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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
27,3 (1986) 

ON EXTENDED SHANNON ENTROPIES AND THE EPSILON 
ENTROPY 

Miroslav KATÉTOV 

Abatract: On the class of all metrized probability spaces, 
a certain modification of one of the extended Shannon entropies 
introduced by the author coincides (up to a multiplicative const­
ant) with the epsilon entropy as introduced by Posner, Rodemich, 
and Rumsey. 

Key words: Extended Shannon entropies, epsilon entropy. 

Classification: 94A17 

When examining the extended Shannon entropies in [13 and 12]» 

the author aimed, among other things, at introducing a concept 

'from which various kinds of entropies (such as e.g. the e-entro-

py of totally bounded metric spaces and the differential entropy) 

could be obtained in a natural way. In the present note, the ep­

silon entropy in the sense of Posner, Rodemich, and Humphrey 

(which is closely related to the ^-entropy of metric spaces) is 

shown to coincide with a fairly natural modification of the ent­

ropy CE (see [11). 

1 

1.1. The letters R and N have their usual meaning. We put 

R = *-oo)uRu$co*, R+ =-ixeR:x£0^ R*+ =-*x6l?:x.>0i, Rf = 

= 4xeR:x>0l, N, =^neN:n£l}, Em,nl = $ k € N :m £k £n } for m,n€ 

5N. - Instead of log2 we write log. We put L(0) = L(0) = 0, 
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L(x) = -xXnx, L(x) = -x log x for xc R*. Instead of L(x) and L(x) 
• A 

we often write, respectively, Lx and Lx . - If K-fc 0 is a set, then 

£|(K) denotes the set of all x = (x k:ktK) such that x.c R+ and > 

Z x k < oo . If x = (xR:kc K) e i^(K), then we put H(x) = H(xk:k € 

CK) = ,2:(Lxk:k6K) - LjE (xR :k € K), fi(x) = H(x k:kcK) = 2E(txk: 

:k^K) - t i£(xk:ke K). - A function (or a functional) is a mapping 

f :X -+R. 

l'2- Pacts. Al If x ei*(K), aeR +, then H(x) = H(x)*in2, 

H(ax) = aH(x). - B) If x = (XJL> .. . ,xn) c Z{M, then H(xj x R ) i 

*.>x^.log n. - C) If x e,£+(J*K), then H(x) = S (H(x .R :k € K): 

:j€. 3) + H(2(x. k:k€ K):J€3). 

1.3. A measure is always a finite measure on a set Q#-0, 

i.e. a eC-additive (vu : A—.»-R+, where A (denoted by dom <u ) is 

a 6>-algebra of subsets of Q. If f:Q—#-W is (<Z-measurable, 

tu*x*Q:f(x)<0} = 0 and / fd pu < oo ; then X ,--• f xfd^u , defi­

ned on dom (M, , is a measure, which will be denoted by f • (U> . If 

Y e dom jd , then we put Y • /u = i « <u . where iy is the indicator 

of Y. 

1.4. If do:Q .xQ—*-R+ satisfies tp(x,x) = 0,{p(x,y) = f>(y,x), 

then >̂ is called a semimetric on Q and<Q,^o> is called a semi-

metric space. If <Q,£>> is a metric space, then fo= B<Q,g>!> deno­

tes the collection,of all Borel sets XcQ. - For any set Q and 

any a 4 R+, aQ or a denotes the metric ft> on Q satisfying jo(x,y) = 

= a for x =fy. 

1.5. D e f i n i t i o n . Let ĉc and <o be, respectively, a measure 

and a [<u x <ul -measurable semimetric on Q. Then P =<Q,<p,/tu> 

is called a semimetrized measure space or a W-space. For any W-

space P =<Q,fi>,^L>, we put wP -/uQ. - The class of all W-spaces 

is denoted by 910 . A W-space <Q,f> , {A > will be called (1) an FW-
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space, (2) a graph W-space or a GW-space, (3) a metric W-space 

if, respectively, (1) Q is finite, dom ft = exp Q, (2) t<u, x<ot3 

-\(x,y)6.QxQ:04-jD(x,y)4=li= 0, (3) <o is a metric. The corres­

ponding classes (i.e. that of all FW-spaces, etc.) will be deno­

ted by (1) V0?t (2) 7>PG, (3) 7V)W 

1.6. Let P=<Q,f>,^6>fe^2().Ifv is a measure, dom i> = 

= dom /u, . y * (tt , then we call S =<Q,<o,v> a subspace of P and 

write S»P; if V = Y * /u. for some Y e dom fi , then S is called pu­

re. If K * 0 is a countable set, P k = < Q , £ > , ^ k > € 2 ^ , k € K , 

P=<Q,<p,(U,>e3-l> and rU = JE (j4ik: k c K), then we put P = 

= _E(Pk.kcK) and call (Pk:keK) an o>-partition of P. An (^-par­

tition (P.ikcK) of P is called a partition if K is finite, pure 

if all Pk are pure. If U = (Uk:k*K) and V- (Vm.m€M) are co -

partitions of P and there is a partition (Mk:kcK) of the set M 

such that, for each kcK, either _E(V rmci^) = Uk or Uk = 0.P, 

Mk = 0, then V is said to refine % , 

1.7. Let P = <Q,5> , <*,> e WQ . If f is a function such that 

f » (U is defined (see 1.3), then we put f.P = <Q, p ,f • /cc > . If 

X e dom £1 , we put X*P = < Q,<p ,X . (U. > . - For any S 4P, there ex­

ists a function f such that S = f*P. 

1-8- pact • if <Q,©> is a separable metric space, ^u is a 

measure on <Q, p > and (Be dom ji , then <Q,p , (u, > « W -

Proof. Let a c. R+. The set G ={(x,y): p(x,y).<af is open in 

QxQ, and therefore, Q x Q being separable, it is of the form 

U(X x Y :neN), where X , Y are open in Q. Since X , Y are in 
dom jl f we get G e dom i $* * ^cl • 

-•9- Notation. The class of all ( P T > P
2 )

 sucn that pi - p> 
P 2 ~ p for some P e fiQ will be denoted by Ut . I f P.. =<Q,C^,^ i> ) 

i = 1,2, and C p
1,

p
2) e <-& , then we put (1) r(PlfP2) = 

= $f d( «u1 * <u2) jwP1 .wP2 if wPx- wP 2>0, r ( P 1 , P 2 ) = 0 if wP^wP^O, 
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(2) d(P1,P2) = inf -?ae R+: f <u, x <tc3{(x,y): ̂ (x,y)>a? = 0], 

(3) E(P1,P2) = d(P,+ P1,P1+ P 2 ) . For any P s ^ , we put d(P) = 

« d(P,P) . The functionals (Px,P2) »—• r(P^,P2) and (PpP2) «-* 

*—*E(P,,P2), defined on 6fc , will be denoted by r and E, respec­

tively. 

1.10. In 113, 3.4 and 3.7, normal gauge functionals (NGF) 

have been defined (they are functionals on 01 satisfying certain 

conditions) and, for any NGF ^ , the functionals Zx and C* have 

been introduced. We do not state again the definition of an 

NGF as only two NGF's, r and E, defined in 1.9, will be consider­

ed here (for the fact that r, denoted r, in £13, 3.2, 3.5, and E 

are NGF's see [13, 3.5). The definition of Cx and C* will be 

given below in a form different from, but equivalent to (for any 

NGF % ) that in CIV 

1.11. The concatenation of finite sequences x and y is de­

noted by x«y or xy (or also by xb if y = (b) and by ay if x = (a)). 

The letter A denotes the collection of all finite non-void 

DcU((0,lln:n€N) such that if x = (x^iKlOfiD, then (1) (x^ 

:i<j)feD for all j<k, (2) xO € D iff xleD. If D e A , then we 

put D' = 4 x e D : x 0 e D V D" = D \ D \ - We call <P = (Px:xeD) a dy­

adic expansion of P & 7Q if D <s A , P0 = P, P Q + P , = P for 

each xeD'. If all P j»P are pure, then tP is called pure. If 

(P - (P :xcD) is a dyadic expansion, then iP" denotes the in­

dexed set (Px:x&D"). - See [13, 4.1-4.4. 

1.12. Let 'c be an NGF, P €. W .If U£P, V#P. then we 

put q,(U,V) = H(wU,wV)r (U,V). If 9 = (Px:xcD) is a dyadic ex­

pansion of P, then we put Pz{9) = 2( nr.(Px0,Pxl) :x 6 D'). -

See 113, 4.10. 

-•13- Definition (see L13, 4.29, 4.11). Let X be an NGF and 

let P 6 W . Then C^(P) (respectively, C*(P)) denotes the infi-
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mum of all a cR"+ such that, for any partition (pure partition) % 

of P, there is a dyadic expansion (pure dyadic expansion) JP such 

that (P* refines U and fj(3*)*a. The functionals P J—> Cr(P) 

and Pt—**C*(P) are denoted by C* and C% ,respectively. - Instead 

of Cr and C?, we will often write E and E*« 

1.14. If x is an NGF, 1U (Uk:k£K) is a partition of P « 

6 fiQ and t .*(U i ,U.)-< oo for i4-j, then IU1X denotes the W-spa-

ce<K te\ v > , where tf(i,j) = n,(U1,Uj) for i#-j, vX • wCSTCl^: • 

:1CX)) for all XcK. - See £13, 3.6. 

1.15. Theorem (see ri], 3.14-3.19). Let x be an NGF and -let 

<y = C^ (respectively, <f = C£). Let P c W) . Then y(P) is equal 

to the infimum of all b€R + such that, for any partition (pure 

partition) % of P there is a finer partition (pure partition) V 

with C* L ^ < b . 

l-l6- Facts (see111). Let x be an NGF and let P c 920 . Then 

(1) X £ E, (2) if <y = C^ (respectively, 9 = C*) and U+V = P (res­

pectively, U+V = P and U, V are pure), then <?(?)£<y(U) • #(V) + 

• fi(U,V), (3) if x 2 r and P = -CQ,1, <u,> e 7)Qfi then Ct;(P) = 

* C*(P) = H((tt«Cq!:qcQ), (4) if y is an NGF, Y £ v , then Cr(P)£ 

.5 Ct;(P), cJ(P)r Cj(P). % 

l-l7- Definition. If a,b(R, we put a*b = 0 if a&b, a#b= 

= 1 if a<b. If f:X—» R and ecR, then e # f denotes the func­

tion x n e # f(x). - If -ecR* and P = <Q,£> , <u, > c 0*? , then 

<Q, fc **5> ,(«.> is a W-space, which will be denoted by e#P. For 

any P c tip , the mapping e ,—• €, * P, defined on R^, will be cal­

led the graded representation of P. For any y : WQ — * R, the . 

function ty-» «y(e*P), defined on R*, will be denoted by 

G<j>(P); the mapping P t—>G<y(P) will be called the graded modifi­

cation of 0/ and will be. denoted by G 9 • 

1.18. In 133, Posner, Rodemich and Rumsey have defined the 
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epsilon entropy for spaces X of the form X = <X,d,<u,> , where 

<X,d> is a complete separable metric space and ̂  is a measure 

of the form (0,= "y , dom >> = & . By 1 .8, these spaces are W-spa-

ces, and it is easy to see that the definition of the epsilon en­

tropy presented in 13] can be extended to all W-spaces. We are 

going to present the extended definition in a form which coinci­

des with that given in 133 for spaces mentioned above. 

**19- Definition. Let P=<Q,j>,<tt>6 W) , & c R*. Then 

(Xk:keK), where K-M is countable, is called an e-partition of 

P if Xk€ dom (u. , diam Xk * & , X.nX. = 0 for i4=j, j&(U(Xk:ke 

c K)) = (U,Q, and the infimum of all H((u,Xk:k t K), where (Xk:k«-K) 

is an & -partition of P, is denoted by H&(P). The function z, v—* 

*--**H6(P), defined on R*, will be called the epsilon entropy of P 
A 

and will be denoted by H(P). 

l-10' Notation. For any P = < Q, <p , <a > e Tip , ^(P), o-*(P), 

Tlf(P) and ^l(P) denote, respectively, the infimum of all 

H(wUk:k&K), where (Uk:kcK) is an o>-partition (pure ca-partiti-

on, partition, pure partition) of P such that d(Uk) = 0 for all 

k€K, and -^(P) denotes the infimum of all H(£iXk:kcK), where 

(Xk»P:keK) is a pure c^-partition of P and diam Xk = 0 for all 

keK (thus, %(?) = oo if there is no such partition, and similar­

ly for 'n.(P), etc.). 

1.21. Evidently, fi£(P) = \(^ * P) . Xn 2 for all e e R*. -

It wUl be proved below that, for any P e ^Ou, and any &cR*, 

E( e * P), E*( & * P), ir( e * p ) and yf{ e. * P) coincide and are 

equal, at least for small *, > 0, to %( & # P ) . 

2 

2.1. Proposition. If P e 7*0- and ^ f (P) «*-oo (i .e ., there 

is a partition (Uk:k&K) with d(Pk) = 0 for all keK), then 
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E(P) = E*(P) = ^ f(P) = ^ * ( P ) . - See [23, 10 .6. 

2-2- Lemma- Let V be an NGF, P 6 TV) , d(P) «z oo , P n^P, 

n € N, and let w(P-PR) — * 0 for n —-> oo . Then q> (?) £ Urn <f>(?n)y 

where 9 = Ĉ , or <$ = C* • 

Proof. We consider the case 9= Ĉ .; the other case is analo-

goua. Put a = lim cp(Pn); we can assume that a *-= 00 and d(P) = 1. 

It is enough to prove that, for any b>a and any partition % = 

= (f.•P:i& Cl,m3) of P, there is a dyadic expansion JP such that 

(P" refines U and CJ,(<P)< b. - Choose e ;> 0 such that a<b -

- 2e . Choose neN such that w(P-Pn)»log nf < e- , H(wPn,w(P-Pn))< 

-c & , <y(Pn)< b - 2& . Put S = P , T = P-S. Choose functions 

s, t such that S = s.P, T = t»P, and put s. = f.s, t. = f.t for 

i6Cl,m3. Put # s = (si-P:ie Cl,m3), U- = (t^ P:i e [l,m3). 

Clearly, tig and 1lj are partitions of S and T, respectively. Sin­

ce cy(S)< b - 2& , there is a dyadic expansion ^ = (S sxcDJ of 

S such that *f* refines %s and Q(SP)<b - 26 . It is easy to 

see that there is a dyadic expansion Cf = (T :ys0-) of T such that 

£T" refines Uy and C ^ T ) £ H(w(ti- P) :i c Cl,m3), hence, by 1.2 B, 

PV(T )£ wT.log m. Let D consist of 0, all (0).x, x€D s, and all 

(l)«y, y€ Dj. Then 0 * A and there is a dyadic expansion & = 

= (Pz:zsD) of P such that P ( 0 ) # x = Sx for xeDg, P( 1). y = Ty for 

yeD T. Clearly, 9" refines U , and Pr(9) = P^C-f ) + PV(T) + 

+ Px(Stl)£ b - 2s + wT.log m + H(wS,wT)< b. 

2-3- P r o p o s i t i o n . Let P = < Q , £ > , < u . > e 72Q , S £?. Then 

E(S)£E(P), and if S is pure, then also E*(S)#E*(P). 

Proof. We prove E(S)£E(P); the proof of E^SJiE^P) is 

analogous. We can assume that E(P) «-: a? . It is enough to prove 

that, for any b>E(P) and any partition 11 = (U. :keK) of S, there 

is a dyadic expansion P̂ of S such that ^ M refines U and Pp(9>)< 

<b. - Let z noneK, put K' = Ku(z), and put U = P-S, 1r = 

525 



* ( U k : k « K * ) . Since E(P)-rb, there exists a dyadic expansion 3D = 

= (Px:x«0) of P such that J?" refines V and nE(3>)<b. Since 

y« refines IT , there is a partition (M(k):k«K') of DM such 

that X(Px:x«M(k)) * Uk for each kcK'. Clearly, there is a dy­

adic expansion Sf» (Sx:xcD) of S such that S^ = Px if x & U(M(k): 

:k€K) and Sx = <Q,$>,0) if x*M(2). Then we have S X^P X for each 

xcD, and therefore r,£(Sx0,Sxl) £
 r,E(PxO»Pxl) f o r e a c h x e D ' 

Hence V£(^) * ^(9)<b. Clearly, SP" refines 11. 
2-4- Proposition. Let.P e WQ , d(P) <: oo % p ^ p , n«N, 

and let w(P-Pn)—+ 0 for n — * oo . Then E(P ) ~* E(P), and if P n n n 

are pure, then also E*(P n)—• E*(P). 

This follows at once from 2.2 and 2.3. 

2.5. Fact. If (S,T) is a partition of P * *-9 , then 

max ( n(S), ̂ (T)) £ ^(P) £ ^(S) + n(T) • H(wS,wT) £ -*<P) -> wP. 

Proof. Me prove the third inequality; the proof of the 

first two is easy and can be omitted. Me can assume that %(?) < 

< GO. Let £ > 0. Then there is an o -partition (Uk:kcN) = 

• (fk-P:k*N) of P such that H(wUk:kc N) *-> ̂ (P) + e and d(Uk) = 

» 0 for all kcN. Let S * g-.^, T » g2*
p- F o r kcN, i = 1,2, put 

Vik * fk9i*P* B y 1*2 C» *e n a v e H( w Vik : k e N ) + H(wV2k:k«N) • 

• H(wS,wT) - H(wVik:i » l,2;kcN) « H(wUk:kcN) • -£(H(wVlk,wV2k): 

:k€N). Since H(wVlk,wV2k)# wUk, we get -£(H(wVlk,wV2k):k6 N) £ 

4 wP and therefore n(S) • l(T) + H(wS,wT) £ ^(P) + & + wP. 

2.6. Lemma. Let P c ^ , PR* P n + 1^ P for n € N, w(P-Pn) —--. 0 

for n —*><*> . If 4^(Pn):n*Nf is bounded, then ^ ( P m - P n ) — * 0 

for m — • oo % n — • oo , m > n. 

Proof. Put a * sup <ij(P ):n« Nl. Let «, > 0. Choose kcN 

such that w(P-iPk) * S/2. Put b * sup 4 »& (Pn-Pk) :n> k*. Clearly, 

b £ a < o o . Choose t>k such that b - ^ (Px-Pk) < e/2; then, by 

2.5 (first inequality), b ^ ( P n - P k ) < e l 2 for each n£t. If 
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ui,ntN, »>nit, then, by 2.5, n( p
m-

p
n) * ^(

p
n*

Pk ) + H(w(pm~ 

-Pn>> w ( V P k » * *VPk> + w ( V P k ) » hence ^( pm- pn ) * V , -

-Pk) - n(
p
n"

pk ) * e/2^b - ̂ (p
n-

p
k) • e / 2 < t . 

2-7- j-emma. Let P « ^ ) . Let pn-*
p
n+1*

p tot ncN and let 

w(P-P n)~-* 0. Then T ( P n ) - * n(P)t ^ ( P n ) - > i£*(P). 

Proof. He prove n (Pn) ~~** *2(P); the proof of V ( P n ) — * 

— • ^*(P) is analogous. Put a * sup 4^(Pn):n€ H}. Since, by 2.5, 

%{?n) 4t tii?) for all nCN, it is enough to show that ^(P)#a. 

Me can assume that a < co and wP « 1. - Let e -> 0. Choose cr > o 

such that 3<af + H(</,1-aT)-* & . By 2.6, there are s(k)« N such 

that, for each kc N, (1) s(k)< s(k+l), (2) *(P-P8(k))-*<r/2
ki,1

f
 k 

(3) ro>n£s(k) implies n(Pm-Pn)< &/2k. Put SQ = %(0)» Sk « 
s Ps(k)"Ps(k-l) for k € N r Then n(S0)^a, w(P-S0)<aT/2, i^(Sk)< 

< oT/2k. wSk< cr/2
k for keN-,. For each kcNj, there is an cu-

partition (Uk*:j€N) of Sk such that d(Uk*) * 0, H(wUk-: j € N-) < 

< <T/2k. Clearly, ( U k . :k* Nj, j c N) is an o-partition of P-SQ, 

and, by 1.26, H(wUk:J:kfi Nx, j c N) *'H(wSk:kc Nx) + Z.(H(*(Ukj: 

:jc N):kcN1)< H(<f/2
k:kcN1) + <f . It is easy to see* that 

H(2"k:keN1) « 2. Hence we get % (P-SQ)< 3oT . By 2.5, yC?) * 

£ 7j(S0) + ^(P-SQ) • H(wS0,w(P-SQ))< a + 3d" + H(l-cT,i=r)< a +£. 
2-8- Lemma. Let P c ̂ d * Assume that there exists a parti­

tion (Uk:kcK) of P such that d(Uk) • 0 for all kcK. Then E(P) « 

« E*(P) » 'n(P) « n*(P) * ifCP) * VJ(P). 

Proof. By 2.1, it is enough to show that ^ f(P)^^(P), 

^ ( P ) *n*(p)» for the inequalities ^(P) ^ ^ f ( P ) , ^*(P) 6 

£ ^(P) are evident. We prove only i?f (P) £ ̂ (P), as the proof 

of ^*f(P) 4 if(P) is completely analogous. - Put a * ^(P); we 

can assume that a < <x> . Let (U,,...,Um) be a partition of P such 

that d(Ut) * 0. Let <* > 0 and let (Vk:kcN) be an co-partition 

such that d(Vk) * 0 for all kcN and (1) H(wVk:k€N)<a • e/2. 
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Let Uj = g ^ P , Vk = * k «P. Choose n such tha t (2) w( X ( V k . k > n ) -

•log m -«- e / 4 , (3) HCE(wV k .k i n ) , 2I(wVk :k >• n) ) *• W 4 . Put f = 

= ! E ( f k : k > n ) , Tk = Vk fo r k « t 0 , n 3 , Tk = gk_n-**P fo r k «Cn+l,n+m3, 

and put (T = (T , . . . , ! ) . C l e a r l y , T i s a p a r t i t i o n of P and 
o n+m ' 

d(T k ) = 0 fo r ksL0,n+mJ. By ( 1 ) , we have H(wTk.ke C0,n3)< a + 

+ W 2 . By (2) and 1.2 B, we get H(wTk :k c C n+1 ,n+m3) -*- e / 4 . Cle­

a r l y , H(wTk:k£L0,n+m3) = H(wTk:k € C0,ni ) + H(wTk:ke f n+1 ,n+mj) + 

+ H( -E(wTk:k 6 C0,n3), -E (wTk:k e C n+1 ,n+ml)). Using ( 3 ) , we obtain 

H(wTk:k = 0 , . . . , n + m ) < a + £ • 

2.9. Proposition . Let P be a GW-space and assume that there 

exists an co-partition (U k .keK) of P such that d(Uk) = 0 for all 

k e K . Then E(P) = E*(P) = ^(P) = ^ * ( P ) . 

Proof. For each n£ N put Pp = :&(Uk.k £ n). By 2.8, E(Pn) = 

= E*(Pn) = -n(PR) = ->l*(Pn) for each n£N. By 2.4 and 2.7, this 

proves the p ropos i t ion . 

2.10 . De f in i t ion . A Darboux measure is a measure (U. such 

that, for any X e dom (U/ and any positive b «-- (-̂ X, there is a set 

Y c dom (U satisfying Yc X, <u,Y = b. A Darboux W-space is a P e WQ 

such that U%P, d(U) = 0 implies wU = 0. 
2-n* Pact. If P e TiQ , d(P)>-0, then there is a pure S^P 

such that 0*wS«wP. - See L21, 7.14. 

2.12. Proposition. If P = <Q,$> , (U.> e W is Darboux, then 

so is (U . 

Proof. We show that if X e dom ft , (u.X>0, then there is a 

set Z€ dom (uu such that Ic X, 0 -c (4,1 <c »vcX; by well-known the­

orems, this will imply that <M, is Darboux. Since w(X*P);>0, we 

have d(X-P) .>0, hence, by 2,11, there is a pure subspace V^X«P 

such that 0<" wV<" w(X-P) = (W-X. There is a set Y e dom jZ such that 

V = Y.(X«P). Choose a set Z6dom(a such that ZoYnX, ^ Z = 

= ^ ( Y n X ) . 
2.13. Proposition . Let P be a Darboux GW-space. If wP>0, 
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then E(P) = E*(P) = ^(P) = ̂ *(P) = ao . 

Proof. Let nfeN^ By 2.12, there is a pure partition 2i= 

= ( U 1 , . . . , U n ) of P such that wUk = wP/n for k«Cl,nJ. Let .P = 

= (P :xeD) be a dyadic expansion of P such that tPM refines 1L* 

Clearly, we can assume that wP > 0 for all xe D". Then, for each 

x*D", d(P )>0 since P is Darboux, and therefore d(P ) = 1 since 

P e W)^. It is now easy to see that PE(d-*) = H(wPx:x € D"). Sin­

ce Q* refines <U , we obtain P ( cp) £ H(wUk:k« C l ^ ) = wP.log n. 

This proves E(P) = E*(P) = oo . If (Uk:kcK) is an co-partition 

of P, then, for some k, wU k^0 and therefore d(Uk)^0. This im­

plies -YI(P) = ^*(P) = oo . 

2.14. Proposition. Every W-space P has a pure co-partition (Uk*. 

:kc-N) such that UQ is Darboux and d(Uk) = 0 for kcN-^ 

Proof. For every pure S^ P we .can choose a pure S' = $(S)£ 

£ P such that d(S) = 0 and wS'^wT/2 whenever 14 S is pure and 

d(T) = 0. Put Ux = $(P) and Uk+1 = $ (P- -E(Ui: 1 4 i£ k)); put UQ = 

= P- Z(U i:i€N 1). Clearly, d(Uk) = 0 for all k«N.. - Suppose 

there is a pure T.#U such that d(T) = 0, wT>0. Clearly, wU £ 

# wT/2 for some m e N r Put V = P- S (Ut: 1 £ i< m). Then Uffl = $ (V), 

14 V, and we get a contradiction. 

2.15. Proposition. If P is a graph W-space, then E(P) = 

= E*(P) = n(P) « -a*(P). 

Proof. Let (Uk:keN) be a pure ^-partition with properties 

described in 2.14. If wU >0, then the equalities hold by 2.13 

and 2.3. If wUQ = 0, they hold by 2.9. 

2.16. Proposition. For any W-space P and any positive num­

ber & , E( fe* P) = E*( t* P) = ^ ( e * P) = y*(e,* p ) - " T h i s 

follows from 2 .15, since e>* P c W & . 

2*17- Lemma. If P = <Q,£>, ^ > e 97r/M, then there is *a set 

T t dom (M. such that(ttT = .uQ, diam 1£ 2 d(P). If, in addition, 
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there is a set S e dom <a such that <&(<-. \ S) * 0 and S is separable 

(as a subspace of< Q,p> ), then there exists a set Tc S closed in 

S and such that T c dom <K , ̂ T = ̂ Q , diaro T = d(P). 

Proof. I. For xcQ put Vx =4ycQ: p(y ,x)> d(P)|. Then 

Î t >* fc3 (U(-Cx?xV :xeQ)) = 0, hence, by well-known theorems, 

there is a point bcQ such that (&Vb = 0. Choose a set U e dom (^ 

such that U=>Vb and (tiU = 0. Put T = Q\U. Clearly, diam T£2d(P). 

- II. Let S be as described in the proposition. By 123, 7.24, we 

have & c dom (X . Let G be the union of all open VcQ satisfying 

j£(SnV) = 0. Since S is separable, it fs easy to see that 

(u(SnG) = 0. Put T = S N G. Then T is closed in S, Tc dom <£ (due 

to & c dom ft) and jo-T = ftQ. Clearly, if XcT is open in T and 

X-M, then flX>0. Put U = -C (x,y) e Tx T: <p (x,y)> d(P)? . Suppose 

U-K0. Then, U being open, there are non-void A, B open in T such 

that A*BcU, and we get j5,A>0, <iZB>0, hence £ ^ -* <"-«HU)> 0, 

which is a contradiction. Vie have shown that U = 0, hence diam T | 

~ * d ( P ) . Clearly, d(P)^diam T, since <iZ(Q\T) = 0. 

2.18. Theorem. Let P = <Q,£> lt>u,> be a metrized measure spa­

ce. Then either the epsilon entropy H(P) and the graded E-entropy 

GE(P) coincide (up to the factor in 2) dr both H6(P) and E ( e * P) 

are infinite far all sufficiently small €, > 0. 

Proof. I. If E( oT* P) = oo for some d1 > 0, then, for all 

positive e £ cf , we have E(fc*P) -co , hence, by 2.16, 

^ ( e * P ) =oo and therefore *£(«,* P) = oo , H£(P) = oo . - II. 

If E(c/» P)-<oo for all J > 0, then, by 2.17, there exist 

T^^cdomXL , m,ncN, such that, for all m and n, A ! ( U ( T :n£ 

c N)) = <uQ and diam Tm„£2/m. Let S be the closure of n(U(T : * mn mn 

:ncN):mcN). Then S is closed separable and <u-(Q\S) = 0. - Let 

Xc dom fl . Then the assumption in 2.17 (second part) are satis­

fied (for the space X.P and the set XnS). Therefore, there is a 
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set YcXoS closed in XnS, hence in X, and satisfying Ycdomju^, 

C&Y = fix and diam Y = d(X-P). - Let £ ** 0. 8y 2.16, tf( e * P) = 

= E( £- * P). We are going to prove that ^ ( e * P ) = ifc*( ̂  * P); by 

1.24, this will complete the proof. Let i*>~0. Let (X R.(e*P): 

:ncN) be an a> -partition of e> * P such that H(pXn:n € N) < 

- ^ ^ ( ^ ^ P ) + 1> and, for each neN, d(X •(e * P)) = 0, hence 

d(X »P) * & . Then there are sets Y such that, for each ncN, 

Y ncX n, Yn is closed in Xn, j£Yn = <u,Xn, diam YR = d(X n'P)££, 

hence diam Yn = 0 in <Q, €, *̂ > > . This proves that ^ ( ̂  * P) < 

-c ^*( e*P) + & , and therefore, & > 0 being arbitrary, 

^( &* P) ̂  V ( e * P), hence ^( e * P) = ^ * ( e * P ) . 

3 

Let ^ be a "standard" NGF, i.e. one of the NGF's introduced 

in Q3, 3.2, and let f4*E. Then the graded modifications GC*. 

and GE**(see 1.17) do not coincide, since C** E* on 7l0F n W0g 

(see 123, 10.3, 10.7). We also have GCr4= GE (cf.QJ, 10.8). Thus, 

we cannot expect GE to coincide with some GCr or GC* on a not 

too narrow class of W-spaces. On the other hand, if x. is an NGF, 

x £ r, 9>=Cr or g? = C* , P = < Q,̂ > ,<a> and <Q, p> c Rn is boun­

ded, then the limit behavior of Gcp(P) and GE(P), or rather of 

<$>( e •# P)/|log e I and E( t, * P)/|log £ | , is similar in the sense 

described below in 3.7. The motivation for considering cp(e*P)/ 

/.log &| lies in the fact that Pi—*lim (E( s, * P)/|log & |) can be 

conceived as a dimension function (for W-spaces) closely connect­

ed with that introduced by A. R6nyi (see e.g.L43) for Rn-valued 

random variables. 

3.1. In 3.2-3.6, we put ^(x) = 9 log x + 16 for xcR*. 

3.2. Lemma. Let t be an NGF and let P = <Q,<© , <M, > c.̂ -Pp, 

diam<Q,f>> •# 1, card Q = n. If S£P,*then |C^(P) - C<B(S)|i# 
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.£ % (n)(wP)2/3(w(P-S))1/3. - This is a special case of t2], 9.40. 

5-3- Fact . Let x be an NGF. Let P = <Q,§> >(u,> , S = 

= <T,6',>>> be FW-spaces, Assume that there is an f:Q—> T such 

that ^ ( f ^ Y ) = V Y for each Y c T and p(x,y) = #(fx,fy) for all 

x , y c Q . Then C£(P) £ C r(S). - This is a special case of CI], 3.23. 

3*4- Lemma. Let P = < Q, p , <tc > e tfty p. Let (VQ, . . . ,Vm) be 

a partition of Q and assume thatp(x,y) = 1 if (x,y) is in 

U(VJLx V.:i * j,i4-04-j), f (x,y) = 0 if not. Then C*(P) £ H(<u Vt: 

:ietl,m]) - $(m+l)(wP) 2 / 3(<aV 0)
1 / 3. 

Proof. For each q e Q put f(q) = j if qeV.. Put P' =<t0,m3, 

jo', <u/>, where f>'(i,j) = 1 if i * j , i-fc0*j, ^'(i,j) = 0 if 

i = 3 or 0feU,j], <u'Y = /u(f"
1Y) for each YcQ'. By 3.2 and 

1.16(3), Cr(P')£H(<uVi:ietl,m]) - J (m+.l)(wP)
2/3( <u. V Q )

1 / 3 . By 

3.3, C*(P)2Cr(P'). 

5-5- Lemma. Let cp = C or <f = C* Let P = <Q, ro , {u*>e. dlf) and 

let X.c dom £c , i = l,...,m. Let d > 0 and assume that ^(x,y)> 

>- cr whenever X€,X., ycX., i,jetl,m], i-^j. Put XQ = Q\<J(X i: 

:i6tl,m]). Then <p ( cT * P) £ H( jEL X.̂  : ie 11 ,m3) - ^ (m+l)( w P ) 2 / 3 

(<*V1/3 

Proof. By 1.15, it suffices to show that if a partition U 

of of* P ref ines X = (X..( S * P): i e L0,m3), then the inequality 

holds with y (cT* p) replaced by C£ t Oil r. Let U = (UR:k e K). 

Since U refines X , there is a partition (A.:jet0,ml) of K such 

that X(U k:kcA.) = X.«(o
r*P) for all j. Put \% 3r =<K,6',v>, 

For k,k'e K let £(k,k') = 1 if (k,k') is in U(Aji>*A.: i#*j, i * 

* 0 -**j), £(k,k') = 0 if not. Put S = < K,$ , » / . Clearly, # £ S , 

hence C* CU ]r> C*(S). By 3.4, we have C£(S) r H( v A£: i £ tl ,m]) -

- £ (m+l)(wS) ' ( >> A ) . This proves the assertion, since 

vA. = (X XJ . 
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3-6- Proposition. Let P = <Q,«p , ,u> be a W-space, let t = 

= 1,2,..., and let<Q,^> be a bounded subspace of R (endowed 

with the metric JL((Xj), (yi)) = max |xi-yi|). Then there exist 

positive numbers a and b such that if m is an NGF, x £ r, c? -

= CX or <f = C£ , £ >• 0, pcN, p>2 t, and of = &/5p, then 

<f(S* P)5E( £ * P) - a(2t/p)1/3|log e| - b. 

Proof. Let Z be the set ol all integers. For each zcZ put 

Gz = {x€ Q: p(x,( s/2)z)-c e/2 . Put K = -f z 6 Z
t :Gz* 0}, n = card K. 

Clearly, (1) n£ (2 diam P/e + 2)*. For k € K, j e CO, p.] put U(k,j) = 

= h€G k:f(x,PNG k)^(p-j)o1 , X(k,j) = U(k,j)\U(k,j-l) for 

j>0, X(k,0) = U(k,0). Clearly, U(k, j) c U(k, j + 1), and it is easy* 

to see that U(U(k ,0) :k c K) = Q. For each keK choose f(k) € 

€ £l,pl such that (2) <a(X(k,f(k)) £ fl(X(k,i) for ie L1 ,pl, and 

put Vk = X(k,f(k)). Put V = U(V k:k€K). - Since no qcQ is in 

more than 2* sets Gk, we have S ( £:(Gk\ U(k ,0)) :k e K)£ 2*wP . 

Hence, by (2) , we get (3) pi V ^ ^.(p Vk :ke. K) £ 2twP/p. Choose 

a bisection g:K —* L 1 ,n 1 and put, for each k e. K, Tk = U(k,f(k) -

- 1), Sk = (Tk\ V) N U(Ti:g(i)< g(k)). It is easy to see that 

U(Sk:k£K) = Q\V and (0(x,y)>cf whenever u S . , ycS., i=|-j. 

By 3.5 , 1.16 and (3), we get 9 ( cT* P) £ H(iu SR :k € K) -

- ^ (n+l)wP.(2t/p)1/3. Clearly, MjZ Sk :k € K) > E( e + (Q \ V). P) , 

since diam S k ^ & . By 1.2B, we get E(e*(V*P))^(u.V*log n. Hen­

ce, by 1.15, ^ - ( o \ P ) i E ( u P ) - £ (n+l)w P(2t/p)1/3 -

(2 /p) log n, From this inequality, the assertion follows at 

once, since, by (1), log n£a'|log&| + b' for appropriate num­

bers a', b' and all e > 0. 

3*7. Theorem. Let P =<Q,^ ,<u-> be a W-space such that 

<Q,,t>/ is a bounded subspace of some R , t = 1,2,... . Let tr be 

an NGF, -z ? r, and let 9 = C_ or <$> = C* . Then the upper (res-
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pectively, lower) limit (for e —» 0) of <p(e * P) / | log e l i s equ­

al to that of E(e * P) / | log e | . 

Proof. Put a * Tim (E( e * P ) / | l o g s | ) . Choose e n > 0 such 

tha t e n — v 0, E( t n * P ) / | l o g s j ~ + a. For any e ^ 0, put 

g U ) • | l o g e | 1 / ? , f ( e ) = 2 9 ( £ ) . Put pn « f ( e n ) , cfn = 

= €-n /5pn . Since d ^ / c n - * 0, log cTn / log s n ~ > 1 , we get , by 

3 .6 , HJB (<?( < f n * P ) / | l o g cTn| - E( e n * P ) / | l o g & n l ) £ 0 , which im­

p l i e s i lm (<y( c f n * P ) / | l o g cT n | ) >a . Since, by 1.17, 3>( e-*P) ^ 

£ E( fc* P) fo r a l l s > 0, we obtain l lm (<£ (cT* P ) / | l o g cf | ) = a. 

- For the lower l i m i t , the proof i s s imi lar*and can be omit ted. 
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