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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROIINAE 

27,4 (1986) 

ON THE TIGHTNESS OF CHAIN-NET SPACES 
I. JUHASZ and W. WEISS 

Abstract: We give a general construction that yields (in ZFC) 
1) a O-dimensional T2 chain net space of countable tightness 

that is not sequential; 

2) a O-dimensional T„ chain net space X for which t(X) 4\ 
-4-t (X). ^ z 

1) answers a problem from LIU and 2) from [2.3. 
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The aim of this paper is to solve two problems raised in tl] 

and 121, respectively, both connected with the tightness of chain-

net spaces. The first problem asks whether a chain-net space of 

countable tightness is sequential. This problem was partially sol­

ved in E3J, where consistent T2 counter examples were given. The 

example given below has the advantage over these these that it is 

both constructed in ZFC and T, (in fact, O-dimensional T 2 ) . The 

second problem asks whether t(X)=t (X) holds for a chain-net spa­

ce X. (We recall that t (X) is the smallest cardinal x such that 

whenever p e l in X then there is a family JL of subsets of A 

such that p € UA but p^U-CT§:B € A} .) The example will again 

be O-dimensional T2 and obtained in ZFC. It is known (cf.C43 ) 

that the size of a counter example must be bigger than a*.̂  , and 

our example has cardinality . 1 ^ - . The question whether an ex-
ample of size -K^j may be obtained in ZFC thus remains open. 

Both examples will be obtained from a general construction 

that will now be given. 

Theorem. Let *e, & be cardinals such that cf(ae)=oJ , if 

at > o then (***<< ae for each ft < *e , furthermore #**= -A . Let 

- 677 -



<X,i;> be a topological space with |X|= * and satisfying proper­

ties l)-4) below: 

1) for every closed set Fc X we have either (F| £ ae or 

| F l = * ; 
2) hd(X)-**e; 

3) X is T2 and first countable (in fact.., for each p e X we 

fix a countable 't -neighbourhood base *CU (p):n 8 6)}); 

4) if Fc: X is closed with |F|-i3e then F is the intersecti­

on of countably many r -clopen sets. 

Then there is a locally countable and locally compact topology 

p o t on X such that 

(i) if ScX and |S*|=A then 1*3*1=* as well, and 

(ii) if Fc X is p-closed and |F|-£»e then there is a p -
clopen set Z with ScZ and |Z| -fc s>e . 

Proof. Let S be the family of all sets S <* Ixl* with |sr| = 4, 

then by ^ ^ = * we can write tf= 4 S^: oc e A 1 where for each S E ^ 

we have |«(oc e-ArS-sS^l |= * .We also fix a well-ordering -? of 

X in type A . 

Our aim is now to define, by induction on oc € * points P^e.^ and 

topologies $># on X^ = «(p~: (3 cocl that satisfy the following 

inductive hypotheses: 

Koc ):£>,£ is a locally countable and locally compact refine­

ment Qf \ = t r X d-e- P<xD x<t, ) : 

3(oc ): for all f3e«t we have p A =P(X/3) n p ^ • 

If oc 6 * .is limit and P*-.?A have been suitably defined for eve­

ry ft £ oc then p ^ is the topology generated by Ui $>» : ft € oc J on 
X^ . Clearly, I(oc) and 3(cc) will hold then. 

Now, if oc=/S+l, we distinguish two cases. If S^cXn then we 
~mt% 

choose pA as the A -first element of S«^X« and then choose a 

sequence q e S~ such that q n6U (p«*T. Using I((3 ) we can choose 

for each n e <*> a compact open (hence countable) p~ neighbour­

hood K of qn with
 K

n c U n ( p J . A p^-neighbourhood base of p^ 

in X^ is then formed by the sets U -t K. :i e co \ nju-(p«l for all 
n € c->. If Sp 4- X* then we take as pA the -?-first element of 

X\Xp and define p^ by declaring p^ isolated in X^ . It is 

easy to check that I(oo) and 3(oo) will be valid in either case 
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Having finished the induction we then define p as the topology 

generated by U-C p^ : oc € ^ ? on X. Since we made sure that every 

point of X occurs as some p^ we clearly have that JD is a local­

ly countable and locally compact refinement of x . (i) follows 

since for every Sfi^ we have S=S~c X* for A many /3 € -A (this 

makes use of the fact that. cf(A)>ae since &=&**'), moreover, 

by 2), for every A c X there is an Sc A with |S| £ ae such that 

A =S* . 

To prove (ii), let us first observe that for every (o-closed 

F with |F| <£ 9€ we have by (i) that |Fr|--= K as well, hence it 

suffices to prove that every r-closed set F with |F|^ae can be 

covered by a p-clopen set Z with \l\ ~ at. 

It is straightforward from the local countability and first 

countability of p that any set Hex with |H|<-ae can be covered 

by a ^D-clopen set of size £ ae . Indeed, if ae = co this simply 

follows from the O-dimensionality and local countability of p , 

and if ae ><--> then we simply may iterate CJ. times taking closu­

res and covering by countable open sets, and then taking the uni-
a> 

on, which will be clopen and of size £ *e by f* < *t whenever 
^ = |H|< ^ . 

Next, assume that F is f-closed and |F| = -3e . By 4) there is 

a decreasing sequence -CU :n e o>\ of X -clopen sets with F= O^b" • 

Also, we may write F= KJ F^ where |F_|<9e for each n e o> . By 

the above we may then find for every n a p-clopen set Z .3 F 

with |Z | * 3« . We claim that 

%Z= U-CZ n U : n e w l n n 

is as required. Indeed, we clearly have FcZ and \l\ £ ae , and. 
that Z is f-open. To show that Z is also to-closed, pick any 

point x £ X \ Z and choose need such that x£lL. But then r- T n 

v = x^-iV^Vu^uig , 

is clearly a p-clopen set containing x with Vn Z=0, hence Z is 

also p-closed. 

Corollary 1. There exists a O-dimensional T2* chain-net spa­

ce X of countable tightness that is Tiot sequential. 
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Proof. Let us first apply out theorem (with ae=<*> and 3=c) 

to e.g. the Cantor set C , we then obtain a topology p on C 

satisfying (i) and (ii). We then put X=C u { pi (with p #. C ) 
with the topology that agrees with ffc on C and has neighbour­

hoods for p of the form (X\ Z)u*Cpl where 2 c C is jo-clopen 

and |Z| £ ea . 

It is straightforward from (i) and (ii) that X is 0-dimensi-

onal T« and not,sequential because no co-sequence from C can 

converge to p. 

X is chain-net because if F c C is jo-closed and not closed 

then |F|><u by (ii), and it is clear that every <*>,-sequence of 

distinct elements of F converges to p. 

Finally, X has a countable tightness because if A c C and 

p€A then |I^| = |A |=c, hence there is a countable set Be A with 

\B*\=11^1=0, hence B cannot be covered by a countable p-clopen 

set, i.e. peB as well. 

Corollary 2. Suppose cf ( ae )= a < ?e and A=«e are such that 

{**, o e implies (U^-tfaeand &**= & . Then there is a O-dimensional 

T2 chain-net space X with |X| = A for which ts(X)*t(X). 

Proof. Let us apply in this case our theorem to the space 

B(ae)=D(3€ )4J , i.e. the Baire space of weight «e . 2) and 3) are 

now obvious, 1) holds because every closed set F in B(ae) is a 

complete metric space, hence by [51 we have |F|*3e or |F|=* & . 

Finally 4) holds because Ind(B(ae)), the large.inductive dimensi­

on of Bin) is equal to 0. 

Now let f> be the topology on B(»e) that satisfies (i) and 

(ii). Our space X will be of the form X=B(9e>u4pi with the topo­

logy that agrees with p on B(-tit) and has as neighbourhoods for 

p sets of the form (B(«e) \ Z)Uipl, where Z is a p -elopen and 

|Z|*tfr . 

It is clear that X is O-dimensional and T2- To show that it 

is chain-net take any p-closed set Fc B(ae) that is not closed 

in X, i.e. pcT. Then by (ii) we must have |F|=A>*e, and it is 

clear that every «e+-sequence of distinct points from F conver­

ges to p. 
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Next we show that t (p,X)=<*> ; hence t (X)= co as well. Indeed, 
if A'cB(^) and p e l then we must have, by (ii), |Î |$- A-tf|A^l . 

But we can find a set Sc A with |S| = 9e and S =A , hence 

|S>| = A as well. Consequently we have pcS since no fb -clopen Z 
with IZl^-ac roay cover S, but if we write S=U(Sn:n 6 w l with 

|Sn|-cae for all n then p 4 ^ n
 f o r anY n DY (**) a n d |Snl-<ae , 

hence indeed tg(p,X)= o> • 

Finally we show that t(p,X)=ae , and this will complete our 

proof. It suffices, of course, to show t(p,X).& ae . This, however, 
is now trivial because, as we have seen abov$.,for all AcB(^e) 

with |A|<ae we have p4A. 
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