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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
27,3 (1986)

ON EXTENDED SHANNON ENTROPIES AND THE EPSILON
ENTROPY
Miroslav KATETOV

Abatract: On the class of all metrized probability spaces,
a cerfain modification of one of the extended Shannon entropies
introduced by the author coincides (up to a multiplicative const-
ant) with the epsilon entropy as introduced by Posner, Rodemich,
and Rumsey. .

Key words: Extended Shannon entropies, epsilon entropy.

Classification: 94A17

When examining the extended Shannon enfropies in [1] and [2],
the author aimed, among other things, at introducing a concept
‘from which various kinds of entropies (such as e.g. the €-entro-
py of totally bounded metric spaces and the differential entropy)
could be obtained in a natural way. In the present note, the ep-
silon entropy in the sense of Posner, Rodemich, and Humphrey
(which is closely related to the & -entropy of metric spaces) is
shown to coincide with a fairly natural modification of the ent-

ropy Cp (see [1]).

1
1.1. The letters R and N have their usual meaning. We put
R=§-o©YURU{ot, R, =ixeR:xZ0%, R, = {xeR:x20%, R:‘=
={xeR:x>0%, N, ={neN:nZ13}, Im,nl = {keN :m£kén} for m,ne

eN. - Instead of log, we write log. We put 1(0) = L(0) = g,
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Tx) N -x&nx, L(x) = -x log x for xe R¥. Instead of T(x) and L(x)
we often write,'respectively, Tx and Lx. - If K+ ¢ is a set, then
I.I(K) denotes the set of all x = (xk:ka K) such that x € R, and .
Zx <o . If x = (x :kekK) GII(K), then we put H(x) = H(x :ke
€K) = E(lx ke K) - LE(x ke k), AOO = ftx ke k) = = (Ux:
ke K) - Ti(xk:ke K). - A function (or a functional) is a mapping
£:X —>R.

1.2. Facts. A) If x ¢ £](K), aeR,, then A(x) = H(x): £n2,
H(ax) = aH(x). - B) If x = (xl,...,xn)e £I(n), then H(xl,...,xn),‘=
stinlog n. - C) If x elI(JxK), then H(x) = Z(H(xjk:kek):
:jed) + H(Z(xjk:ch):jeJ).

1.3. A measure is always a finite measure on a set Q%48,
i.e. a 6-additive w: A—>R_, where /A (denoted by dom w ) is
a 6&-algebra of subsets of Q. If f:0 — R is (Z-measurable,
MAixeQ:f(x)<0} =0 and [fdpw <o | then X > [ fdw , defi-
ned on dom ¢4 , is a measure, which will be denoted by f. ¢ . If
Y edom & , then we put Y. m = iy« & , where iY is the indicator
of Y.

1.4. If @:Qx0Q-—-R_satisfies ;o(x,x) =0, go(x,y) =§o(y,x),
then ¢ is called a semimetric on Q and <{Q,@> is called a semi-
metric space. If {Q, o> is a metric space, then - @(Q,go) deno-
tes the collection.of all Borel sets Xc Q. - For any set Q and
any a¢ R:, ag or a denotes the metric @ on Q satisfying @(x,y):
= a for x:f‘y.

1.5. Definition. Let “ and © be, respectively, a measure
and a [w = &1 -measurable semimetric on Q. Then P = (Q,@ , Y
is called a semimetrized measure space or a W-space. For any W-
space P =‘<0,§) ,e+?, we put wP = Q. - The class of all W-spaces
is denoted by 70 . A W-space {Q,@ ,m > will be called (1) an FW-
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space, (2) a graph W-space or a GW-space, (3) a metric W-space
if, respectively, (1) Q is finite, dome = exp Q, (2) [ > )
{(x,y)e 0= 0Q:0 % P(x,y)*+13 = 0, (3) @ is a metric. The corres-
ponding classes (i.e. that of all FW-spaces, etc.) will be deno-
ted by (1) M., (2) Mg, (3) W,

1.6. Eet P=<£0Q,p,m>¢€ ) . 1f vy is a measure, doma; =
= dom & , v‘é ¢ , then we call § :<Q'S°"’> a subspace of P and
write S£P; if »= Y. & for some Yedom @&, then S is called pu-
re. If K+#§ is a countable set, P, ={0Q,9 , wy? € ) , kek,
P=(Q,q:,‘u7e710 and M= E(m,:kcK), then we put P = .
= Z(Pk:keK) and call (Pk:keK) an w-partition of P. An e -par-
tition (Pk:ke K) of P is called a partition if K is finite, pure
if all P, are pure. If U= (Uk:keK) and U= (Vm:meM) are o -
partitions of P and there is a partition (Mk:ke K) of the set M
such that, for each ke K, either Z(Vm:mch) = U or U = g.-P,
M, = B, then V" is said to refine U .

1.7. Let P =<Q,¢, > € ?) . If f is a function such that
f.m is defined (see 1.3), then we put f.P =<40,@,f-m> . If
Xe dom & , we put X.P =<Q,§: ,X» w? . - For any S4P, there ex-
ists a function f such that § = f.P.

1.8. Fact. 1If (Q,gz) is a separable metric space, w is a
measure on <Q,@ > and Hcdom &, then<Q,@, w7 ¢ 7.

Proof. Let acR, . The set 6 = {(x,y): p(x,y)<a} is open in
Q> Q, and therefore, QxQ being separable, it is of the form

U(X, > Y :ne N), where X, Y_
dom @ , we get Gedom [ w = acld-

are open in Q. Since Xn' Y_ are in

n

1.9. Notation. The class of all (Pl,Pz) such that P, €P,

1
P,£ P for some P e 72- will be denoted by (L . If Py =<0Q,@ NS

i=1,2, and (Pl’Pz) e UL , then we put (1) r(P;,Py)

= Jedm, < @y)/WP . WP, if WPlewPy >0, T(P1,P)) = 0 if WP -wP,=0,
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(2) d(P,P,) = inf {ae'§+: [ p.]&(x,y):go(x,y)>a} = 03;

(3) E(Pl’PZ) = d(Pl+ Pl,Pl* Pz).'For any P& %) , we put d(P) =

= d(P,P). The functionals (Pl,Pz)k—> r(Pl,Pz) and (P1’P2) —

— E(Pl’Pz)' defined on O , will be denoted by r and E, respec-
tively.
1.10. In 1), 3.4 and 3.7, normal gauge functionals (NGF)
have been defined (they are functionals on O! satisfying certain
conditions) and, for any NGF «© , the functionals Cr and C: have
been introduced. We do not state again the definition of an
NGF as only two NGF ‘s, r and E, defined in 1.9, will be consider-
ed here (for the fact that r, denoted T in [11, 3.2, 3.5, and E
are NGF's see [1), 3.5). The definition of C, and CX will be
given below in a form different from, but equivalent to (for any
NGF T ) that in [1].
1.11. The concatenation of finite sequences x and y is de-
noted by xsy or xy (or also by xb if y = (b) and by ay if x = (a)).
The letter A denotes the collection of all finite non-void
Dc U({D,l%n:n e N) such that if x = (xi:i< k)e D, then (1) (xi:
:i<3)eD for all j<k, (2) x0eD iff xleD. If D e A , then we
put D" = $xeD:x0eD%, D" = D\D'. - We call ®= (P :x€D) a dy-
radic expansion of P ¢ 79 if De A | Pg = P Peo * Pyl = P for
each xe D'. If all'Pxé P are pure, then ? is called pure. If

P = (Px:xc D) is a dyadit expansion, then 2" denotes the in-
dexed set (Px:xc D"). - See [11, 4.1-4.4.

1.12. Let = be an NGF, P e 94 . If U£P, VE£P, then we
put L(U,V) = H(wU,wV)© (U,V). If P = (P :xe D) is a dyadic ex-
pansion of P, then we put T(®) =Z( T (P ;P 1)ixe D). -

See [1), 4.10.
1.13. Definition (see 111, 4.29, 4.11). Let = be an NGF and

let P e 70 . Then C,.(P) (respectivelv, C¥(P)) denotes the infi-
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mum of all a ¢F+ such that, for any partition (pure partition) %
of P, there is a dyadic expansion (pure dyadic expansion) P such
that ®" refines U and [ (®)&a. The functionals P> C.(P)
and P+ C,:(P) are denoted by C, and C: ,respectively. - Instead
of Cg and CE, we will often write E and E*.

1.14. If v is an NGF, U= (Uk:keK) is a partition of P e
€ N and «:(ui,uj)< o for i), then [U],. denotes the W-spa-
ce<K,6,» >, where 6(i,J) = 'u(Ui,UJ) for i%j, »X = w(Z(Ul: :
:1¢€ X)) for all XcK. - See [11, 3.6.

1.15. Theorem (see [1], 3.14-3.19). Let T be an NGF and let
® = C. (respectively, ¢ = CZ). Let P ¢ %) . Then ¢(P) is equal
to the infimum of all bs‘ﬁ‘* such that, for any partition (pure
partition) U of P there is a finer partition (pure partition) %
with CECLV), €b.

1.16. Facts (seel[l)). Let ~ be an NGF and let P € 2 . Then
(1) v $E, (2) if @ = C, (respectively, ¢ = C}) and U+V = P (res-
pectively, U+V = P and U, V are pﬁre), then @ (P) £ @(U) + @(V)+
+ LWV, 3 itrzZreandP =40,1, x> € M)e, then c.(P) =
= CX(P) = H(wdal:qeQ), (4) if y is an NGF, v 2 T , then Cu(P)Z
Z Cu(P), Cy(PIZ CE(P). .

1.17. Definition. If a,bcR, we put a*b = 0 if aZ b, a*b=
=1 1if a<b. If £:X—> R and e ¢ R, then e x f denotes the func-
tion xv—> 6 x f(x). - If 2e«R¥ and P =<0Q,p, > € 7, then
<@, & *@ ,> is a W-space, which will be d.enoted by exP. For
any P ¢ 79 , the mapping € +—+ ¢ x P, defined on R’:, will be cal-
led the graded representation of P. For any -g:: (L — R, the .
function ¢+ @ (e x P), defined on R%, will be denoted by
G@(P); the mapping P > G® (P) will be called the graded modifi-
cation of @ and wiil 'be. denoted by G g - )

1.18. In (3], Posn;r, Rodemich and Rumsey have defined the
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epsilon entropy for spaces X of the form X = <X,d,« > , where
{X,d? is a complete separable metric space and @ is a measure
of the form =5 , dom » = B . sy 14.8, these spaces are W-spa-
ces, and it is easy to see that the definition of the epsilon en-
tropy presented in L3) can be extended to all W-spaces. We are
going to pfesent the extended definition in a form which coinci-
des with that given in 13) for spaces mentioned above.

1.19. Definition. Let P =<Q,p,«”? € % , e eR¥ Then
(xk:ke K), where K+ @ is countable, is called an € -partition of -
P if X, e dom @ , diam X, £ & , X;0 Xj =@ for i*j, @(U(X ke
€ K)) = Q, and the infimum of all ﬁ(‘@xk:ch), where (Xk:kaK)
is an &-partition of P, is denoted by ﬁs(P). The function €& v+
'——“ﬁ;(P), defined on R’:, will be called the epsilon entropy of P
and will be denoted by Hep).

1.20. Notation. For any P =<0,@, > e W, n(P), »*P),
'qf(P) and 'n’;(P) denote, respectively, the infimum of all
H(wUk:ks K), where (Uk:keK) is an w-partition (pure w-partiti-
on, partition, pure partition) of P such that d(U, ) = 0 for all
ke K, and 7 (P) denotes the infimum of all H((.‘J.Xk:kek), where
(Xk-P:ke K) is a pure w-partition of P and diam Xk = 0 for all
ke K (thus, 7 (P) = oo if there is no such partition, and similar-
ly for 7m(P), etc.).

1.21. Evidently, fg(P) =% (e« P).£n 2 for all eeR¥. -
It will 'be proved below that, for any P € 7 and any e < RY,
ECexP), E¥(exP), n(exP ) and n*¥(e x P) coincide and are

equal, at least for small e > 0, to Y (exP).
2
2.1. _Proposition. If P e ’J”OG and 'qf(P)<oo (i.e., there

is a partition (U :keK) with d(P ) = 0 for all ke K), then
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E(P) = E*(P) = 7m,(P) = 7%(P). - See [2], 10.6.

2.2. Lemma. Let T be an NGF, P& 7 , d(P) < o , P.£P,
neN, and let w(P-P ) —> 0 for n —> e . Then @ (P)£1lim (P ),
where ¢ = C,, or = C¥.

Proof. We consider the case ¢ = C,; the other case is analo-
goua. Put a = lim @ (P ); we can assume that a < oo and d(P) = 1.
It is enough to prove that, for any b>a and any partition U=
= (fi-P:isll,m]) of P, there is a dyadic expansion P such that

®" refines U and (L(P)<b. - Choose € > 0 such that a<b -
- 2¢ . Choose ne N such that w(P-Pn)-log m< €, H(an,u(P-Pn))<

S

< €& , cy(Pn)<b - 2¢ . PutS =P T = P-S. Choose functions

n'

s, t such that S = s.P, T = t.P, and put 55

iell,m]. Put “s = (sgeP:iell,md), Up = (t;-P:iell,m)).

= fis, ti = fit for

Clearly, 'U—S and ’uT are partitions of S and T, respectively. Sin-
ce @(S)<b - 2& , there is a dyadic expansion ¥ = (S,:x€Dg) of
S such that ¥" refines Ug and [ (F)<b - 2¢ . It is easy to
see that there is a dyadic expansion T'= (Ty:yeDT) of T such that
g" refines Uy and Q(T)éH(w(ti-P):iefl,mJ), hence, by 1.2 B,
((F)<€wl-log m. Let D consist of #, all (0).x, x € Dg, and all
(1).y, yeD;. Then D ¢ A and there is a dyadic expansion P =
= (Pz:zen) of P such that P(O).x = §, for xeDS, P(l)-y = Ty for
y € D;. Clearly, P refines U , and T (P) = (¥ + (T)+
+ T(5,T)€b - 2¢ + wl-log m + H(wS,wT)< b,

2.3. Proposition. Let P =<Q,p, u>e 9 , S£P. Then
E(S)Z2E(P), and if S is pure, then also E*(S)& E*(P).

Proof. We prove E(S)& E(P); the proof of E*(S) & E¥(P) is
analogous. We can assume that E(P) < @ . It .is enough to prove
that, for any b>E(P) and any partition U= (Uk:keK) of S, there
is a dyadic expansion & of S such that " refines U and Me(&)<
<b. - Let z none K, put K' = Ku(z), and put u, = P-s, V=
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= (U :keK"). Since E(P)<b, there exists a dyadic expansion P =
= (P,:x&D) of P such that P" retines % and Pe(P)<b. Since
P" retines V , there is a partitidn (M(k):keK’) of D" such
that E(P,:x 6M(k)) = U, for each k&K’. Clearly, there is a dy-
adic expansion ¥ = (5,:x&D) of S such that S; = P if x & UM(K):
tk€K) and S =<0Q,p,0) if x €M(2). Then we have S, £P,  for each
x €D, and therefore ﬁE(sxO’sxl) & Me(Pg,P.) for each xeD’
Hence P (¥) & T (P)<b. Clearly, ¥" refines U.

2.4. Proposition. Let.P e W | d(P) < o , P,£P, neN,
and let w(P-Pn)—-> 0 for n —> o . Then E(Pn)—a E(P), and if P
are pure, then also E*(P ) —> E*(P).

This follows at once from 2.2 and 2.3.

2.5. Fact. If°(S,T) is a partition of P& ?¥ | then
max ( (S), (7)) £ N(P) £ 7(S) +7(T) + H(wS,wT) £ 7(P) + wP.

Proof. We prove the third inequality; the proof of the
first two is easy and can be omitted. We can assume that m(P) <
< oo, Let ¢ > 0. Then there is an o -partition (Uk:keN) =
= (f,-P:keN) of P such that H(uuk;ks N)< n(P) + ¢ and d(u“() =
= 0 for all ke N. Let S = gl-,e, T = 92-P. For keN, i = 1,2, put
Vik = fkgi'P' By 1"2 C, we have H(wvlk:ke N) + H(wV2k:ke N) +
+ H(wS,wT) = H(uVikzl = 1,2;keN) = H(wUk:ch) + E(H(HVIR,WVZk):
sk& N). Since H(WV WV, )& wl,, we get Z(H(WV), WV, ) ke N) €
& wP and therefore 7(S) + 7(T) + H(wS,wT) € n(P) + & + wP,

©2.6. Lemma. Let P ¢ W , P, €P. 18P for neN, w(P-Pn) —> 0

tor n —o0 . If £7(P_ ):neN} is bounded, then 7 (P -P )—> 0

for m —> c® n~»0c ., m>n.

Proof. Put a = sup {7 (P ):ne N}. Let ¢ > 0. Choose ke N
such that w(P-P, ) < 8/2. Put b = sup {7 (P -P ):n> k%. Clearly,
béa< oo . Choose t>k such that b -7 (Pt'Pk)< e¢/2; then, by

2.5 (first inequality), b - n(P,-P, ) <e/2 for each nZt. If
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m,nEN, m>nZt, then, by 2.5, n(Pm-Pn) + ‘q(Pn-Pk) + Hw(P -
=P, w(P -P)) £ n(P-P) + w(P_-P, ), hence M(P -P ) < MP, -
) - (PP ) 4 €/2gb - (P -P) + e/2 <.

2.7. Lemma. Llet P e 7 . Let P £€P &P for ncN and let
W(P-P ) —> 0. Then 7 (P ) —> 2. (P, n*(P_) — 7*(P).

Proof. We prove 7 (Pn) — n(P).; the proof of 'q"(Pn) —
—» 7*(P) is analogous. Put a = sup{n (P ):n€N}. Since, by 2.5,
7(P,) & 7(P) for all n¢N, it is enough to show that 7(P)#a.
We can assume that a <o and wP = 1, - Let € > 0. Choose J" > 0
such that 3d° + H(o",1-0")< e . By 2.6, there are s(k)e N such
that, for each ke N, (1) s(k)< s(k+1), (2) w(P-P () <o /2**1,
(3) m>nZs(k) inplies (P -P )< o /25 Put S = P (), 5, =
= Ps(k)'Ps(k-l) for ke N;. Then 7(S,) € 8, w(P-S ) < d'/2, 7(5,)<
< o2, w5, < d'/2k for keN,. For each ke N, there is an @ -
p“%tio“ (Ukj:jeN) of S such that d(ukj) =0, H(«Ukj:jeN-)<
< J°/2%. Clearly, (Uy:ke Nj,3€N) is an G>-partition of P-S,
and, by 1.26, H(wUkJ:k‘ Nl,ch) = H(uSk:chl) + Z(H(w(UkJ:
:ch):ch1)< H( d"/zk:chl) +d" . It is easy to see that
H(2™:ke N)) = 2. Hence we get m(P-S )< 30" . By 2.5, 7(P) &
£ n(so) + ‘n(P-So) + H(uso,w(P-So))< a+ 3d + H(1-d,d)<ca +¢.

2.8. Lemma. Let P & 7 .. Assume that there exists a parti-
tion (U, :keK) of P such that d(U,) = 0 for all ke K. Then E(P) =
= EX(P) = m(P) = 7*(P) = 7,(P) = 7%}(P).

Proof. By 2.1, it is enough to show that 'qf(P) £7n(P),
M3(P) £77(P), for the inequalities 7 (P) &7,(P), %*(P) £
£ "I;(P) are evident. We prove only ?zf(P) & n(P), as the proot
of -,z'f(P) & 7(P) is completely analogous. - Put a = 9 (P); we
can assume that a < e . Let (ul,...,um) be a partition of P such
that d(ui) = 0. Let ¢ > 0 and let (“Vk:ch) be an c-partition
such that d(V,) = 0 for all k€N and (1) H(wV :keN)<a + /2.
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Let U; = g;+P, V, = f,+P. Choose n such that (2) w(_i(Vk:k>n)-
dlog m<e/4, (3) H(Z(ka:ké n), Z(ka:k7n))< /4. Put f =

= Z(f :k>n), T =V, for kelO,n), T, =g . f.P for k eLn+l,n+m),
and put 7’ = (To,...,Tmm). Clearly, J is a partition of P and
d(T, ) = 0 for kelO,n+m]. By (1), we have H(wT :ke to,nd)<a +

+ ©/2. By (2) and 1.2 B, we get H(wTk:kc[n+1,n+m])< €/4. Cle-
arly, H(wT :kel0,n+m)) = H(WT :k€[0,n)) + H(wT :ke [n+l,neml) +
+ H( Z(wTk:ke £0,n)), = (wT, :keln+l,n+ml)). Using (3), we obtain
H(wTk:k = 0,...,n+m)<a + € .

2.9. Proposition. Let P be a GW-space and assume that there
exists an w-partition (Uk:keK) of P such that d(Uk) = 0 for all
ke K. Then E(P) = E*(P) = 7 (P) = m*(P).

Proof. For each née N put Pn = E.(Uk:kén). By 2.8, E(Pn) =
= E"(Pn) = "l(Pn) = 7l""(l’n) for each neN. By 2.4 and 2.7, this
proves the proposition.

2.10. Definition. A Darboux measure is a measure @ such
that, for any Xedom v and any positive b < X, there is a set
Ycdom w satisfying Ye X, wY = b. A Darboux W-space is a P e 91
such that U&P, d(U)

"

0 implies wU = 0.

2.11. Fact. If P e 7% , d(P)>0, then there is a pure S£P
such that 0<wS<wP. - See [2), 7.14.

2.12. Proposition. If P =<Q,@, m > e 7 is Darboux, then
80 is M »

Proof. We show that if Xedom w , wX>0, then there is a
set Ze dom w such that Zc X, 0 < ©«Z <« «X; by well-known the-
orems, this will imply that & is Darboux. Since w(X:P)> 0, we
have d(X-P5> 0, hence, by 2.11, there is a pure subspace V& X-P
such that O< wV< w(X.P) = wX. There is a set Ye dom & such that
V = Y.(X.P). Choose a set Ze¢ dom w such that ZosYnX, wuZ =
= @(YnX).

2.13. Proposition. Let P be a Darboux GW-space. If wP >0,
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then E(P) = E*(P) = 7 (P) = n*(P) = o .

Proof. Let neNl. By 2.12, there is a pure partition %U-=
= (Uy,...,U,) of P such that wU, = wP/n for kell,n]. Let P-=
= (Px:xeD) be a dyadic expansion of P such that ®" refines %.
Clearly, we can assume that wa>0 for all xe D". Then, for eacﬁ
xe D", d(Px)>D since P is Darboux, and therefore d(Px) = 1 since
P e 7108. It is now easy to see that F‘E('JJ) = H(wa:xeD"). Sin-
ce P' refines U , we obtain PE((P)ZH(wUk:kc L1,n)) = wP.log n.
This proves E(P) = E*(P) = o0 . If (U :ke K) is an c-partition
of P, then, for some k, wU, >0 and therefore ld(Uk)> 0. This im-
plies n(P) = Mm*(P) = co. .
2.14. Proposition. Every W-space P has a pure w-partition (Uk:
:k @N) such that U, is Darboux and d(Uk) = 0 for keN,;.

Proof. For every pure S£ P we can choose a pure S = &(S)g
£ P such that d(S°) = 0 and wS 2 wT/2 whenever T£ S is pure and
d(T) = 0. Put U; = &(P) and U, = & (P- Z(U;:1£1i£€Kk)); put U=
= P- Z(Ui:ie N;). Clearly, d(Uk) = 0 for all ke N,. - Suppose
there is a pure T£ UD such that d(T) = 0, wi> 0. Clearly, wUm &
£ wT/2 for some mENl. Put V = P- Z(Uizlé i<m). Then u, = & (Vv),
T£V, and we get a contradiction.

2.15. Proposition. If P is a graph W-space, then E(P) =
= EX(P) = m(P) = «X(P).

Proof. Let (Uk:ks N) be a pure w-partition with properties
described in 2.14. If on> 0, then the equalities hold by 2.13
and 2.3. If wU0 = 0, they hold by 2.9.

2.16. Proposition. For any W-space P and any positive num-
ber & , ECexP) = E¥(exP) = m(exP) = n¥(exP). - This
follows from 2.15, since ¢ x P & ’W_)G .

2.17. Lemma. If P =<Q,p, « > e M),, then there is‘a set
Tedom u such that T = wQ, diam T€ 2 d(P). If, in addition,

- 529 -




there is a set Sedom @ such that @(Q\5) % 0 and S is separable
(as a subspace of { Q0,97 ), then there exists a set Tc S closed in -

S and such that Tedom & , @7 = &Q, diam T = d(P).

Proof. I. For xeQ put vV, =4yeQ: 9(y,x)> d(P)%. Then

[ = @) (VU(x$=V, :xeQ)) = 0, hence, by well-known theorems,
there is a point be Q such that ('7'Vb = 0. Choose a set Uedom &
such that U2V, and wU = 0. Put T = Q\U. Clearly, diam T.é 2d(P).
- II. Lét S be as described in the proposition. By [ 2], 7.24, we
have B c dom ' . Let G be -the union of all open Vc Q satisfying
@ (SAV) = 0. Since S is separable, it fs easy to see that
@(SnG) = 0. Put T = SNG. Then T is closed in S, Te dom @& (due
to Bcdom@ ) and @T = Q. Clearly, if X< T is open in T and
X#+@, then @X>0. Put U = {(x,y)e T=T: o(x,y)>d(P)3. Suppose
U3@. Then, U being open, there are non-void A, B open in T such
that AthU,‘and we get @A>0, wB>0, hence L =~l(U)>0,
which is a contradiction. We have shown that U = @, hence diam T#
& d(P). Clearly, d(P)&diam T, since @ (Q\T) = 0.

2.18. Theorem. Let P =<0, ,4? be a metrized measure spa-
ce. Then either the epsilon entropy ﬂ(P) and the graded E-entropy
GE(P) coincide (up te the factor £n 2) dr both ﬁe(P) and E( e x P)
are infinite for all sufficiently small ¢ > 0.

Proof. I. If ECIxP) =oco for some o > 0, then, for all
positive ¢ £ J° , we have E(ex P) = o0 , hence, by 2.16,
m(exP) =co and therefore (e xP) =00 ﬁe(P) =00, - II.
If E(d'% P)< o for all & > 0, then, by 2.17, there exist

Tan€ dom'& , m,n& N, such that, for all m and n, (il(U(T'mn:n e

¢ N)) = «Q and diam Ton® 2/m. Let S be the closure of (\(U(Tmn:

:neN):meN). Then S is closed separable and @(Q\S) = 0. - Let
X¢ dom @& . Then the assumption in 2.17 (second part) are satis-

fied (for the space X.P and the set XnS). Therefore, there is a
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set Ye XnS closed in XnS, hence in X, and satisfying Ye dom &,
@Y = @X and diam Y = d(X-P). - Let € > 0. By 2.16, 7*(e*P)=
= E(e x P). We are going to prove that H (ex P) = ™ (e *P); by
1.24, this will complete the proof. Let o > 0. Let (X -(exP):
:neN) be an w-partition of e * P such that H(@X :neN) <
<m*(exP) +2 and, for each neN, d(X (e * P)) = 0, hence
d(X-P) £ ¢ . Then there are sets Y  such that, for each neN,
YoeX,, Y, is closed in X, @Y = @X_, diam Y =d(X*P)s &,
hence diam Y = 0 in{Q, ¢ *x@ > . This proves that (e xP) <
< n*(exP) +4 , and therefore, 4 > 0 being arbitrary,

F(exP) £ 7¥(exP), hence [ (exP) = m¥(e *P).

3

Let ¥ be a "standard” NGF, i.e. one of the NGF's introduced
in [11, 3.2, and let < #% E. Then the graded modifications GC,:
and GE¥(see 1.17) do not coincide, since C:_‘4= E* on MY n MY
(see [ 2], 10.3, 10.7). We also have GCr*GE (cf.EZJ, 10.8). Thus,
we cannot expect GE to coincide with some GC. or GC,: on a not
too narrow class of W-spaces. On the other hand, if «~ is an NGF,
©~Zzr, ¢=C, or ¢=C% , P =<0,p ,«” and <0, > ¢ R" is boun-
ded, then the limit behavior of G¢ (P) and GE(P), or rather of
@(exP)/|loge| and E(e » P)/|loge |, is similar in the sense
described below in 3.7. The motivation for considering «w(exP)/
/llog &| lies in the fact that P +> lim (E(e x P)/ilogsl) can be
conceived as a dimension function (for W-spaces) closely connect-
ed with that introduced by A. Rényi (see e.g.[4]) for R"-valued
random variables.

3.1. In 3.2-3.6, we put §(x) = 9 log x + 16 for xeR}.

3.2. Lemma. Let =® be an NGF and let P =<0Q,@ , « > €.%9,
diam<Q,e> £ 1, card Q = n. If S&P, then |C (P) - C (5)| £
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e$(n)(wP)2/3(w(P-S))1/3. - This is a special case of [2], 9.40.
3.3. Fact. Let v be an NGF. Let P = (Q,;e s>, S =
={T7,6 ,v> be FW-spaces. Assume that there is an f:Q — T such
that @ (£71Y) = »Y for each YT and p(x,y) = & (fx,fy) for all
x,yc Q. Then CZ(P)ZC.(S). - This is a special case of L1}, 3.23.
' 3.4. Lemma. Let P =<0, p, > € M. Let (V ...,V ) be
a partition of Q and assume that@(x,y) = 1 if (x,y) is in
U(Vian:i #£3,i#0%3), P(x,y) = 0 if not. Then CF(P) ZH(mV,:
tiellm)) - § (el wP)? 3 (v )13,
Proof. For each qeQ put f(g) = j if qevy. Put P* =<lo,m),
P" '7, where ©'(i,3) = 1 if i*j, i+0%j, @'(i,3) = 0 if
i=3or0ei, i, @'Y = m(£71Y) for each YcQ'. By 3.2 and
1.16(3), C (P ZH(wV e l1,m)) - § (mel) P23 (v )Y/3 gy
3.3, CA(PYZC(P).
3.5. Lemma. Let ¢=C_or ¢=Cl. Let P = <0,@, w>ed) and
let Xie dom @ , i=1,...,m. Let J > 0 and assume that g(x,y)>

> g whenever xeX;, yeX;, i,jell,m], i#j. Put X, = QN UX;:

dell,m)). Then t;a(d'xtP);H(p.Xi:ie (e -y (el wp)?/?
(F_Xo)l/B

Proof. By 1.15, it suffices to show that if a partition U
of o xP refines X = (Xi-(d"* P):ie L 0,m)), then the inequality
holds with w(d % P) replaced by CX i U] . Let U= (U :kek).
Since U refines X , there is a partition (Aj:jefo,m]) of K such
that Z(Uk:ksAj) = on( dx P) for all j. Put U Jr = (K, 6, ¥,
For k,k'e K let &(k,k’) = 1 if (k,k’) is in U(AixAj: i3, i#®
+0%+j), 8(k,k’) = 0 if not. Put S =<K,§,»” . Clearly,s = &,
hence c; LU ).z CH(S). By 3.4, we have CL(S)Z H(v Aj:ie(l,m]) -
- §(m+1)(w5)2/3(vAu)1/3. This proves the assertion, since

VA = @X.
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3.6. Proposition. Let P =<Q,p,«” be a W-space, let t =
=1,2,..., and 1et<Q,Sc> be a bounded subspace of Rt (endowed
with the metric @ ((x;),(y;)) = max Ixi-yil). Then there exist
positive numbers a and b such that if ~ is an NGF, * 2 r, @ =
=C, or¢=C{ , € >0, peN, p>2t, and d"= ¢ /5p, then
@(SxP)YZE(ExP) - a(Zt/p)l/jllogeI - b.

Proof. Let Z be the set of all integers. For each z th put
G, = {er;ga(x,(s/Z)z)< €/2 . Put K ={z€Zt:GZ-—f—¢§, n = card K.
Clearly, (1) n£ (2 diam P/e + 2). For keK, jeC0,pd put UCk,3j)=
= {xe Gk:go(x,D\Gk)é(p—j)o‘¥ , X(k,3) = U(k,3)\NU(k,j-1) for
j>0, X(k,0) = U(k,0). Clearly, U(k,j)cU(k,j+1), and it is easy‘
to see that U(U(k,0):kcK) = Q. For each ke K choose f(k) €
e [1,p) such that (2) @& (X(k,f(k)) £ @(X(k,i) for ie L1,pl, and

put vV, = X(k,f(k)). Put Vv = U(Vk:keK). - Since no g€ Q is in

k
more than 2% sets G, we have E(F(Gk\ U(k,0)):ke K)g 2twp.
Hence, by (2) , we get (3) @V = z(r&Vk:ke K)& 2th/p. Choose

a bijection g:K —>[1,nl a|-1d put, for each kekK, T = U(k,f(k) -
- 1), 5y = (Tk\ V)\U(Ti:g(i)< g(k)). It is easy to see that
U(Sk:keK) = Q\V and @©(x,y) > d whenever xeSi, yeSj, i%].
By 3.5, 1.16 and (3), we get ¢ (J'x P)ZH(GS keK) -

- ¢ (neldwP. (2%/p)/3 . Clearly, H(@ S, tke K)Z ECe = (ANV).P),
since diam S, £ ¢ . By 1.2B, we get ECe » (V.P)) = @V.log n. Hen-

ce, by 1.15, ¢ (o » PYZECexP) - § (nsldw P(28/p)1/3 -

- (Zt/p) log n, From this inequality, the assertion follows at
once, since, by (1), log n£a’|loge| + b’ for appropriate num-
bers a’, b’ and all ¢ > 0.

3.7. Theorem. Let P =<Q,¢ ,«? be a W-space such that
<0,§)> is a bounded subspace of some Rt, t=1,2,... . Let © be

an NGF, = = r, and let ¢ = C. or ¢ = C7 . Then the upper (res-

v
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pectively, lower) 1limit (for e-—> 0) of ¢ (exP)/|loge]| is equ-
al to that of E(exP)/|logel.

Proof. Put a = Iim (ECex=P)/|log s|). Choose e >0 such
that ¢ — 0, ECe =* P)/|log ‘énl —> a. For any ¢ > 0, put
p(e ) = |log zll/z, f(e) = 20(8) | pyt P, =t (), J =
= sn/Spn. Since dh/ e~ 0, log Jn/log s, ~—>1, we get, by
3.6, lim (@ ( d *P)/|log d,l - ECe *P)/|log g )20, which im-
plies TIm (¢ ( d, »P)/|log d, |)Za. Since, by 1.17, @(e*P) &
£E(exP) for all & > 0, we obtain 1im (@ (&% P)/|logd|) =

- For the lower limit, the proof is similar and can be omitted.
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