

aspects of the article [1] by Dempwolff and Beifart. We shall 

find both binary operations of the quasifields directly (some 

matrices over GF(3) are needed in our procedure,too). 

As well-known, every quasifield of order p11 can be obtained 

as follows: We take an n-dimensional vector space V over GF(p) 

and a set7K,pa - 1 matrices from GL(n,p) such that AB~* is 

fixed - point - free on V for A,B€1fr , A £ B. Then there is 

a bisection #,\ HI -**V \ {0} such that ? together with binary 

operations + (vector addition on V) and • (v.w -(^ .(v)w for 
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all v,w € V and v # 0» 0-w * 0) is a quasifield (cf. [1] , 
p. 138). 

0. Denote elements of GF(3) by 0, 1, 2 and investigate the 
2-dimensional vector space ?2(3) of ordered couples 

(0,0) *: 0, (1,0) *: J_, (2,0) *: 2„ 
(0,1) =: 3, (1,1) «* 4, (2,1) *: 5* 
(0,2) - : 6 , (1,2) «s 7, (2,2) *: 8 over GF(3) • 

The set of these vectors 0f ±p ..., JB will be designated by $ 
and the chosen ordering of vectors will be called natural. 
For the component - wise addition of vectors in V2(3) we can 
write the corresponding Cayley table (Table 1, without, heading). 

+ 
0 1 2 3 4 5 6 7Г 8 
1 2 0 4 5 3 7 é 6 
2 0 1 5 3 4 8 6 ? 
3 4 5 6 7 8 0 1 2 
4 5 3 T 8 6 1 2 0 
5 3 4 8 6 7 2 0 1 
6 7 8 0 1 2 3 4 5 
7 8 6 1 2 0 4 5 3 
8 6 7 2 0 1 5 3 4 

Tab. 1• 

So (St +t 2) *s an elementary abelian 3-group of order 9» 

Further consider the set of all non-singular 2x2 matrices 
over or (3)t Tto - { (* j j i*9fi»f9 A G**(3), det (X /6 j f o). 
Obviously # fit * 48 as there are eight possibilities for the 
first (non - zero) row of our matrix and six possibilities for 
the second row: (T* f)tl *{ot>fl) , X t 1,2* 
The set % with respect to matrix multiplication forms a group 
of order 48 sometimes denoted by GL(2,3) or by GL2(3). 

If x is a non - sero vector from ?2(3) and M€ % 9 then 
K.X » y (T denstes transposing) and y is also a non - zero 
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wector from v
2(3). 

How let M « [fY) be a matrix and (1*0), (0*l) vectors of the-

canonic basis. Then (f$)(l) = (<£)an€ (f$)(ty « (£). For 

(<£, T')* i and(^ ,, /)« j we shall introduce a convenient 

denotation (*$•) =: M^ *. So Mt ̂  * (̂  ?) is a unit matrix. 

We say the matrix M€ % is dispersing if M xT # x* 

\/x € V2(3) \ {(0,0)}. If a matrix Me Tit is not dispersing; and 
not unit it preserves two non. - zero vectors. The unit matrix 

Kj j fixes the whole V2(3). As usual we shall call the set of 

all eigenvalues of a matrix its spectrum. It may be shown that. 
there are 27 dispersing matrices. Their spectrum is either void 

(foxr 18 matrices) or consists just of 2 € G-F(3) • If a matrix is 

not dispersing then its spectrum is either {1} or {l,2}, where 

1,2 € GF(3)• Under the group order of a matrix we shall under­

stand its order as of an element in eSLg^)* The set to «an ber 
decomposed onto the following subsets 

V%T - the set of all matrices with the group order 8* #7fcr * 12? 

f0% - the sett of all matrices with the group order 6, # fl£ff * 8} 

7tb%-* the set of all matrices with the group order 4, #1!Ctt* 6? 

ffl,^ - the set of all matrices with the group order 3, # %m * 8| 

jflj - the set of all matrices with the group order 2, #1%T =13? 

#£ - the set consisting gust of the unit matrix. 

^ I * 1*3,7' M4.t^ M3,4' *5,tJ M4f5»
M5t8» *6,5> *8,2* *6,8> 

E^ 2$ K- 4, *B 7} contains onlv dispersing matrices all 
with void*spectrum (neighbouring matrices are mutually inverse 

and similarly in what follows) • 

«k" {"2,r "2,8* "3,5' "7,1* **,*> "6,4' "5,6» "s,6 } c o n t a i M 

only dispersing matrices with spectrum {2}* 

V {"3,2' "6,i J "4,7* "a,5» *>,4' *r,a} • H e r e t h e -*-*-••• 
are dispersing and all have void spectrum. 

V {"t,4» "1,5* "3,8. "a,i5 "4,3' • w - "5,2* H,?}- * - -
these matrices have spectrum {1). 

V {".,*«* "i,7? "l,8- "2,3« "2,4'"2,5' "3,1J "4,6? "5,3* 

"6,2* "7,6? "8,3 }" ("2,6} ' 
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All the matrices are involutory. the matrices of the firs*, 
subset have spectrum {1 „2) whereas Mg £ is a dispereisig matrix 
with spectrum {2]. How we shall construct such sets %$ 
consisting of eight matrices of GH^P) that % $ operates 
minimally transitively on the set of all non - zero vectors ot 
V2 (3)• This means that to every couple x, y of nan - zero 
vectors of Jo (3) there is just one matrix % -; € Wje such that 
M.£ 4 xr » y • The last equation can be re-written in the form 
U(x»y) - i where U is a quasigroup operation on the sett 

S N (0). Bfcr our convention concerning the matrix denotation we 
have M± ̂  (1 r Q ) * = i so that U(1 »y) * y for all y 6 S s {o}. 
Thus the quasigroup ( S s { o } r U ) has a left unit. For U(x^)^ 
• c we write &~1(x,<s:) f x»e » y. If Ĵ  . £ Tft^ , then 
M, 3 xT -= x T

r \/x € 7Z(3) so that W(x,x) * 1 and U^f*, 1) » 
* x«1 * x. thus the operation. ( •) „ inverse from right to 1i> , 
possesses a both - side unit and consequently is a loop opera*-
tion. thus (S N {o}» • „ 1) is a loop. 

1 • Let us take the matrix ML -» and form the group 
<**4 5) generated lay this matrix* We get the set of eight 
matrices Mx - {K, ^ HL^f Hi^j M ^ 5 * M ^ * M ^ t ; H ^ * M^^ 

Eachiof them maps V2(3)
 onto ^(3) and in Table 2 we have the 

graph of all of these mappings and subsequently also the 
multiplication; table for % . 

| (2,2) 8 4 5 2 3 lì 6 1 

(1*2) T 5 8 6 2 4 1 3 
(0,2) 6 3 2 4 7/ 1 5 8 

(2*1) 5 T 4 3 1 8 2 & 

(1*1) 4 8 7 1 6 5 3 2 

(0*1) 3 6 1 8 5 2 7 4 
(2 ,0) 2 1 3 7 8 6 4 5 
(1 rO) 1 2 6 5 4 3 8 T 

0 (1 ,0) (2,0) (0,1) 0,1) (2,1) (0,2) (1*2) (2 ,2 ) 

Tab. 2 
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1 2 3 4 5 6 7 8 

7 3 
8 1 

8 1 

1 7 

5 

4 

2 

6 

8 

3 

t 

Tab. 3 

Prom 11 we get easily over to the operation Vu * • described in 

Table 3. (S N {o}„ • , 1) is a cyclic group of order 8. If we 

enlarge the operation • onto the whole S by setting G«x s _c«Q ~ 
= 0, then (Sf +» • ) is a Galois field GP(9) deduced from CF(3) 

with help of the irreducible polynomial f2 + 1 r if we denote 

linear polynomials ff £+ t „ £+2, 2£f, 2f+ 1 ,. 2f + 2, 

respectively, by symbols 3, 4, 5> 6t 7, 8, respectively* 

2* An, analogous situation occurs if we generate the cyclic 

group of order 8 by the matrix M3 7. We obtain the set %2 » 

= {^,3* ^,6* *3,7* M4r1* *5t4
; "6,5* *rr8* "8,2} •

 T h e **•-* 
of the eigftt mappings is described in Table 4 and the correspon­
ding multiplication • in Table 5» 

8 4 7 2 6 5 3 1 1 2 3 4 5 6 7 8 
7 5 3 8 2 6 1 4 2 t 6 8 7 3 5 4 
6 3 2 5 4 1 8 7 3 6 7 1 4 5 8 2 
5 7 6 4 t 3 2 8 4 8 1 5 6 2 3 T 
4 8 5 1 3 T 6 2 5 7 4 6 2 8 1 3 
3 6 1 7 8 2 4 5 16 3 5 2 8 7 4 1 
2 1 8 6 5 4 7 3 

Г 5 8 3 1 4 2 6 
1 2 4 3 7 8 5 6 8 4 2 7 3 J 6 5 

Tab. 4 Tab. 5 
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(5, +• •) is a Galois -field-Of (9) deduced from OF(3) usinr the 

irreducible polynomial f2 + f + 2 by denotations of § 1. 

3. Also in the third case we have a situation similar to 

both preceding ones. The cyclic group of order 8 can be genera­

ted by the matrix iU .. We get the set flU * {*j 3? *2 5* *3 4* 

*4 7* *5 1* *6 8* *7 2* *B 5 } * ̂ *te C 0 r r e 8P 0 n d i n£ tables of 

mappings and of the multiplication • are presented in Tables 

6-7. 

8 4 6 2 5 3 7 1 
7 5 4 3 2 8 1 6 
6 3 2 7 8 1 4 5 
5 7 8 6 1 4 2 3 
4 8 3 1 7 6 5 2 

3 6 1 5 4 2 8 7 
2 1 7 4 6 5 3 8 
1 2 5 8 3 7 6 4 

6 
3 
8 
5 
2 
4 
1 8 
7 3 

8 
4 
5 
1 

6 

7 

3 
2 

Tab. б Tab* 7 

(S, +, •) is a Galois field Gf (9) deriv/ed from (^(3) using the 

irreducible quadratic polynomial f + 2f + 2 by denotations 
tram § 1. She fields from § § 1 - 3 are mutually isomorphic. If 
we write the isomorphism as produet of cycles, we have G0* (354) 
(678), (T * (345) (68.7) as ft can be easily verified. If we want 
to work with GF{9)_it is convenient to use concrete tables for 

both field operations. We shall prefer Tables 1 and 3* 

Remark tOaat the natural ordering of the set 1ft
K
 (k * 1,2,3) 

by first, indices of matrices of 7ftk the second indices become 

the ordering given by the third row of the multiplication table. 

This is a consequence of our convention and of operating the 

matrix on the vector (0,1) « 3« 

4. If we take the matrices i ., L g together with all 

the matrices of fftt-m , we can see that they form a group with 
respect to matrix multiplication that is isomorphic to the 
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quaternion group. The corresponding mappings and operations are 
described in Tables 8 - 9 . 

8 4 7 2 3 5 6 1 

7 5 4 6 2 8 1 3 
6 3 2 5 8 1 4 7 

5 7 8 3 1 4 2 6 

4 8 5 1 6 7 3 2 

3 6 1 7 4 2 8 5 
2 1 3 4 5 6 7 8 

1 2 6 8 7 3 5 4 

6 
3 
1 
7 
4 
2 
8 
5 

8 
4 
5 
1 
6 
7 
3 
2 

Tab. 8 Tab. 9 

(5, +,•) is a nearfield of order 9 satisfying only the right 
distributivity law 

(x + y) z = x z + y z \j x, y, z € S • 

5. If we choose pairs of matrices of group order 8 from 
TO1 , % 2% resp. TO3 we obtain two sets %- * {.&. ̂ ; M2 ̂ ; M.. ^ 

*4,5> "s.l > "6,8* *7,4i «8,2 } » ^ 6 = ("l ,3* "2,6.' *3,4> M4,1 * 
M5 8 * * S 5 ' K 7 2 > M 8 7 j * These sets form neither groups nor 
quasigroups with respect to matrix multiplication because the 
product of two dispersing matrices need not be a dispersing 
matrix, e. g.. M-* ~ . M- * = M . -* and this matrix preserves the 
vectors (0„l) , (6,2). We verify easily that Mg 6. #?*

 s Tfi^ • 

Both sets of matrices operate on the set of all non - zero 
vectors of V2 (3) strictly transitively and the corresponding 
tables are: Tables 10-11 for Ifl^ and Tables 1 2 - 1 3 -for H?6. 
In both cases (5, +, •) is a right quasifield satisfying only 
the right distributivity law (x + y ) z = x z + y z \/xf y, ze 
€ S . In the well-known Appendix of the article [1] we find 

the denotations for multiplication tables R. (our Table 9), T . 
(our Table 11) and S«(our Table 13)* The corresponding 
quasifields are the "first" examples of Hall quasifields. They 
can be obtained from GF(3) so. that the addition + is defined as 
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in Table 1 whereas the multiplication • is defined as follows: 

(a,b)o(e,d) * (ac,bc) for d * 0, 

(a,b)o(c,d) = (ac - bd^f (c) ,ad - be + br) for d ̂  0. 

f ( f) is one of three irreducible quadratic polynomials 
o i _1 -1 p - rt - s. In GEP(3) it holds in addition d"

1
 « d for d f 0 

8 4 6 2 5 7 3 1 

7 5 3 8 2 4 1 6 

6 3 2 4 7 1 8 5 

5 7 4 6 1 3 2 8 

4 8 7 1 3 6 5 2 

3 6 1 5 8 2 7 4 

2 1 8 7 6 5 4 3 
1 2 5 3 4 8 б 7 

Tab . 10 

8 4 5 2 6 3 7 1 

7 5 8 3 2 6 1 4 
6 3 2 7 4 1 5 8 

5 7 6 4 1 8 2 3 
4 8 3 1 7 5 6 2 

3 6 1 8 5 2 4 7 
2 1 7 6 8 4 3 5 
1 2 4 5 3 7 8 6 

Tab . 12 

2 3 4 

1 6 8 

6 7 

8 1 

7 4 

3 5 

5 8 

4 2 

5 

6 

1 8 

7 

2 

3 

1 8 

3 5 

2 

4 

1 

7 

Tab. 11 

6 

3 

5 

2 

8 

7 

4 

1 

8 

4 

2 

7 

3 

8 1 

3 6 

1 5 

8 1 

3 б 

Tab. 13 

6, Further it is possible to find sets containing besides 

the unit matrix still seven matrices. The first and second of 

them are of group order 8, the third has group order 4. These 

three matrices are taken always from one of the sets TR^i 7^2* 

1fly ^
n
® remaining four matrices are from 7#¥ f they are 

dispersing and with group order 6. So we obtain the following 

six sets: 
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TO
7* {"1,3**2,7**3,5 

^ 8 * {",,3**2,7**3,5 

W»-(»l
f
3* *2,7**3,4 

OT
 10 * {*1,3* *2,8* *3,2 

^11 * 1*1,3* *2,8* *3,7 

^12
 =
 1*1,3* *2,8* *3,5 

The corresponding tables are: 

* "4,2-"SЛ H s . ľ >«7,4» 

* - 4 . 1 ' •"5,6->Ч-,4» * *Г,8* 

» "4.2І ' " 5 . 6 І ^ , 8 ^ *м» 
» "4.5І "5.6І ř M 6 , 4 І " 7 . 1 » 

* "4.2І V " 6 , 5 І Í - ^; 

» "4 .7 ' " 5 , 1 ' "б,4* "7,2» 

"8,6} 

*.-} 
"8,5} 

"8,7} 

"8,6} 

"8,6}' 

a/ f or 1) y 
4 5 3 2 7 б 

. 
a 

y 
4 5 3 2 7 б 1 1 2 3 4 5 б 7 8 

7 5 2 б 4 3 1 8 2 1 6 8 7 3 5 4 
б 3 8 2 7 1 5 4 3 7 5 2 8 1 4 6 
5 7 3 8 1 2 4 б 4 6 8 3 1 7 2 5 
4 8 7 1 6 5 2 3 5 8 2 7 3 4 6 1 
3 б 1 4 5 8 7 2 б 5 7 1 4 2 8 3 
2 1 4 7 3 6 8 5 7 4 1 5 6 8 3 2 
1 2 6 5 8 4 3 7 8 3 4 6 2 5 1 7 

Tab. 14 Tab. 15 

f OГ 7 lř8 i 

4 7 3 2 6 5 
. 

8 

lř8 i 

4 7 3 2 6 5 1 1 2 3 4 5 6 7 8 
7 5 2 8 6 3 1 4 2 1 6 8 7 3 5 4 
б 3 5 2 4 1 8 7 3 7 5 1 6 4 8 2 
5 7 3 4 1 2 б 8 4 6 8 5 2 1 3 7 
4 8 6 1 5 7 2 3 5 8 2 6 4 7 1 3 
3 б 1 7 8 5 4 2 6 5 7 2 3 8 4 1 
2 1 8 5 3 4 7 б 7 4 1 3 8 5 2 б 
1 2 4 6 7 8 3 5 8 3 4 7 1 г 6 5 

£ 
Tab. 16 îab. 17 
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c/ for Ж ÿ 

4 6 7 2 3 5 
. 

8 4 6 7 2 3 5 1 1 2 3 4 5 6 7 8 
7 5 2 3 4 8 1 6 2 1 6 8 7 3 5 4 
6 3 5 2 8 1 7 4 3 7 4 2 6 8 1 5 
5 7 8 6 1 2 4 3 4 6 7 3 2 5 8 1 
4 8 3 1 5 6 2 7 5 8 ì 7 4 2 3 6 
3 6 1 4 7 5 8 2 6 5 8 1 3 4 2 7 
2 1 4 5 6 7 3 8 7 4 2 5 8 1 6 3 
1 2 7 8 3 4 6 5 8 3 5 6 1 7 4 2 

0 

Tab. 18 Tab. 19 

d / f or 71 *10 

4 2 7 3 6 5 
. 

8 

*10 

4 2 7 3 6 5 1 1 2 3 4 5 6 7 8 

7 5 8 2 6 4 1 3 2 1 6 8 7 3 5 4 
6 3 5 4 2 1 7 8 3 8 2 5 6 4 1 7 

5 7 4 3 1 8 6 2 4 7 5 6 2 1 8 3 
4 8 6 1 5 2 3 7 5 6 8 1 4 7 3 2 

3 6 1 8 7 5 2 4 6 4 1 7 3 8 2 5 
2 1 3 5 8 7 4 6 7 3 4 2 8 5 6 1 
1 2 7 6 4 3 8 5 8 5 7 3 1 2 4 & 

0 

Tab . 20 Tab. 21 

e / f o r W E11 

4 2 7 6 5 3 8 

E11 

4 2 7 6 5 3 1 1 2 3 4 5 6 7 8 

7 5 3 2 4 6 1 8 2 1 6 8 7 3 5 4 
6 3 8 5 2 1 7 4 3 8 7 2 4 5 1 6 

5 7 6 8 1 3 4 2 4 7 1 3 6 2 8 5 
4 8 5 1 3 2 6 7 5 6 4 7 2 8 3 1 

3 6 1 4 7 8 2 5 6 4 5 1 8 7 2 3 
2 1 4 6 5 7 8 3 7 3 8 5 1 4 6 2 

1 2 7 3 8 4 5 6 8 5 2 6 3 1 4 t 
Ô  ê 

Tab. 22 Tab. 23 

692 -



f / f o r fl Ï 1 2 

4 2 3 5 6 7 
• 

8 

Ï 1 2 

4 2 3 5 6 7 t 1 2 3 4 5 6 7 8 

7 5 4 2 6 3 1 8 2 1 6 8 7 3 5 4 
6 3 8 T 2 1 4 5 3 8 5 7 1 4 2 6 

5 7 3 8 1 4 в 2 4 7 8 2 3 1 6 5 
4 8 6 1 7 2 5 3 5 6 2 3 8 7 4 1 

3 6 1 5 4 8 2 7 6 4 7 5 2 8 1 3 
2 1 7 4 3 5 8 6 7 3 1 6 4 5 8 2 

1 2 5 6 8 7 3 4 8 5 4 1 6 2 3 7 

j> 

Tab. 24 Tab. 25 

We have cteduced multiplication tables for six quasifields. 

These quasifields are mutually isomorphic. If we take as a 

starting quasifield e. g> that of table 17 ( i. e* the Hall's 

d̂enotation HI.) then the corresponding isomorphisms are given by 

the following permutations of the set {3, 4, 5, 6, 7, 8}= GF(9)
X 

\GF(3): r
2
 =*(354)(678), ̂  « (34!>)(687), V^ = (36)(47)(5a), 

T5 = (37)(48)(56) and f
6
 « (38)(46)(57). All the isomorphisms of 

these quasifields with kernels different from ®F(3) form a gpoxxp 
isomorphic with the symmetric group 5->» 

7» It is possible to find also such sets which contain 

also nan - dispersing matrices, for instance fT2.̂
 =
{*i A» *2 7» 

*3„5'
 M
4,6> "5,2* *6,,1 * ̂ -S* "8,3 ) •

 T n e
 corresponding tables 

are Tables 26 - 27. 

Final remarks: The operation from Table 27 is only a 

quasigroup one and not a loop one. As it is easily seen 

(5, + ,, *) is a right quasifield. Table 27 is isotopic with 

Table 21:: (frfrX)^ ((345)(687), id, idj. We can verify that 

the natural ordering of the set Tfl^l^ the first indices of the 
matrices M^ .. € Kl% in&uees a "dispersing:"* order of second 

>a r& th 
indices given by some of 3 to 8 W rows of multiplication 
tables "Sk + 1"; k * 1 , 2, 12. 
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8 4 7 3 2 1 6 5 
7 5( 

2* 6 8 3 4 1 
6 3 4 2 5 8 1 7 
5 7 3 1 4 2 8 6 
4 8 1 5 6 7 2 3 
3 6 8 7 1 4 5 2 
2 1 5 8 3 6 7 4 
1 2 6 4 7 5 3 8 

8 1 

2 5 

7 3 4 2 8 5 6 1 

Tab. 26 Tab. 27 

R e f e r e n c e s 

[1] U. Dempwolff - A. Reifart, The classification of the 
translation planes of order 16, I., Geometriae 

Dedicate 15 (1983) ř 137 - 153 
[2] H. Hall, Jr., Projective Planes, Trans. Amer. Math* Soc. 

54 (1943), 229 - 277 
[3] H* Luneburg, Translation Planes, Berlin - Heidelberg -

- Hew York 1980 
[4] T. G. Room - P. B. RLrkpatrick, Miniquaternion Geometry, 

Cambridge, 1971 

Mathematics Department 
Technical University 
602 00 Brno, Gorkého 13 
Czechoslovakia 

(Oblátům 1.7. 1986) 

- 694 -


		webmaster@dml.cz
	2012-04-28T13:17:06+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




