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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
27,3 (1986)

SPECTRAL ANALYSIS OF VARIATIONAL INEQUALITIES
Pavol QUITTNER

Lit Abstract: We investigate solvability of variational inequ-
8llity

(1) ue K: <Au-Au-g(u,M)-f,v-ud& 0 VYveKk,
where K is a closed convex cone in a Hilbert space; A, g are com-
pletely continuous mappings, A linear, and A is a real parame-
ter. As a consequence we get some assertions on the existente
of bifurcation points and eigenvalues for corresponding problems.
These assertions are very close to the results of M. Kulera

’

Key words: Variational inequality, bifurcation point, eigen-
value.

Classification: 49H05, 73H10

1. Introduction. In this paper we study solvability of va-
riational inequalities of the following type:

(1) ueK: <Au-Au-g(u,A)-f,v-udZ 0 Vvek,
where K is a closed convex cone in a real separable Hilbert spa-
ce H with the scalar product {*,*> , A is a real parameter,
A:H—> H is a completely continuous linear mapping, g:H»xR—sH
is a completely continuous (nonlinear) map and fe H is a right-
hand side. As a corollary of our considerations we get some as-
sertions on the existence of higher eigenvalues and bifurcation
points for corresponding problems.

We remind that AoelR is a bifurcation point of the varia-
tional inequality
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(2) ueK: <Au-Au-g(u,A),v-u> &0 VYveK,
if there exists a sequence (un,ﬁn) of solutions of (2) such that
O%u,—0, 7\n—-—>?\o,

An element AOGIR is an eigenvalue of the operator A on the cone
K, if the problem

(3) ueK: (Aou-Au,v-u>§D Yvek
has a non-trivial solution u04=0. The vector ug is called eigen-
vector corresponding to ho.

We shall denote by &, (A) the set of all eigenvalues of the
inequality (3) (i.e. the set of all eigenvalues of the operator
A on the cone K) and we put GI(A) = GK(A)r\R*, where R* =
= {teR;t>0%.

There are known (to the author) two methods concerning hig-
her eigenvalues or bifurcation points for variational inequaliti-
es - the method of E. Miersemann (see e.g. L3, 4, 51) which con-
sists in a generalization of Krasnoselskij sup-min principle and
can be used only for symmetric operator A, and the method of M.
Kutera which is based on Dancer s global bifurcation theorem (see
e.g. [1, 21). In our paper, the problem (1) is reformulated (for
A >0) to the operator equation Tu = 0, where the operator T:
:H—> H depends on A ,A,g,f and K, and solvability of this equa-
tion is investigated using the Leray-Schauder degree. As a corol-
lary we get some results on bifurcation points which are very clo-
se to the results of M. Kulera.

Main results are formulated in Section 2; in Section 3 we
show that for special cones we obtain more information . Finally,
let us mention that our method can be used also in another situ-

ation (see [71).
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2. General theory. In the whole section we assume that H
is a real separable Hilbert space, K< H a closed convex cone with
its vertex at the origin, A:H-—>H a completely continuous linear
operator, g:Hx=IR—> H a completely continuous operator and A< IR.

First we remind some properties of the se} 6K(A): The set
6, (A) is bounded by £ §Al . It can be easilylshown that the set
5;(A) is closed in IR*, nevertheless the set 6 (A) need not be
closed in IR™ (see Example 1). Each positive bifurcation point of
(2) belongs to OK(A), if ﬂéﬁﬁﬂl —»>0 for u—>0 (locally uniform-
ly in A ). The set GK(A) may contain an interval (see Examp}e 3).
If the operator A is symmetric and positive, the set GK(A) is
non-empty, it may contain a non-zero accumulation point (see [6])
and it may also consist of only one point, even for dim H = + o®
(see [63).

In what follows we shall deal only with A > 0; this restric-
tion is substantial in our method. The problem (1) can be rewrit-
ten as

uek: <%(Au+g(u,f>\)+f) - u,v-u>£0 VveK.

Using characterization of the projection PK on the set K we get
that our problem is equivalent to the problem

(4) Tu = 0,
where Tu = T(A,f,8,A,K)u = u—PK(%(Au+g(u,ﬁ)+f)).

Note that this rewriting can be made also fo; a general closed
convex set K. If K is a cone with its vertex at 0, then

Tu = u - % PK(Au+g(u,m)+fQ. )

We want to use Leray-Schauder degree ié (4), so that we need
some apriori estimates for solutions of the equation (4). Before
we prove such estimates, let us introduce the following

Definition. Let K,Kc H. We shall write A(K,K) € & , if
the following two conditions are fulfilled:

\
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(5) (Vxek) dist(x,K) € & max(1, §x V)
(6) (VXeK) dist(%,K) € ¢ max(1, IXN).

Lemma 1. Let KCH be a closed convex cone with its vertex
at 0, let Kc H be a closed convex set, A(K,K) & € . Then

ﬂPKu - PK?J'I € (e+ 2Ve + 82)-max(1, flul+¢)
for any uegH.

(See [11).)

Lemma 2 (Apriori estimates). Let IcIR*- GK(A) be a compact
interval, 9-%1&——»0 for lul —> o uniformly for Ae I. Then
for every M>0 there exist €,R>0 such that for each Ae I,
s,t6{0,1>, feH, I£] < M, and arbitrary closed convex set KcH
with O(K,X) & € the following estimate is true:

[(1-s)T(A,f,tf,A,K) + sT(A,t ,tg,A,?i] u=0=>lull <R.

Proof. By a contradiction: suppose there exist u,& H,llunll—>
—> 00, A eI, s ,t 6<0,1>, llfnl < M, closed convex sets T(‘n‘
with AKX )&% such that
~
[(1-s DTA .1, ,4,0,A,K) + s T(A .2 .t 9,AK )] u = 0.

Using Lemma 1 we get

_ 1
(7) wu_ = }‘_n PK(Aun+tng(un,3\n)+tn) + T

n
where r, = o(lu 1) (n—>@ ).
u
_°n
We may suppose w, = WA w, Q\n——>7\ el

Dividing (7) by llun\\ we get

t gu_,A) £ r
21 n n'’n n n
(8) W, = rn PK(Awn + —r—‘r——un + .m‘n ) + —Mn .

The right-hand side in (8) converges strongly to % PKAw, thus
Wo—> W, W= :lﬂ PeAw (i.e..weK, {Aw-Aw,v-w)?Z0 VYvekK). Since
0 wn“=1, we have w0, thus A& 6,.(A), which gives us a contra-
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Corollary. Put By ={ucH; hul<R}. IfAe R* - 6,(A),
9-([&1’-‘3--—#0 (Qul— ), feH and A(K,K) £ e , where ¢ is sut-
ficiently small, then the Leray-Schauder degree
deg(T(A,t,g,A,’(),o,BR) is well defined for R sufficiently large
and this degree does not depend on ﬁ,f,g,?(' in the following way:
Let ?‘1,9«2 belong to the same component of R* - (M), TeH,

glu,A) o~
-—m-:—\‘l— —»0 (for Hul—> @ ) and A(K,K) € © , where & is suf-

ficiently small. Then (for sufficiently large R) we have
deg(T(A,,£,0,A,%),0,8;) = deg(T(A,,0,0,A,K),0,Bp).

Proof. The assertion is a consequence of homotopy-invarian-

ce property of Leray-Schauder degree.

Remark 1. If Ac R - 6,(A), then d(A)=deg(T(A,0,0,A,K),0,Bp)

is well defined for any R>0 and does not depend on R.

Remark 2. In the sequel we shall deal only with the cone K,
nevertheless, using Corollary of Lemma 2, many of our results can
be proved for convex sets which are "close" to the cone K (e.g.
if d(A)=*0, then the problem (1) will have a solution also when
we shift or turn the cone K a little bit).

We shall write briefly T(,f,g) instead of T(A,f,g,A,K).

Al
Lemma 3 (On bifurcations). Let ﬁl,azclf- G'K(A), al< 7«2,

(u,2h) 1,2
E'TG%——’O (for u —>0, 1=1,2), g(0,2)=0 for Ae <a},a2>,
u(ml)+u(7\2>. Then there exists a bifurcation point ?\OG(AI,.’AZ>
of the variational inequality (2).

Proof. First we prove (by a contradiction) that the equati-
on T(Ai,ﬂ,tg)u = 0 does not have solution for O#fueBy (€ suffi-
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ciently small), te<0,1> and i=1,2.

Suppose e.g. there exist O%u ~—> 0 and t € <0,1Y such that

n
T@al0,t gdu, = 0, ie. u = i; Pc(Au +t oCu ,A')). Dividing this
equation by |lun|l and passing to the limit-(we may suppose
T:——:T—Aw) we get TGE'\T—’" = l;l' PKAw, which gives us a contra-
diction, since Ale 6, (A).

Now suppose that there is no bifurcation point A e <al:a%.
Then the equation T(A,0,g) = 0 is not solvable for Ae (9\1,.7\2>
in B¢ -40%Y for sufficiently small ¢ and using the homotopy-inva-
riance property of Leray-Schauder degree we get

d(al) = deg(T(a1,0,0),0,8,) = dea(T(AL,0,9),0,8,)

= deg(T(A2,0,9),0,8;) = deg(T( AZ,0,0),0,8,)

d( %),

a contradiction.

Theorem 1. Let A > max( GK(A)U_{D}). Then d(A) = 1.

Proof. Choose A > |All. By Corollary of Lemma 2 we get
d(A )=d(A). Using the homotopy-invariance property of Leray-
Schauder degree for the homotopy

_ t

H(t,u) = u - T\PKAU
we get
d(A) = deg(T(A,0,0),0,Bp) = deg(I - % PyA,0,Bp) = deg(I,0,Bp)= 1
(we have H(t,u) 40 for u& 3By, since l\}\ PyAu I <lull for u#0).

Lemma 4. Let K pe not a subspace of H (i.e. the linear hull
span K%K) and let A <“:‘31"f=4<Au,u). Then the variational inequa-
lity

(9) uekK: {Au-Au-f,v-u> Z0 Yvek

does not have solution for suitable f.

Proof. First we shall prove that there exists D*UDEK

such that (u,ﬁo7§0 for any ueKk.
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Choose Vg € span K - K. Using Hahn-Banach theorem for the convex
sets K and ivo?; in span K, we obtain an element u € ;Egn—?, u14=0,
such that (u,u17§u for each u¢ K. Using the characterization of
the projection PK we get that it is sufficient to put Uy = PKul'

Now we shall prove that the inequality (9) does not have
solution for f=u°. Suppose there exists u €K such that

(10) <?\u-Au-u0,v—u>ZU VYvekK.

Putting v=0 and v=2u we get (&u—Au—uD,u) = 0, so that
Ahul?- CAu,u> = (uo,u)-Z.U.

$since A < int <Au,ud, we have u=0.
Nkl =1

Putting v=ug in (10), we get now - (uo,u0>=’-0, which gives us a

contradiction.
Corollary. Llet dim H< oo , span K+K, g(0,2)=0, SUA)

—> 0 (for u—>0). Then there exists a bifurcation point of (2).

Particularly, 6, (A)=*§.

Proof. We may suppose“

A we may consider the mapping A+tI, where t >0 is sufficiently

inf <Au,u? >0 (instead of the mapping
wil=g

large). Choose 9\16(0,“‘1n“f 1(Au,u)), A2 A . By Lemma 4 we ha-
wuil=

ve d(?\l)=0, by Theorem 1 d(A2)=1. Now it is sufficient to use
Lemma 3 and notice that for dim H < oo each bifurcation point be-
longs to the set &, (A).

Note that the condition &(LA) 5 0 (for u—> 0) is suffi-

cient to be supposed for A= ?\1,9\2.

. X, - x g
Lemma 5. Let O*u ek, A uy= Aouo’ 2,70 (where A* is the
adjoint of A). Then the variational inequality
(11) ueKk: <9\0u—Au-u0,v-u>§0 Vvek
does not have solution.

Proof (by a contradictinn) Putting v=u+uo in (11), we get
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Dé(.ﬁou-Au-uo,uo) =<u, J\ouo—A”uo) = lluvl2 = - luoll2 ,

a contradiction.

Corollary. Let 0%u &K, A“‘uo = ﬂouo, AoeR+-— 6 (A),
nﬁ-::-tﬁ)- —> 0 for u—> 0. Then there exists a bifurcation point A

of (2) with A > 20.

Proof. It is sufficient to use Lemma 5, Theorem 1 and Lem-

ma 3 as in Corollary of Lemma 4.

Exercise 1. Let KGfueH;{u,u>2¢cllulll, where £>0,
O+u, CH, and let <Au,u¥>0 for u+0. Prove that 6, (A)=+#.
Hint: Put C =fuek;<u,ud = 1} and

’ PKAu
Su = W—? for ueC.
KU Uk

Then use Schauder fixed point theorem.

Main results of this section are the following two theorems

and their corollaries.
]

Theorem 2. Let .7\k>0 be a simple eigenvalue of the opera-
tor A, let the corresponding eigenvector u € K°, let K#%H. The
eigenspace Ker(J\kI-A*) is generated by a vector v, and we assume
AL K, « vk,uk7 >0 (»for A symmetric we put vk=uk). Then the fol-
lowing assertions hold:

(a) The eigenvalue .7\k is an isolated point of GK(A).

(b) Put Ay = infidc 6, (A);A> A%, It Ae A A, then

- k _ 'y
d(A) = (-1) °, where f, ’:\»Za‘._ dim(‘g1 Ker(AI-A)P).

(c) Put AL = sup($Q e GK(A);9\< .ﬂklu{(ﬂ.
It Ae(A N, then d(A)=0.

For A< ")‘k sufficiently close to A the inequality

k!
(12) ueKk: <.?\u-Au-vk,v-u) Z0 Vvsek
does not have solution. ’
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Proof. (a) Suppose there exist AMe 6&(!\) - {\?\k}, AN
—> A. Then there exist u"ek, Nu"h = 1, such that

<A™ -Au",v-u™M Z 0 VWvek,
or equivalently

n_1 n
(13) u' = F PKAU s
Since A, is an isolated point of &(A) (the spectrum of the ope-
rator A), we have A" % A" for nEno; thus u" € @K for nIno.

n

We mﬁy suppose u —> w. Passing to the limit in (13) we get

w = kPKM’ u"—> w e BK.
Thus ) '
(14) O+ we 9K, <2kw-Au,v—w>E0 YvekK.

Choose z € H. Then vk+tz €K for sufficiently small t>0 and putting

v = Wy +tz in (14) we get
~
0£t (.‘Akw-Aw,z> +<w, A v Aty D =t (.?\kw-Aw,z),
thus .?\ku=Aw, which gives us a contradiction, since uchD and

‘l}‘k is a simple eigenvalue of A.

(b) Let A> A, A 6,(A) U &(A). Then u, is a regular so-
lution of the equation Tu = T(A ,(A- ak)uk,ﬂ)u = 0, i.e. the
mapping T is of the class C1 in the neighbourhood of Uy and the
Fréchet derivative T'(uk) = I- % A is an isomorphism. Thus for
sufficiently large R>0 and sufficiently small © > 0 we get
(using Leray-Schauder index of isolated solution)

d(A) = deg(T,0,Bp- Bg(u)) + deg(T,0,B.(u)) =

B

deg(T,O,BR- Bglu)) + (-1) 7.

Since d(A) is constant on (ak,a;). it is sufficient to prove
that deg(T,O,BR- Bg(uk))=0 for A sufficiently close to 9‘k
(A > 9\k). We shall prove (by a contradiction) that for A suf-
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ficiently close to O‘k (» > ak), the equation Tu=0 does not ha-
ve solution different from Uy -

Suppose that for &"Nf)«k (a"% A) there exist unzt-.uk such that

(15) 1€A™, (A" Ay, 00" = 0,

(16) uk+u"e K, < ?\"un-Aun-(An-Ak)uk,v-un) Z0 Vvek.
Since (AMI-A) is an isomorphism for nZ Ny
solution of the equation (A"I-Adu = ( ﬁn-ﬁk)uk. the vector u
cannot solve this equation and thus u"e 3K (each solution ue K°

and u=uy is the
n

of the inequality (9) is also a solution of the corresponding equ-
ation Au-Au = f).
Putting v=u"+vk in (16) we get
0 &AM A", v > - (AR Cup v -
= <u, A At - (M- A Ko,y s
= (an- %k)(<un,vk)- {up,v ).
Hence

(17) <un,vk) ;<uk,vk) >0.

Dividing (15) by Hu"ll we get

n An-ﬂk

n
(18) u .l po(p_u = K
I L T BTN
" (17 An- Ay
We may s 0se ——— —>w, f 17) it foll 0.
Yy upp “un“ w rom 1 o OWS “ un“

Passing to the limit in (18) we get

1
W = :-7-\-; PKAw, 0%+w e 9K,

which gives us a contradiction as in the proof of (a).
(c) It is sufficient to prove that for A< A, close to Ak,
the inequality (12) does not have solution.

Suppose the contrary. Then there exist Al A Qk (A" % )k) and
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u" such that

(19) " = Lo ey,

S

or, equivalently,
(20) u"ek, (anun-Aun-vk,v—un>2 0 Vv ekK.

Putting v=u"+vk in (20) we get
0£< D\nun—Aun—vk,vk) =<, &nvk-A*vk) - (vk,vk7 =

= (A"- A0 (un,vk> - <V,
Thus

(21) <", ) = - — 1 v 2 —> - oo .
'k n k
M- A

Hence Nu"ll —> o0 and we may suppose —= w. Passing to the

S .
o™il
limit in (19) we get w = 51\-
K

(w,vk)éﬂ.

PyAw, lwlh = 1; using (21) we get

Since u, is the only (normalized) solution of the equation Jku=
=Au lying in K and (uk,vk> >0, we have w € 8K. This gives us a

contradiction as in the proof of (a).

In the following theorem we shall use notation from Theorem
2. The proof of Theorem 3 is very similar to the proof of Theorem

2, so that we shall just sketch it.

Theorem 3. Let K=H, let 9\k>0 be a simple eigenvalue of
the operators A, A*, let the corresponding eigenvectors UV & K°
and (uk,vk) < 0. Then the following assertions hold:

(a) The eigenvalue %k is an icolated point of & (A).

(b) It Ae(r,,A), then d(A)=0. .

For A > A i sufficiently clese to vAk the inequality (12) does
not have solution.

*
(©) If Ae (AN, then d(A) = (-1)'K,
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h = = & P
where 7, -a;%‘dim(f}:}" Ker( AI-A)F).

Sketch of the proof.

(a) The proof is the same as in Theorem 2.

(b) Suppose there exist A"\ Ay (A% Ay) and u" e K such
“that

(22) u" = %" P (Au"ev, ).
Putting v=u"+vk in the variational inequality corresponding to

(22) we get ( A"- A (un,vk) F “vk“2, hence " — co and

——w).

(w,vk)gﬂ (where we suppose

"
Hu™
Passing to the limit in (22) we get Uwl = 1, w =\%; PyAw, which

gives us a contradiction as in the proof of Theorem 2(c).

(c) For A< A, (close to A,) we have

— %

d(A) = deg(T(A,(A- Ay, ,0),0,Bp-B,(u )+ (-1) "

Suppose there exist A“/Ak (a“#?\k) and u" e @K such
that

n_1 n n

(23) u = 'a_nPK(Au +(A7-Ay).

Putting v=u"+vk in the corresponding variational inequality we

get (un,vk7é<uk,vk)<0. Passing to the limit in (23) we obtain

o"
i

W= %_ PAw, where Osw e 9K (w = lim ), which gives us a
k .

Hu
contradiction.

Corollary. Let 9\1, .ﬂj be simple positive eigenvalues of

the operators A, A* ( &1-< ﬁj), let the corresponding eigenvec-
tors uy,v;,uy,vye K°, (ui,vl) . <uj,vj) > 0. Let g(0,A) = o0,
g(:’:ﬁ) —» 0 (for u—> 0, Ae( .9\1, 7\3)). Then there exists a bi-
turcation point A e ( 9\1, g\j) for the variational equality (2).

Proof. Using Theorems 2, 3, we get d( Al d( a2) tor
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suitable .7\1< 3)\1< 9\2< O\j. Now it is sufficient to use Lemma 3.

Remark 3. Some of the assertions of Theorems 2, 3 can be
proved (in the same way) also under weaker assumptions, g.g. the

following assertion is true:

Proposition 1. Let ﬁ‘(> 0 be an eigenvalue of the operator
A, let v < Ker(A I-A¥)n K°. Suppose {v),u>>0 for any
ueKer( A I-A)nK, u%0. Then 7\':< Ao d(A)=0 for A € (A, ,A)
and for A < 2,(close to Ak’ the inequality (12) does not have

.
solution.

v

Open problem 1. Let A e R*- €, (A), d(A)=0. Find some ge-
neral assumptions under which there necessarily exists f e H such
that the inequality (9) is not solvable. Very special assumptions
of this type are given in Exercise 2.

The connection between the Leray-Schauder degree and the number

of solutions of a similar problem is studied e.g. in [8,9,101.

Open problem 2. Let Al, 32 belong to the same component
of IR*- GK(A), let there exist fle H such that the inequality
(9) does not have solution for A= 9}, f=f1.

Does there necessarily exist a right-hand side 12 such that the

ineduality (9) does‘not have solution for A= ﬁz, t-12 ?
A partial answer to this question is given in the following

Lemma 6. The set

X ={2 e R*- GK(A); (9) is solvable for any fe H}
is closed in R*- GK(A).

Proof. Let a"—» A in R*- 6.(h), let AMeX, feH. We
shall find a solution of (9). Since A"e X, there exist u"e H
such that
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(24) o - ;1\“ P(Au"sp) .

Suppose Hu"l—> o0 . Then passing to the limit in (24) divided

by "l we get w = %»PKAw, where w = lim , which gives us

u
numil n
a contradiction with A ¢ GK(A). Thus we may suppose u —= u/

and passing to the limit in (24) we get u_ = % PK(AuD+f), hence

[s)

u, is the solution of (9).

.

Remark 4. If A > max( SK(A)LJ{OE), then d(A )=1 (according
to Theorem 1)-and  thus the inequality (9) is solvable for any
fcH. One can easily prove that for A >“‘n‘|'a‘1'x*1<Au,u) the soluti-
on is unique (the operator AI-A is strictly monotone). Neverthe-
less, for A < “33;1 {Au,u) we may lose the uniqueness: Suppose
e.g. A is symmetric and positive, let Al be the first eigenva-
lue of the operator A, let its multiplicity be odd and
Ker( A I-A)nK = 40}. Choose Ae (0, A;) such that A > max 6, (A)=

= max_ <Au,u? and A > max( 6(A)- §A,}¥). Choose u_e& K® and put
we K 1 o
N 1
f=( ﬁI—A)uo. Then
1 =d(A) = deg(T(A,£,0),0,Bp) =
deg(T(A ,£,0),0,8; (u )) + deg(T(A ,f,O),O,BR-BE(uo)) =
= -1 + deg(T(A,£,0),0,Bp-8,(u,)),

"

thus there exists a solution of (9) in BR—Bs(uo), i.e. the inequ-

ality (9) has at leést two solutions.

Remark 5. The results of E. Miersemann on higher eigenva-
lues and bifurcation points are (in the symmetric case) stronger
than Corollary of Theorem 2. As a corollary of his results (see

[5]) we obtain the following

Proposition 2. Let A be symmetric, let “k > %k+1> 0 be

two consecutive eigenvalues of A, let Ker( A, ,I-A)n K°=+p,
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Ker ( 7\kI—A) ¢ K. Then there exists A ¢ GK(A)r\()\kd, )\k), If

the assumption Ker()\kI~A) 4 K fails, we can use the following

Lemma 7. Let A be symmetric, let Ak—p > Ak—p+1;"'
L Z A, > A >0 be consecutive eigenvalues of A, let
k k+1 % :
0 -
Ker( 7\k+1I—A)nK 8, V= ,=®_ HKer( )\iI—A)cK,
Ker ( Ak_pI-A) ¢ K.
Then there exists an eigenvalue A ¢ GK(A)n(Akd, Ak_p) with

. i
an eigenvector we V™.

Proof. Put H=vi s K= ﬁnK, A= A/ﬁ. Then we can use Proposi-

tion 2 for ﬁ, ,X to obtain an eigenvalue A e ka(i) with an ei-

K
genvector we K. Denote P:H —H the orthogonal projection of H

onto H. Choose veK. Then Pve'ﬁ', hence { Aw-Aw,v-w? =
= CAw-Rw,v-w> = <Aw-Fw,Pv-w> Z 0.

Note that analogous results to Proposition 2 and Lemma 7
hold also for the existence of bifurcation points of the corres-

ponding non linear problems.

3. Special cones. We shall assume all general assumptions

from Section 2 and, moreover, we shall suppose K = { ue H; (u,wi)Z

hy

0, i=1,...,n%, where wi 0 (i=1,...,n).

Lemma 8. Let K = {ueH; <u,w1);0}, w;+0, let A & 6(A).
Put F(A) = CRCA,A)wy,u > , where R(A,A) = (AI-A)"1. Then

(i) the inequality (9) is (uniquely) solvable for any f¢ H
iff F(A)>0;

(i1) A e G (A) iff F(A) = 0.

Proof. Denote R(A ,I\)w1 = uy. Obviously, an element ueK
is the solution of (9) iff Au-Au-f = tw), or, eguivalently,
u = RCA,AXE+ tuy, where (ueK® and t=0) or (ue @K and tZ0).
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Suppose F(A)>0, i.e. u € K®. Choose feH. If R(AAfeK, it

is sufficient (and necessary) to put u=R(Qa,A)f; if R(A,A)E4K, we
(R(Q,A)f,wi)

put u=R(A,A)f + tu,, where t = - T

Suppose F(A)=0. Then u e JK, Auj-Auj=wy, i.e. ug is an
eigenvector corresponding to A e GK(A).
Obviously A e GK(A)- 6(A) implies F(A )=0.

If F(A)<0, then for R(}\,A)feKO we have two solutions

1 2 {RONAE, Wy
(u=R(A,M)f, u®=R(A,A)f+tu;, where t = -——Zﬁ—-w—$———:>0),for
1’71

R(A,A)f € 8K we obtain the unique solution u=R( A ,A)f and for
R(CA,A)f & K, the inequality (9) is not solvable.

Lemma 9. Let the assumptions of Lemma 8 be fulfilled. Then
the function F(A ) is real-analytic. If, moreover, A is symmetric,
then F(A) is strictly decreasing on each component of the set

R- &(A).

Proof. The analyticity of F(A ) is obvious.
Let A be symmetric. Using the resolvent identity we get

F (a) = - {R¥ AMwp w2 = - UIR(A ,A)w1|12< 0.

Lemma 10. Let the assumptions of Lemma B8 be fulfilled, let
A be symmetric, 0¢'7\k € 6(A), Ker(A, I-A) c K. Then the functi-
on F(A) has a removable singularity in A = A, .

Proof. Denote P the orthogonal projection of H onto
W= (Ker(?\kI—A))‘L , put R = A/ﬁ. Then Wy e ﬁ, A(H)c H, thus )
RCA AW = R(A ,K)Nl and F(A)=F(A) for A & 6 (A), where F(A) =
= (R(A fﬁ)hl,wl) is real-analytic on IR- & (R).

Theorem 4. A=t K be a halfspace, K = {ueH; <u,w]> Z 07,

let A be symmetric.
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(i) Let lk_p > ak—p+1 z ...z 7\k > 9\k+1>0 be consecuti-
ve eigenvalues of the operator A (0£p<k), let Ker( A.I-A)c K
for i=k-p+l,...,k and Ker( ?\iI—A)nKozt:B for i=k-p,k+1. Then the-
re exists the unique A jc(A, ., ?\k_p) n &,(A) for which there
exists an eigenvector u/ (of the variational inequality (3)) such
that Ug is not solution of the equation ?\ou—Au-D. Moreover, we
S
can choose uj 1 hk@_fbMKer( A;I-A). For Ae (Apyqr A)- 6(A) the
inequality (9) has the unique solution for any fe H; for
Ae( Ags ﬁk_p)— 6(A) the inequality (9) has 0,1 or 2 solutions
(more precisely see the proof of Lemma 8).

(i1) Let A z... ZQ, ;> A, >0 be consecutive eigenvalues

of the operator A, ]\1 = max {Au,u> . Let Ker( A.I-A)c K for i=
hNuwliga i

=1,...,k-1 and Ker(A I-A)n K°4 @. Then B (AN (A, ,+@) c 6(A)
and each eigenvector of the inequality (3) with .?\0>?\k is simul-
taneously the eigenvector of the operator A.

For A > ?\k, A & &(A) the inequality (9) has the unique solution

for any feH.

Proof. Theorem 4 is a corollary of Lemmas 7,8,9,10 and The-

orem 1.

In what follows we shall suppose K = {ueH;(u,wi)?.’O for i=
=1,...,n}, where wi+0 (i=1,...,n). Denote N = {1,2,...,n} and
for McN denote

Ky = {uek; <u,w;7= 0 for ieM, (u,in) >0 for ieN-M},

HM = {wi)ieMlls
:H—> HM the orthogonal projection of H onto HM,

Ay = PMA/HM, LN MLICWE

Obviously K =ML=J“ K”, uherelthe union is disjoint.
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Lemma 11. Let ueK , < Au-w,v-upZ0 v¥veK. Then Au =

M

= P'w. Particularly, if PKwe.KM, then PKN = PMw.

Proof. Putting v=u+z, where ze¢Hy, is arbitrary (but small),

we get PM(J\u—w)=0, i.e. Au = PMu. 11 Pyw €Ky, put u=PKw,9\'=1.

Lemma 12. The set &, (A)- 10} is isolated in R- 10%.

Proof. Suppose A e 6K(A), i.e. there exists O*LICKM (for
suitable Mc N) such that <Au-Au,v-u>Z0 Vve K. According to
Lemma 11, Au = PMau = Ayu, hence Ae & (AM) c £ . Consequent-
ly 6K(A)c 2 and now it is sufficient to notice that the set
= - 40% is isolated in |R- {0}.

Lemma 13. Let Ae R-= , feH, McN. Then there exists at
most one solution of (9) in Ky. Consequently, the number of so-
lutions of (9) is bounded by 2".

1

Proof. Let u ,uze KM be solutions of (9). Using Lemma 11

we get Aul= PMaule), iie. Aut-agls PM (i21,2). since

A& G(AM), we have ul= uZ.

Definition. Let A >0, T(A,f,0)u = 0. We shall say that u
is a singular solution of the equation Tu=0, if either T is not
differentiable in any neighbourhood of u or T'(u) is not isomor-

phism.

Lemma 14. Let A > 0. Then {fe H;(2u)T(A,f,0)u=0 and u is
singular}c S, where S is a finite union of subspaces of codimz1
(in H).

Proof. Suppose T(A ,f,0)u = 0, u singular, ue KM‘ Accord-
PMAu+t).

"

ing to Lemma 11 Ay = PK(Au<£)
(i) ULet there exist Vo —>u such that PK(Avn+f)# PM(Avn+f),
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Then (by Lemma li), PK(Avn+f) ¢KM and we may suppose PK(Avn+f)e

€K where Lc N is fixed, L=#%M. Since PK(Avn+f)-—-—>PK(Au+f) =

L)
= ]\ueKM, we get Lc M. Moreover, for any ie M-L the correspon-
ding vector Wy does not belong to the linear hull of the set

- : L _
Swj’s jel (since K = @). Consequently Hy, S H . Since P-(Ay + ) =
= PK(Avn+f)—-> PK(Au+f) = Au and PL(Avn+f)——> PL(Au+f), we have

Au = PE(Aust), PL(Au-Au-£) = 0,

L. 1
szM—( ?\I-A)HM + H,
where Hh is a subspace of codim Z 1.
(ii) Let the assumption of (i) fail, i.e. P (Av+f) = .

= PM(Av+f) for all v sufficiently close to u. Then Tv = v -
- -}\ Pe(Av+t) = v - % PM(Av+t), thus T is differentiable at u.
- % PMA is not isomor-

phism, i.e. A e @ (AM). Thus the range Ry of the operator J\I-AM

Since u is singular, the mapping T (u) = I

has codim Z 1 in Hy and from PM( Au-Au-£)=0 it follows
i
TeRy + Hy.
X ca s A L L
Obviously it is sufficient to put S = (, W  H)u( U (R,+HL)).
HM%HL M XEG(AM\ MM
Theorem 5. Let Ae R*- 6 (A), £45 = S(A) (see Lemma 14).
Then the number of solutions of the inequality (9) is finite
(bounded by 2™), locally constant (with respect to A e R'- 6’K(A)
and f ¢ H-S5(A )) and odd resp. even if d(A ) is odd resp. even.
All these solutions depend analytically on f and A . If Ae R-Z,
then the number of solutions of (9) has an upper bound 2" for any

fecH.

Proof. For f¢S each solution u of (9) is regular and is
unique in KM for any McN (see the proof of Lemma 13 and the de-
finition of the set S). Using well-known properties of Leray-

Schauder degree one can easilv orove that the parity of the
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number of solutions of (9) depends only on the parity of d(A ).
Using implicit function theorem we get analytical dependence of
solutions of (9) on f and A . Moreover, if T(A,f,0)71(0) =

= %ul,...,upi and > 0 is sufficiently small, then
card(T(i,'f,O)'l(O)r\Be(ui)) = 1 for any i=1,...,p and (X ,%)
sufficiently close to (A,f), so that the function
card(T(A,f,O)’l(D)) is lower-semicontinuous. We shall prove that
it is also upper-semicontinuous. Suppose the contrary, i.e. there

M +
exist A, £, u such that A —> Ae R'- GK(A), f,—> 145,

n)
. (25) T(A,,£,0) u = 0

Y i
and u ¢ B ='L§a Be (u™).

If Nunﬂ —> @, then passing to the limit in (25) divided by
lun“ we get T(A ,0,0)w=0 for some w#0, thus Ae GK(A)’ a con-
tradiction. Hence we may suppose that &unl is bounded, u,— u.
Passing to the limit in (25) we get u,—> u, T(A ,£,0)u = 0,

which gives us a contradiction, since un¢ B.

Exercise 2. Let K = {ue H; ¢ u,wi)Z 0 for i=1,2}. Let WiaW,y
be linearly independent, A e IR*- GK(A). Praove that there exists
£&5(A) such that card(T(A,£,0071(0))% 1. Consequently, if
d(A)=0, then the inequality (9) is not solvable for some fe H.
Hint: For Mefl,2} put Ty = 1£;7CA,£,00 " n Ky+03. 1f

ANe 6(AM), then T, is contained in a subspace of codim z1. If
X & 6(A,), then T; is a closed convex cone which is stricdtly .
less than halfspace in H and card(T( A ,f,G)'ln Ky) = 1 for

fe Ty. Now observe that card(exp N) = 4.

4. Examples
Example 1. In this example we shall show that the set
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6 (A) need not be closed in IR” = {teR;t <0} and,” cansequently,

a negative bifurcation point of (2) need not be the eigenvalue
of (3).

Let A:H—>H be a symmetric, completely continuous, linear

operator with simple eigenvalues 7\1 = -2, 7\k = ‘22 (k=2,3,...)

and corresponding eigenvectors Ups Uy (kZ2). We suppose that

> N .
{u ., form an orthonormal basis in H. Put K = jueH, <u,u1-u'2.3_

Z 0 for k=2,3,...%. Then AR 1 ‘1? is an eigenvalue of (3) with

an eigenvector ok = uj+u,, since akgfoagk - (1+ é)(ul-uk),

(7\.kuk~Auk,uk> = 0 and <?»kuk—Auk,v>ZD VveK. Suppose -1 =

= 1im AX € G'K(A). Then there exists weK, lwl = 1, such that °*

(26) {-w-Aw,v-w?Z0 Vv ekK.

We can write w =,RZ:1 C Uy where =1 Cx = 1.

From (26) it follows ¢(-w-Aw,w> = 0, hence {Aw,w) = - lwl? -

= -1,
so that cz \ 5 02
2 -] K _ _1 k
"2e0y v 2,72 7L cl"Z+m§2_F'2

c’
Suppose cj.*,o for some fixed jZ 2. Then cf;%— + -l>%,

c?

2 2,1 j 1 > 2 2 .
ckél-cl,-z- - —%<72- for any k= 2. Thus €1> ¢y and since

0 (w,ul—uk‘> = ©,-Cy, we have ¢,;>0 and

c? c2
1 i 1 j

(w,u1~uk7 =c-c 2 \/7+ —-\13 - V7 - —JJ>D for any k Z2.
Hence weKo, -w-Aw = 0, a contradiction.

Thus cj=0 for jZ 2, w=Uy, which gives us again a contradiction.

In [6) there is given an abstract example of a symmetric
operator A and a cone K in an infinite dimensional Hilbert spa-
ce H such that the set &, (A) has exactly n elements, where n
is an arbitrary natural number (this example is a direct genera-

lization of an example of M. Cadek, where 6,(A) is a one-point
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set). The following example shows that such example can be const-
ructed also for operators and cones which have a physical inter-

pretation.

Example 2 (V. Sverdk). Let f= (0,1)=(0,1) ¢ RZ, M =
= Q- (0,%)x(0,%), H = w(l)’z(.(l) (the Sobolev space),
K = {ueH;uZ0 on M},

' - du_ v 3u_ v -

Cu,v? = f (EHWI*E,&—Z-) dx, <Au,vy = Inuv dx.
1 1

Then &, (A) ={—-2, __.7} .

23 8x

Idea of the proof. Let A e GK(A), let u be the correspon-

ding eigenvector. Then A > O,
j;z(-?tlsu-u)quZD Yge ().

Thus - ADu-u = 4 , where m is a nonnegative measure with its
support in M. Further u = % G(u+ m ), where G is Green function
for L . Using potential theory, we get that u is continuous in
L (since Au = PKGu) and superharmonic in M° (since - AuZ 0
in M°). From the minimum principle it follows u= 0 in M or u>0
in M°,

Let u>0 in M° and denote .7\1(M°) the first eigenvalue of
-A on M? (with the corresponding eigenfunction w>0). Then

- A Au-u = 0 in M?, thus

0 < uw dx = - A (Auww dx = A( (LT u(A w)dx)=
{4" fM° ) ‘gm°u on ’[a"

= af ug—:'1'-d‘5+—-—-_‘7‘ fuwdx

z
M° ml(M") (1 -
2 [

— uw dx

[s] o ?

A(MT) Tw

since %%éo and uZ 0 on 3M°. Hemnce A Z J\I(Mo).

- 626 -



If u(x)< 0 for some x € L-M, then A € 2.1(-0- -M), since A
is the first eigenvalue of -A on a subdomain of -M.

Under our assumptions we have %(M°)> 7\1(.0_—M), thus eit-
her u =0 on Mor uZ0 on £ .

If u= 0 on M, then A= 7\1(17.-M) and u is the first eigenfunction
of -A on fN1-M; if uZ0 on && , then using the minimum princip-
le, we obtain u>0 on O | .7\:.?\1(.0.).

Such an example can be constructed glso for general domains
in R" (n45). Another possible generalization is given in the
followihg example:

Let Q=Slo = (0,4)=(0,8), M = ﬂ-.tkf{, Sli, where
Sll=(u,2- e)=(0,2-¢), 0,=(2,3-8)x(0,1), _Q}=(3,4)x (0,2-¢),
02,200,3-e) < (2,8), 25=(3,8)=(2,8), & >0.

Then card G‘K(A) = 6 and each eigenfunction of the variational
inequality is the first eigenfunction of the operator - A on so-
me 0, (i=0,1,...,5).

Idea of the proof. As before we get u =0 on M or u>0 on

M.

If u>0 on M®, then uZ0 on N1, (since 7\1(M°)‘ 77\1(112)),
so that u>0 on (M u02)° (since u is superharmonic on this set).
Analogously we obtain u>0 on (Mu Q, uﬂ3)°, u>0 on

(Muﬂzuﬂ3uﬂl)° etc.

Example 3. In this example we shall show that the set

&, (A) can contain an interval.
Put H = ‘R}’ A = '1’030. 3 K = -\x;X%&x%
(1,1,0

Yy

-1

Choose te<€0,1” and put u = ( t )5 9K, A=1 -
1-t2
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t

Then Au-Au = - Vi \ , 50 that Au-Au 1 u

t

1
Vi1-t2/
and one can easily prove {Au-Au,v>Z0 VveKk.

Thus {7,1> ¢ 6, (A).

2
Example 4. Let H = R°, A = ( g,i),K = {ueH;<u,wp>2 0?,
b

where w, = ( -1~

2
Then 6(A) = {1,2%; u,= —1) u,= (—1), v,= (1 v =(n) are the
1= () v (1) v (1) (8
corresponding eigenvectors for A, A¥ lying in K® (see Theorems 2,
3 and Lemma 8 for notation). Further <u1,vl7 < 0, <u2,v2) >0.
- _ 5A -11
We are able to compute F(A ) =< R( %,A)wl,w17 = = —

Using the results of Section 3, we get GK(A) = 41,2, l%}-
Moreover, for A ¢ SK(A) the inequality (9) is solvable for any
feHiff Ae (1,2)Lz(lé,+c0). Some of these results can be deri-

ved also using Theorems 2, 3.

Example 5. Let H = wé’z(o,l), K =fu eH;u(%)é 0%, <u,v> =

1., 1 )
= _& u'vidx, <Au,v) = J; uv dx. Using Theorem 4 we get GK(A) =

n

G(A)- £0%. For Ae R" - 6,(A) the inequality (9) is solvable
for any fe H iff Ae (A, 1, Ap) (k=1,2,...) or A > A,.
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