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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
27,2 (1966)

CHARACTERIZATION OF THE COLOMBEAU PRODUCT
OF DISTRIBUTIONS
J. JELINEK

Abstract. The distribution T is equal to the Colombeau
product of distributions R 655 iff the distribution
1/2 [ R(x-y)S(x+y) + R(x+y)S(x-y) ] has for y = 0 the section
equal to T(x)

Key-words: distribution, Colombeau generalized function.

Classification: 46F05

The aim of this paper is to prove the following characte-

rization.

Theorem 1. Let R,S,T be distributions on an open set
Qc RN . Them T =R ESs (Colombeau product) iff the distribu-

tion

[ R(x-y)S(x+y) + R(x+y)S(x-y) ]

N~

has a section for y = 0 (in the Lojasiewicz’s sense [4])
and this section is equal to T(x)

The proof will be done at the end of the paper.

Definition 1. If qc N := {0,1,2,...% 1let ﬁq be the

set of all functions ¢ e @ (RY) such that

(2) J g 0o xtax =0 for 1« |il £ q
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(1= (gt e WV ) L Let ﬁ;"‘) be the set of all

functions @ € )] ('“)(RN) (compactly supported and continu-
ously differentiable up to order m ) satisfying (1) and (2)
and let ﬁ,gm)(K) resp. _}Lq(K) (ke ®Y ) be the set of
all ¢ for which moreover supp 9 ¢ K .

Remark. If px> g then flp c qu . If int K £ 8

we can see that ﬂ.q #@8 for q-=0,1,2,... (cf.[1] 3.3.1).
In this case ﬁq(K) - qu(K) is the set of all @ € D (K)
for which -

fg;(x) x! dx = 0 for li] € q

If ¢ €D and |j] Z1 then []jq eﬂhl_l - jl|j|-1
(3= UGpyeendy) , 0@ (0 signities (£33 g(x) ).

Notation 1. It @ € D (RY) and & >0, denote
9,0 = e Ngpws/e)

We have (cga1)61 = Pee, o @, =9 .1t ge .)Q.q then

Ge € ‘R’q :
We can immediately check the following proposition.

Proposition 1. If Kc ’Y is compact then ( ¥V q,m ) the

linear space

sp AMw = e AM™Mw v ™o - AM
q q q q
spanned by the set ﬂgm)(K) , is the set of all @ e 2™ w

for which (2) holds. It is a Banach space if it is equipped

with the norm of the space Q™
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(3) lel, = l—,’,IT)fm |(-5a;)jcy(x)|

x € R

The space Sp ﬁ,q(K) with the topology induced by U is a

Fréchet space.

. (m)

Proposition 2. If @ € ﬂ.q and @ € ﬂq then (the
convolution) @ * @ € Rq . 1t K c R is compact then the
closure of the set qu(K) in the space fb(m)(K) contains
ﬁ.gm)(int K)

Proof. I. If 1 < |i| € q then

f [Cf* gD(x)] xtax = ffcf (x-y) SD(Z) x1 dzdx

= f ?(x) f{o(z) (x+2)} dzdx =
(if Pe J‘Lq )
f q;(x) xdx = 0
(it ge AMH.
II. Let us choose @€ J\,q . If @ € Sp Aém)(int K)

then ¢ = limo @ * P in the space $(m)(K) , which proves
€\

the result.

In [2] a commutative algebra g. (L) 1is introduced as
follows.

Definition 2. Any element {g? e g(.().) has as a repre-

sentative the functional
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g : le xl — ¢ (complex numbers)
(@, x) — g(@,x)

which is € in x for any fixed P € ﬂ-l and which satis-
fies the following moderate growth condition: for every compact
subset K c & and for every j ¢ IlN there are n,n, € N,
nyZ 1, such that Vg e ﬂ.nl dc>0 3¢g;>0 such
that ( ¥ x, ¢ )

xeK,0<e<¢g, =% I(—aa;)‘]g(c‘ye,x)l e c.e™
The algebra G (f1) is defined by factorization as follows.

Definition 3. Two functionals 91,9, satisfying the above
definition are by definition representatives of the same element
of G (), i.e. (gl) = <g,27 , if for every compact subset

K ¢ 2 and for every je NN there are ng € N and numbers
Tn Ao ( ng z1l,n = nu,n0+1,n0+2,... ) such that V¥ n> ng

cheﬁn 3c>0 3£0.>0 such that ( ¥ x,e

xeK,0<8<50 ->

j X,
| (-53;)3 [9,(9 0 - 9y(@g )] | £ . e

The elements of (d’ (D)) are called generalized functions.

Definition 4 of the multiplication on Cﬁ 0y . 1t
{17,<gY e C)’ (L) we put <£f>C<g? =<f.g? where
(f-g)fC_P:,);‘) = (g ,x).g(g ,x) (pointvise product of functio-

nals).

Definition 5 of the embedding of 9 (L) into G ()
Any distribution T ¢ 9 (1) is identified with the generali-

zed function reoresentative of which is the functional
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(g.,x) = <TW(2), @(z-x)).

According to the factorization by Definition 3 the representa-
tive need not be defined for all (g ,x)
Due to the above identification we may consider that
D(Q) 1is contained in G () . In addition to that identi-
fication a weaker equivalence relation, that we are going to
recall, between distributions and generalized functions is

introduced.

Definition 6. We say that a distribution T ¢ 3 ()
is associated to a generalized function <{g>) € 9(51) if for

every w e & (1) 3 g such that Vo e qu

dT,w?> = Elimo f gl ,x) @ (x) dx

The distribution associated to G =<g) , provided it exists,
is uniquely defined by G and denoted by E'
In this paper we investigate the relation T = R 35 on
) which means: T,R,5 € P () and the distribution
T 1is associated to the generalized function RGOS eg, Q)
We are going to deduce the following lemma directly from

the above definitions.

Lemma 1. T =R&S on S iff for every w e P (Q)
3 q such that Yo < JLq

(T,w> = G'li\‘mo CROx-y)S(x+y) , §¢ (x,y)>

where
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§e (xhy) = e M Jrcy(z - 7%-)9)(2 + f;—)w(x - 2€2) dz

Proof. From Definitions 4,5,6 and Notation 1 we obtain:
T=R®S on 2 iff for every @ € D () 3 q such
that Vg e .R,q {T,w? =

Lim f <R(x), @ (x-2)D, - (S(y),qs(y-z)7y~a)(z) dz
. -2N - -
Lin RGO < S() , e [o(Fh g D w(a) dzy

The substitution (x-y,x+y) instead of (x,y) (with the jaco-
bian = 2N ) gives

"

€1§m0 < R(x-y)S(x+y) ,

e NN [ 2y o (XD w0 (2) dz )

the substitution x - g z instead of z and then 2€¢ instead

of € prove the result.

Definition 7. Let F be a distribution on a neighborhood

of zero in RN . We say that F admits a value at the point

y 0 (in the Lojasiewitz’s sense) and this value equals to
aecC if for every ¥ e AU (i.e. v €D and satisfies

(1)) we have
eljimo (F,9&> = a

Theorem 2 ([4] 4.2 Th.2). Let €, » 0 and let

lim inf Enel / & 0 . F has at y = 0 the value

Moy X
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equal to ae C iff Yg € ./lo
F = a
R
s sk N M
Definition B. Let F(x,y) (xe R, yeR' ) bea
distribution on a neighborhood of Q ~ {0% (zero in R )

We say that F admits a section at y = 0 and this sectio
is equal to T(x) e P () if for every w € D () the
distribution

CFix,y) , w(x)) € (ED')y
has at y = 0 the value equal to < T, @ ) .

Proposition 3. Let Y be a continuous function on RN ,

q € N . Then there is a function [3 e D equal to 1 on so
neighborhood of zero and such that

Jyoo poo xtax = o

providea ., € q
Proof. If Y is not identically zero, choose a point
Xy # 0 with Y(xo) # 0 and put
lxol
B = ‘(X;IX*Xolé —2—}
Since on B the distribution x! Y(x) 1is not a linear combi
tion of the distributions xJ Y(x) ( 3EiLi, 13 £ q),

there is a function f3; & < (B)
r i kel
JxT ¥(x) 3;(x) dx

and
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ij Y(x) /31(x) dx = 0

provided j #1, |j] # q . Choose o € &, o« =1 on

some neighborhood of zero; then putting

R C [ x3 Yy(x) o6 (x) dx ) @,
B S o / A3

praves the result.

Lemma 2. Let K be a compact symmetric neighborhood of zero

N

in R, geN; let {Ta} be a set of distributions

a 6A
such that for every two functions @,y e ﬂ.q(K) the set of

numbers

Ty, g+ ¥ >3 a €A

is bounded. Then the set 4 Ta} a is equicontinuous on
Sp .H.q(K)

Proof. Since Sp JQq(K) is a Fréchet space (Proposition

€A

1), it suffices to prove that Vv ¢ .ﬂq(K) the set of num-
bers £< Ta’ Y’) }a is bounded. By the assumption of this lemma
for a fixed ¢ e Sp ~ﬂq(K) the set of linear forms

‘fy»—» {7, , ?’V7§35A c (Spﬂ.q(K))
( w ranges in Sp qu(K) ) is pointvise bounded; hence by
Banach Steinhaus Theorem ([5] IV.2,Th.3) it is equicontinuous
on the Fréchet space Sp 'Ab(K) . It means that the bilinear

.

mapping
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(4) Sp Aq(K)x Sp ﬂaq(K) —_— l:’
(goy) > A<Tag ¥ 2E oy

is separately continuous. Since Sp qu(K) is a Fréchet space,
this mapping is continuous ([5] VII.2,prop.11). It means that
there are numbers m,m’,c such that Yg ,¥ € Sp ﬂq(K) and

¥V a ¢ A we have
(5) lgl, «1, lyl,. €1 = <7, , @ +¥ 2| €c

It is known that for any y € D the mapping

¢ — KT, , ¢ % w7 is continuous on gy(“’) and hence

the relation (5) holds even for @ € Sp ﬂq(K) (closure in
(m) :

9 ), ¥ e Sp flq(K) . We put for @ a fix function Y

satisfying the following conditions. Namely, choose a number

n & N such that -
(6) n > %

and n > (N+m)/2 so that there exists a function Y continuously

derivable up to order m and satisfying the equation
ANY = T

([3], tormulae (II,3;16) and (II,3;18)). Y is €% on R'~ {0}
By Proposition 3 we choose a function 3 € D (int K) egual to

1 on some neighborhood of zero and such that @Y ¢ A ém) - ﬂgm)
It follows from Proposition 2 that BY e m . By (6) and
the remark following Definition 1 we have A"V € Sp qu(K)

We obtain from (5)
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M KT, pY ATy > € g, 1A Y,
and we compute
(8) BY » A"y = ARV sy = () xy

where § = An(ﬂY) on RVN $0¢ » §(@ =0, ¢ e .
If 0 <£|i| <« g <2n (by (6)) we have

CFx) +« S0, x> = <a™ [BOIYGD] , X1
= PGV, AMXED =0

so fe -}lq . We obtain from (7) and (8)
c IpYll, 1AMyl 2 < T, y> + < T, .8 =)

and therefore if Y e Sp ﬂ.q(K) the set of numbers
1(T7, .,y >}, is bounded.
Theorem 3. Let B be an open neighborhood of zero in RN ,
Fed(B), gceN, aegC . Then the following are equivalent.
(i) F has at zero the value = a (in the Lojasiewicz’s sense)

(ii) VYn e Aq we have (according to Notation 1)

(9 1i CF, non ) -
mémN ¢ KRR °
n - oC
i vge A, if m= ox g (9) holds.

Proof. (i) = (iii) is obvious.

(iii) = (ii) : We write (9) equivalently

(10) lim < F(27"x) , 7nx)? = a

n =
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If (iii) holds then for every @,y e Sp ﬂq

1i <F2%) * +
Jn PR (900 ¢ w00) x (00 + 3>

= a~f(cy*v) » (p+y)
We deduce from it

(11) lm <CFQ2M) L, g0) sy ()X =afory.

m —y oo

For any compact symmetric neighborhood K of zero in RN the

distributions F(2™™x) are defined on K for n large enough
and by Lemma 2 they form an equicontinuous set on Sp ,/I,q(K)
Since the functions @ » ¥ form a dense set in Sp )Lq ,

we deduce (10) from (11) (V7y e ‘A‘q ).
(ii) = (i) : By Theorem 2 we need to prove the relation

(9) for every 7 € Jlo and we are going to do it by induction.
Let r«N, r >1 . From the assumption: (9) holds for every
function 7 e Jlt , we are going to deduce:

lim <F:9’2—n>=a

m oo

for every @ ¢ ﬂ‘r—l . Indeed, if ¢ is such a function, then

the function

belongs to A‘r and by the induction assumption it satisfies (9).

We have (for k = 1,2,...,n)
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r
2 gkn-l T Pokn

Tgen -

2F -1
and therefore
m r
2 -1 N -nr
A1 Tk Tokn © Ppn 2 ¥

By (9) it gives lim F, =
y glv “*w< ?2’4\)

Lemma 3. For the temainder of the Taylor development of any
function w € D (L)

. 343 hJ
(14) w (x+h) -U“E‘:’"" (7x)7 @x) Tt @p(x,h)

we have estimates

| (=K

x wm(x,h) | = Cy [hlm

with numbers Cx Z 0 independent from x and h .
Proof. For k = 0 it is a well known estimate. For the other
k’s the estimaté follows from the fact that the derivative of

(18) is the Taylor development of the derivative of .
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Lemma 4. For w € D , q‘ﬁ({z}; |z] £ r ) denote
(see (14))

(15) Sz’m(x,y) =

e [ eGg) 9 e g oy, 260w
Then -

supp Pe,m(x,y) c ${ dist(x,supp ) € 281 , |yl 2¢er?

If |z| 2 r we have

(16) g!(z—-z-ye-‘—)ga(z+7-ya—) = 0

and therefore in the formula (15) it suffices to integrate over
the set {|z|<r ¥ .

Proof. If |z| z r we have either |z - y/2¢| 2= r or
|z + y/2¢ | =z r which gives (16).

If |yl > 2er then for any z the points z -y/2e ,
z + y/2¢ have the distance greater than 2r . So they do not both
belong to supp ¢ c {lz]«r} which gives (16) for all 2z
and consequently %E,m(x,y) = 0

If dist(x,suppw) > 2er with 2gr > 2¢|z| (according
to the last part of Lemma) it.follows that neither x nor
X - 2¢ z belong to supp @ and by (14) wm(x , =2¢2) =0

which gives se m=0
’

Lemma 5. Let R,S ¢ D'(L) and we D(N) , ¢ €D
be given and let o be the order of the distribution

R(x-y)S(x+y) on some neighborhood of the set supp @ (x) = O

(zero in (llN)y ). Then if m > N + o (me N) we have (see
]

(15))
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"
o

(17) "1§‘m0 < R(x-y)S(x+y) , S;,m("’y) >

and if |i| > N + o we have

- [i]-N
(18) zl{:no { R(x-y)S(x+y) , ¢ w(x)

f?(l-r%-)q(l*?ye—)lidz> = 0

Proof. We will prove (17) only, the proof of (18) being
similar. According to Lemma 4 we have to estimate the derivatives

of order < o of the functions ge.m . By Lemma 4 we have
BB g oy -
e'Nf~z§a, N A NG R IO o)
-(—g;-)l @ (x, -2gz) dz =

-3l &'-N'|J| [ 3 (&)(-1)“"0"9(: - 716—)03"‘9:& + 75

lzle<n

-(-%;)1 wplx , -2¢ z) dz

If we admit |j + 1| £ o only we obtain from Lemma 3

| (2123 (x,y) | = ce™N-13l
X y g,m

where the constant c depends on 0,9 ,m,« but does not depend

L

on x,y, 6 . Since m >N + 0 2 N + |J| we obtain (17).
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Lemma 6. If T =R&S on fL then Yew & $(Q) 3 q

such that the relation (18) holds for every i # 0 provided

g e ﬂ'q :
Proof. Let K be a compact set in JfL . We are going to

prove inductively the lemma for any o« & & (K) . Suppose a

number pe€ N, pZz 1, satisfies the following induction assump-

tion:
Yo € D(K) 3 q such that the relation (18) holds for

every i with |i|>p provided @ € qu-
By Lemma 5 if o is the order of R(x-y)S(x+y) on some neigh-

borhood of the set {(x,0) ; xe K} then the number p = N + 0

satisfies the above assumption even for every q . From the
above assumption we are going to deduce:
Vw & D(K) 3 q" such that the relation (18) holds for
every i with |i| = p provided ¢ e Aq,,
Thus the lemma will be inductively proved. So, let w e @ (K) ,

In Lemma 1 we replace the function @ (x - 2e z) by

lil = p

its Taylor development from Lemma 3 ( h = -2gz ). If m >N + o
(17) gives

(19) <1, 0? =

131 $1-
1im D2 DN Rekeydsixey)
13l<m €N0 J:

(F w0 [ @z gz e ) dz )
Let us denote by ny,n,,...,N; € {1,2,...,N}% indices for which

(20) z oz .02y =z
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(z-= (zl,...,zN) ). For any complex numbers ty,...,t, , from

p

the relation vy € AQ* it follows easily

p

q

=

e
(21) @ (2) := y(2) },“4 1+ tkznk) e A

( q is chosen by Lemma 1). We have

(22) [ oG- 9@+ ) a
= f'qf(z-fvs—)v(z+7g—) 23

2
yn
2,2 -

)] dz
k N AEZ

T
1+ 2t 2 + t
k=1 k nk

Substituting @ (z) by (21) into (19) gives in the second member
of the equality (19) a polynom of variables tl""’tp . As the

equality holds for every tl,...,t the coefficient of the

p )
power tl = tl""‘tp of the polynom in question must equal to

zero. By (22) and (20) it means

IR
171 €w0 ¢ 2_?]' EIJI N < R(x-y)S(x+y) ,
<m ]

() w0 [y - yz e ez ) = 0

By the induction assumption’'all the terms of this sum with j # O
equal to zero (provided ¥y e qu' where q = g + p is large
enough) and therefore the term with j = 0 equals to zero, too.

Thus the induction‘'is proved.
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Proof of Theorem 1. I. Suppose T = R 65 on . In the

sum (19) all the terms with j # 0 equal to zero due to Lemma

6. So we have: Yw € D (L) 3J q such that Vg e qu
(23) < T,w? =21§m0 < R(x-y)S(x+y) , cw(x) 7e(Y)D
(see Notation 1) where

(28) 2= [eG-F) e+ d)dz= g » oy

( @ (2) = @ (-z) ). In (23) we substitute instead of 7  the

function
nt s Pty . 9 + o
2 2
= %n + % n o+ %‘;L
where 7 = @ * g . From it and from (23) we deduce

(T,w> =
. 1 . .. ~
elimo < R(x=y)S(x+y) , @(x )5 [qa(y) + 'qa(y)]7 =

i <3 [RGEYSGey) + ROsyISenT el 90 >
Now Theorem 3 says that the distribution
£ % [ R(x-y)S(x+y) + R(x+y)S(x-y)]} , w(x))x has for y = 0

the value equal to < T,w > .

II. Suppose the distribution
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has for y = 0 the section equal to T(x)

% [ R(x-y)S(x+y) + R(x+y)S(x-y)]

Then for any even

function M = %4 € 9 we have

Consequently (18) holds for every i # 0

Jin CROEDSGey) L w00 ) Y = (T, wy [

and for every

we D(L) and (23) holds for the function % defined by

(238) With <@ € .ﬂo . By Lemma 5 also (17) holds for m> N + o

Now the Taylor development of cw(x - 2e2z)

by Lemma 3 gives the

condition in Lemma 1.

[l
(2]
f31
fa]
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