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ON THE CARDINALITY OF LINDELOF SUBSPACES
OF FUNCTION SPACES
A. V. ARHANGEL'SKII, V. V. USPENSKII

Abstract: Let X be a compact space. If Y is a Lindelof
subspace ol C (X), ~the space of all continuous real-valued func-

tions on X 1n the topology of pointwise convergence, then |Y| &
<exp(c(X)), where c(X) is the Souslin number of X. It X is dy- .
adic, then any Lindelof subspace of Cp(X) has a countable network

Key words: Lindelof .space, Souslin number, tightness, func-
tion space.

Classification: 54A25, 54C35.

o e e e e = = = = - - -

Let X be a compact space having the Souslin property. Then
compact subspaces of C_(X) are metrizable. This fact can be de-
duced from the equality w(X)=c(X) which holds for Eberlein-com-
pact spaces. We show that Lindelof subspaces of C_(X) also cannaot
be too large: if YSCP(X) is Lindelof, then 1Y|€ 2%, This is'a
special case of the following theorem:

Theorem 1. If X is compact and YS-Cp(X), then |Y| <
< exp( L(Y)-c(X)).

We consider only Tyhonoff spaces. See 1] - [3] for-the
definition and notation of cardinal functions: C_(X) is the spa-
ce of all.continuous real-valued functions on X in the topology
of pointwise convergence; A£(X) is the Lindelof number of X,
w(X) is the weight of X, and e(X) is the extent of X i.e. e(X)=
=sup {|A|: A is a closed discrete subspace of X3.

We start with a list of facts that we need for the proof.

Theorem B. If X is compact and Y& Cp(X), then £(Y)=e(Y).

This is a recent very beautiful and very powerful result of
D. Baturov of Moscow.
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Theorem S (B.E. Shapirovskii). If X is compact, then w(X)=<
£t(x)° .

This is a combination of two other results of Shapirovskii:
(1) W) g1 0% it X is regular; (2) ar { (X)£t(X) if X
is compact, see [2],13).

Theorem A (A.V. Arhangel ‘skii [21). Let X be a T,-space and
m be a cardinal. Suppose that: (1) A(X)2m, (2) t(X)<gm; (3)
w(X)<2™; (4) if AEX and |A|<m, then |A|<2". Then |X|& 2.

A space Y is monolithic if nw(A)< |A| whenever ASY. If X
is compact, C (X) is monolithic and countably tight, [2],[4], so
for any. YQC (X) the inequality |V|= |Y|®< Z‘Y holds.

We turn to the proof of Theorem 1. Let m=.£(Y) . c(X). It suf-
fices to prove that |Y|< 2™, for then also |Y|<|Y]|¥ < 2™,

1. First let us consider the case when there exists a point
y* in Y such that |YN\ Oy*|< m for every neighborhood Oy¥* of y¥.
Without any loss of generality we can assume that y* 1is the con-
stant zero.

For any xeX and € > 0 the set {feVY:|f(x)|2 e} has cardi-
nalityyé m; hence | 4 feY:f(x)40%|<m. Let X c'RY be the image
of X under the diagonal product AY:X — RY . Then X~ lies in -the
= —product of lines and therefore t(X )<m, [2]. Theorem S im-
plles dX D €w(XN<m (X’ )4m°(X)<—2 Since Y embeds in cp(x’),
we have |Y| < lcp(x )| £d(x")<2™

ITI. Now consider the general case. By Theorem A it suffices to
show that w(Y)< 2™, Suppose w(y,Y)>2" for some ye Y. Then
L(YNL{y) z y(y,¥)>2". Theorem B implies there is a closed
discrete subset A€ Y\4iy} of cardinality > 2™, Let A'=AU{y}.
Then AL(A")4m, since A" is closed in Y, and A’ has only one non-
isolated point. Hence A’ satisfies the condition in I. But
|A“|>2™. This contradicts the first part of the proof, and we
are donhe.

If X is'‘dyadic, a better estimate can be obtained:

Théorem 2. If a compact space X is dyadic and Y& Cp(x),
then nw(Y)= £(Y). *
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In particular, any Lindeldf subspace of C_(X) has a countab-
le network. Note that nw(Y)=nw(Y) since C_(X) is monolithit and
A(Y)=e(Y) by Theorem B, so we also have nw(Y)=e(Y).

Proof. Let X'=AY(X)SR'. Then Y is homeomorphic to a sub-
space of C_(X') which separates the points of X', so nw(Y) &
£ nw(C_(X))=nw(X )=w(X"). It remains to show that w(X') < £(Y).
Since X is dyadic, w(X )=sup im:Q™ embeds in X'}, [5), and also
w(X )=sup{m: m+1l embeds in X'}, where m+l is the linearly order-
ed space of ordinals < m. The following lemma completesvthsiproqi:

Lemma. Suppose m is a cardinal and Y& Cp(m+1). If Y separa-
tes the points of m+l, then .£(Y)=m.

Proof. We may assume m is regular. For every o < m pick a
function fccs Y and two rationals 'sx , te such that either
f (ec) < s, <t.< fx(m) or f (e<)>s >t >f (m). If oc>0, there
is an ordinal B (e¢) < o« such that for any ¥ & (f3 (ec),¢) eit-
her £ (y)<s <t , or £ .(y)>5,>t, . The pressing-down lemma
L6] implies there is an, unbounded subset ESm, an ordinal B < m
and rationals s, t such that f(e¢)=f3 , s =s and t, =t for eve- ’
ry o € E. The subset 4f :cc € E} of Y has no complete accumula-
tion point in Cp(m+1). Hence £(Y)Z m. The reverse inequality is
obvious.

Recall that sup 1t(X"):n ¢ w } él(cp'(x)) for any Tychonoff
space X (M. Asanov, see [4]). Our lemma suggests the following
question. Suppose X is compact,Y& C_(X) and Y separates the
points of X.Is it true that t(X) £ Z(Y) ? Note that t(X) £ £*(Y)=
=sup $£ (X" :n € w3, since X embeds in. Cp(Y) and t(Cp(Y))=£"'(Y)
[4]. For non-compact spaces our question can easily be answered
in the negative. '
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