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ORDINARY DIFFERENTIAL EQUATION WITH DAMPING TERM
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Abstract: A new oscillation criterion for the equation
(a(t)x" (1)) + p(t)x* (1) + c(tIx(t) + q(t)|x(t)|¥ sgn x(t) = O,
0< <1,

.

is established.

Key words: Differential equation, oscillatory solutions
nonosc!!!afory, sublinear. ’

Classification: Primary 34C10
Secondary 34C15

Consider the second order nonlinear differential equation
(1) (a(t)x" (£ + p(t)x"(t) + c(tIx(t) + q(t)|x(t)|¥ sgn x(t) = 0,
0< <1,
where a, p, ¢, q:[t,,®)—> R = (-o0,c0) are continuous and a(t)>0
We shall restrict our attention to solutions of equation (1)
which exist on some ray [to,cO). A solution of egquation (1) is
called oscillatory if it has no largest zero; otherwise it is cal-
led nonoscillatory. An éequation is said to be oscillatory if eve-
ry solution is oscillatory.
Recently Kwong and Wong [3] considered the sublinear ordins-
ry differential equation
(%) x°(t) + qCt)|x(t)|T sgn x(t) =0, 0< y<l,

and proved the following theorem:
]
~Theorem A. If there exists a positive function ® such that
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©Z0 and &' £0 that satisfies
t
Gkx) tl}g j;@f(s)q(s)ds = o®
then Eq. (1) is oscillatory.
Theorem A extended and unified Belohoree Theorem [11.

The purpose of this paper is to proceed further in this di-
rection and to present a new oscillation theorem for Eq. (1) which

' extends Theorem A of Kwong and Wong.

Our main result is the following theorem:

2
Theorem 1. Let c(t)2 pE(t) and ® be a positive

twice dif-
a4y a(t)
ferentiable function on the interval Lto,oo) such that:
(2) p(t)@‘ (t)z0, and (a(t)g:' (t))*'< 0 for tzto;
and
1 t 1 s ¥ -
3) lim sup ——p—— f ’a‘l?)’f ¥ (Ma(t)dTds = oo}
e e % K

then Eq. (1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1),
say x(t)>0 for tzt . For tZt,, define

(&) w(t) = (%ﬁ{-})",

which is again positive. Let [3- %_>1, then
x(t) = e(wfct).
Differentiating (4), we obtain .
e AL AL S CRCOIC ORI

¢ v g Wbl Bat)p(HwP 3 (1w 2(1).

From equation (1) and (4) we have

(a(t)x* (1)) _ (a()@(HIwP(£))°)" __p(t)x*(4) _ e(tIx(t) _
) - Ly, - RAEET - RN
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! ]
-ttt L e Tout) « pe (Dl How ()] -

- S8 o wlt) - eTact) = - @ (tace) - p( e twlt) -

- e(POWP L) - fp (De(WP 21w (1) .
Thus,

@ len D« g @i Wil
+ Pa(H)WE3(w 2(1) + p) e W 1t) + BpIEOWF 2w (1)
+ et = - e¥(t)act).
Using (2) we get

Ay amEmu e «paemufdou i -

+£5p(t)§(t)wﬂ'2(t)w'(t) + c(t)y(t)wﬁ'l(t)é - ¢ ()g(t).

Now

2 f-1
aEr O EORFI DY)+ ethpnl i - el )

1, =200 2
+ [attg(uf-3(e)) ety o+ BoldeCw (L)
[¢pacos z(ﬁa(t)gau)wﬁ“W’J

= - gJ(t)q(t).
2
Using the fact that c(t)é-‘%?g-g-, we obtain
() G @owP e - Bl ofoaw.
Integrating (5) twice from t0 to t we get

®) gowlinac, v, [ gy ds -

_B-1 ot 1 LTS .
—B j;L ol J:‘ ¢ (t)a(z)dc ds,
where Co and C1 are appropriate integration constants. Obviously
Ll | : LS
J;c NOR exists in (0,a) Ut} and consequently

1 -1
tlin;( J'c 3(sy 9s) " = L for some Lel0,cx).
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So we derive

lim sup 3 i

tva J;om)- ds

t s
L ety [ ¢adeds <
0

B 1 B-1
fpT ot Bt -t T T = e
't a(s5

0
which contradicts (3). This completes the proof.

1
In Theorem 1 no assumption is made on _fw ds. Therefore,
t, als)

its conclusion holds in both cases where (I) or (II) below is sa-

tisfied:
1 -
(D] atey 98 ==

> 1 P
(II) J;d-a-(-s—)-dS\w.
In the second case, i.e. when (II) is satisfied, the condition

(3) is clearly equivalent to the following one:

trw

(7) 1lim sup ftt 'a"%?T jt‘s @T(t)q(t)duds oo .
0 ¢

Remarks: 1. Our Theorem 1 improves and includes Theorem 1
of Kwong and Wong (3] (take a(t) = 1, c(t) = p(t) = 0). Also, it
includes the sufficiency part of Belohorec Theorem in [1], for
a(t) = 1, c(t) = p(1) = 0 and @(t) = t.

2. Theorem 1 can be extended to more general nonlinear e-

quations of the fofm
(8) (a(t)x" (1)) + p(t)x'(t) + c(tI)x(t) + £(t,x(t)) = 0,
where a, p, c are as above, f: [to,oc)aeR —» R is continuous such

that xf(t,x) >0 for x 0, and

a0 > i), 0~ v,
Ix|¥

.
where q: [tO,UL) -— R is a continuous function.

3. It is clear that the oscillatory behavior of Eq. (1) or
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2
(8) (with a(t) = 1 and c(t)2 Btéél) and equation (%) are exactly

the same.
For illustration we consider the following example:

Exdmgle 1. Consider the differential equation

o« o «
(9) (t Ix)* + t 2 + t >x + (sin t)|x|¥ sgn x = 0,
0< ¥<1, tz1,

where o, %,, &5 and A are constants. Let @(t) = t® , where 8
is any nonnegative constant such that

* o+ 6 -1<0, oKy + Ky = Za?, 4y = 1.

¥8 + A>1,

then all solutions of equation (9) are oscillatory. One can easi-
ly check that none of the known criteria [1-6) is applicable to

Eq. (9).
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