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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROUNAE 

27.2 (1966) 

CHARACTERIZATION OF THE COLOMBEAU PRODUCT 
OF DISTRIBUTIONS 

J. JELINEK 

Abstract. The distribution T is equal to the Colombeau 
product of distributions R <•) S iff the distribution 
1/2 [ R(x-y)S(x+y) + R(x+y)S(x-y) ] has for y = 0 the section 
equal to T(x) . 

Key-words: distribution, Colombeau generalized function. 

Classification: 46F05 

The aim of this paper is to prove the following characte­

rization . 

Theorem 1. Let R,S,T be distributions on an open set 

i l c RN . Then T = R 0 S (Colombeau product) iff the distribu­

tion 

\ [ R(x-y)S(x+y) + R(x+y)S(x-y) ] 

has a section for y = 0 (in the Lojasiewicz's sense [4]) 

and this section is equal to T(x) . 

The proof will be done at the end of the paper. 

Definition 1. If q c H : = 4*0,1,2, .. .1 let A be the 

set of all functions 9? e 2) (R ) such that 

(1) f<p = 1 

(2) f y (x) x1 dx = 0 for 1 *£ |i| ̂  q 
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( i = (i1.i2»---.iN) € *
N ) . Let .A(m) be the set of all 

functions <p € 3) (m)(RN) (compactly supported and continu­

ously differentiable up to order m ) satisfying (1) and (2) 

and let A ( m )(K) r e s p . J M K ) ( K c RN ) be the set of 

all gp for which moreover supp cjp c K . 

Remark. If p > q then A C A . If int K t 0 

we can see that A i 0 for q = 0,1,2,... (cf.fl] 3.3.1). 

In this case Aq{K) - A (K) is the set of all 9 e 3 (K) 

for which ^ 

/ <y(x) x1 dx = 0 for |i| ̂  q 

If 9 € Q) and I j| 2T 1 then 0^ qp e *^ Ml-l * ^lil-l 

( J = (J!,--.iJN) , D^<j(x) signifies (-^)^cj>(x) ). 

Notation 1 . If <y € 3) (RN) and e > 0 , denote 

<^e(x) = e-
N<y(x/6 ) 

We have icgt \ = ^ e - > Cp1 = Gp . If 9 e JLq then 

We can immediately check the following p ropos i t ion . 

Proposition 1. If Kc RN is compact then ( V q,m ) the 

linear space 

Sp Jl(m)(K) = C A ( m ) ( K ) v (A ( m )(K) - Ji(m)(K)) 

spanned by the set Jl(m)(K) , is the set of all <f e £&(m)(K) 

for which (2) holds. It is a Banach space if it is equipped 

with the norm of the space S ( m ) 
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(3) l l 7 » ™ = ^Tm ' ^ V ^ i 
tf € IR 

The space Sp Jln(K) with the topology induced by SB is a 

Fr6chet space. 

Proposition 2. If p c Jl and cy 6 J V m ) then (the 

convolution) 9 * <p e .A If K c R is compact then the 

closure of the set Jl (K) in the space 59 (K) contains 

A<m)(int K) . 

Proof. I. If 1 £ |i| ̂  q then 

/ C <y* p (*)] xl dx = j j a? (x-y) p (z) x1 dzdx 

= / fix) f p (z) (x+z)1 dzdx = 

(if >̂ e A q ) 

J <ţ (x) x1 dx = 0 

(if cye A j m ) )• 

II. Let us choose a> e A„ . If ® e Sp A „ (int K) (m), (V c A . If 9 € Sp A j p U n t 

then csp = l im q> * p , i n the space «g) (K) , which proves 

the result. 

In [2] a commutative algebra Q, (11) is introduced as 

follows. 

Definition 2 . Any element < g > € ^-(-0.) has as a repre­

sentative the functional 
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g : Jl. K .£L — > C (complex numbers) 

( 9 , x) »-> g( g>,x) 

which is *€ in x for any fixed 9? € A. and which satis­

fies the following moderate growth condition: for every compact 

subset K c H and for every j & H there are n,,n2 £ U , 

nl > 1 , such that Vc£ e A J c > 0 3 £Q > 0 such 

that ( V x, e ) 

x e K , 0 * e «* S Q ~* l(-^) j9(% ,x)| * c £"n2 . 

The algebra (̂  (H) is defined by factorization as follows. 

Definition 3. Two functionals 9i>9o satisfying the above 

definition are by definition representatives of the same element 

of Cfr(Sl) , i.e. ^g-> = ̂  g2 ̂  , if for every compact subset 

N K c SI and for every j £ N there are nQ £ N and numbers 

yn S* 00 ( nfl > 1 , n = nQ,n0+l ,nQ + 2, . . . ) such that V n> nQ 

V c$> € A^ 3 c .> 0 3 e > 0 such that ( V x, £ ) 

X € K , 0 ^ e < £ 0 -^ 

I <-£j)3 [ g^^s >x) - 9 2
( % ,x) ] I ^ c e ^ . 

The elements of (J^ (Si) are called generalized f unc t ions . 

Definition 4 of the multiplication on Q (Si) . If 

<*f>,<g> 6 t̂, (ft ) we put <f> G <g> = < f g> where 

(f-gK 9>,x) = f ( 9 ,x)-g( cp ,x) (pointvise product of functio­

nals) . 

Definition 5 of the embedding of 2)'(n.) into Q. (Si) . 

Any distribution T G 3)'(H) is identified with the generali­

zed function reore«entative of which is the functional 
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(<y ,x) h-*- <T(z) , 9>(z-x)> . 

According to the factorization by Definition 3 the representa­

tive need not be defined for all (g> ,x) . 

Due to the above identification we may consider that 

OZ)'(JQ-) is contained in Q- (SI) . In addition to that identi­

fication a weaker equivalence relation, that we are going to 

recall, between distributions and generalized functions is 

introduced. 

Definition 6. We say that a distribution T e 3) '(Si) 

is associated to a generalized function <g> e ^ . ( H ) if for 

every a> e 3) (SI.) 3 q such that Vop €. .Ji 

<T,o.>> = lim Г g(cp
c
 ,x) o> (x) dx 

Є ^ O
 J ^ь 

The distribution associated to G = < g > , provided it exists, 

r*» 

is uniquely defined by G and denoted by G . 

In this paper we investigate the relation T = R <5 S on 

Si which means: T,R,S e 8 ' ( il ) and the distribution 

T is associated to the generalized function R © S e G, (Si) 

We are going to deduce the following lemma directly from 

the above d e f i n i t i o n s . 

Lemma 1 • T = R g> S on XL iff for every co e £D (Si) 

3 q such that V cp Q A 

< T , C Ü > = lirn < R(x-y)S(x+y) , Cc(x,y )> 

where 
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^£(x,y) = e~
N J cy(z - ̂ ->9>(z + ^-)CJ(X - 2e z) dz 

Proof. From Definitions 4,5,6 and Notation 1 we obtain: 

T = R S S on SI iff for every c*> e 2) (Si) 3 q such 

that Vt| e 1 <T,cu> = 

lim f < R(x), 9-(x-z)> • <'S(y),<gp.(y-z)>w.o>(z) dz 

liиi < R(x) x S(y) , &"
2 N
 Ґ c p ( ^ ) <p iЦ£) CJ(Z) dz > 

The substitution (x-y,x+y) instead of (x,y) (with the jaco-

bian = 2 ) gives 

lim < R(x-y)S(x+y) , 
г ̂  0 

e
-2N .,H -2

N / < y ( 2 í l | ^ ) ? ( 2 i p ) oXz) d z > 

the substitution x - s z instead of z and then 2e instead 

of e» prove the r e s u l t . 

Definition 7, Let F be a distribution on a neighborhood 

N 
of zero in It . We say that F admits a value at the point 

y = 0 (in the Lojasiewitiz's sense) and this value equals to 

a 6 C if for every <f e AQ (i.e. cp c 2) and satisfies 

(1)) we have 

lim < F, (o > 

Theorem 2 ([4] 4.2 Th.2). Let e n ^ 0 and let 

lim inf & . 1% •> 0 F has at y = 0 the value 
IV -f CJC 
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equal to a e C i f f V <y e JlQ 

l i m < F , <jpe > = a 
m. -> co 3 & ^ , 

Definition B. Let F(x,y) ( x c R
N
 , y e R

M ) be a 

M 

distribution on a neighborhood of XL x 4 01 (zero in R ) 

We say that F admits a section at y = 0 and this sectio 

is equal to T(x) e 3 ) ' ( - - l ) if for every o> e 2f (SI) the 

distribution 

< F ( x , y ) , o > ( x ) > є ( З V ) 
x y 

has at y = 0 the value equal to < T, co > . 

Proposition 3. Let Y be a continuous function on R , 

q £ N . Then there is a function /3 e 95 equal to 1 on so 

neighborhood of zero and such that 

/ Y (x ) / 3 ( x ) x1 dx = 0 

provided i * , *£ q . 

Proof. If Y is not identically zero, choose a point 

xQ i 0 with Y(x0) ?- 0 and put 

4 x ; |x - xQ| £ — ү - } 

Since on B the distribution x
1 Y(x) is not a linear combi 

tion of the distributions x
J Y(x) ( j / i , | j | =' q ) , 

there is a function ft. e & (B) such that ( [5],11.3,lemma5 

/ x
1 Y ( x ) / 3 . ( x ) dx = i 

and 
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f x^ Y(x) /-^(x) dx = 0 

provided j j- i , |j| * q . Choose oc c S , <* = 1 on 

some neighborhood of zero; then putting 

(I » oo - SI ( / x 1 Y(x) 0C(x) dx ) ft. 

proves the result. 

Lemma 2. Let K be a compact symmetric neighborhood of zero 

in R , q c N ; let {T„I . be a set of distributions 

a a c A 

such that for every two functions y , Y € »A (K) the set of 

numbers 

{<Ta , cp. Y >? a € A 

is bounded. Then the set -t T \ is equicontinuous on 

Sp *ftq(K) . 

Proof. Since Sp .AQ(K) is a Fr6chet space (Proposition 

1), it suffices to prove that V y c A (K) the set of num­

bers 4 < T , Y ^ ̂ a -s bounded. By the assumption of this lemma 

for a fixed <y € Sp A (K) the set of linear forms 

W ^ <ifl, (p«r>i . c (Sp JL(K))' » a f ? * a e A q 

( Y ranges in Sp A (K) ) is pointvise bounded; hence by 

Banach Steinhaus Theorem ([5] I V . 2 , T h . 3 ) it is equicontinuous 

on the Fr6chet space Sp A(K) . It means that the bilinear 

mapping 
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(4) Sp Л
q
( K ) x Sp Л

q
(K) - * i " 

(ç,.y) »-*• í< Ta'»* Y > ? a e 

is separately continuous. Since Sp -A (K) is a Frgchet space, 

this mapping is continuous ( [5] VII.2,prop.11). It means that 

there are numbers m,m',c such that V<̂ i , if € Sp A (K) and 

V a e A we have 

(5) ||<y||m * l , I M I m ^ - - * l <T a , 9 * Y >\ * 

It is known that for any y e 3) the mapping 

qp i—> <T , 9? * Y } is continuous on SD and hence 

the relation (5) holds even for <p € Sp ,A (K) (closure in 

2 ) ( m ) ), y £ Sp A(K) . We put for 9 a fix function /3 Y 

satisfying the following conditions. Namely, choose a number 

n 6. if such that 

(6) n > § 

and n -> (N+m)/2 so that there exists a function Y continuously 

derivable up to order m and satisfying the equation 

A n
 Y • <r 

([3], formulae (II,3;16) and (II,3;18)). Y is <£«> on RN v. i 0} . 

By Proposition 3 we choose a function !3 & 2) (int K) equal to 

1 on some neighborhood of zero and such that fl Y c A £ - A^ . 

It follows from Proposition 2 that fi Y c Sp Jl (K) . By (6) and 

the remark following Definition 1 we have A n y 6 SP A (K) . 

We obtain from (5) 
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(7) < Ta , JIY . A n r > * c ||/3 Y||m l lAnylL-

and we compute 

(8) /SY * A n T s ^ n ( /3 Y > * T = (cT + J ) * - f 

where $ = A n ( / J Y ) on RN N - j0 * , £ (0) = 0 , g € 2) . 

I f 0 -£ | i | * q < 2n (by (6 ) ) we have 

<cT (x ) + % (x) , x1 > = < A n [ /3(x)Y(x)J , x * > 

= < (3 (x)Y(x) , A n x1 > = 0 

so $ 6 - Jl . We obtain from (7 ) and (8) 

c llpY||m I IAVL- 2 < T a ' Y > + < Ta >§ * Y > 

and therefore i f y c Sp AQ(K) the set of numbers 

\ < Ta , y > \ a is bounded. 

N Theorem 3. Let B be an open neighborhood of zero in R , 

F e 2)'(B) , q c H , a £ C . Then the following are equivalent. 

(j) F has at zero the value = a (in the Lojasiewicz's sense) 

(ii) V r> £ Ji we have (according to Notation 1) 

(9) lim < F , -r, n > = a 
<n, G IN z 

% -+cc 

(iii) V(^ c Ji if 12 = <p * <j> (9) holds. 

Proof. (i) -*• (iii) is obvious. 

(iii) =.• (ii) : We write (9) equivalently 

(10) lim < F(2"п
x) , ^(x) > 

i —» aь * 
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I f ( i i i ) holds then fo r every <j>,y e Sp A 

l im < F(2"nx) , (<a>(x) + Y ( * ) ) * ( 9>(x) * <ur(*>>> 
m,+oo J T 

= a- f (<jp + y ) * (<p + y ) 

We deduce from it 

( 1 1 ) lim < F(2~nx) , <.|>(x) * « r (x ) > = a f & * yr . 

N For any compact symmetric neighborhood K of zero in R the 

distributions F(2~nx) are defined on K for n large enough 

and by Lemma 2 they form an equicontinuous set on Sp Aa(K) . 

Since the functions <y * Y form a dense set in Sp Aa , 

we deduce (10) from ( 11 ) ( V ij « An ) • 
fr q 

( i i ) => ( i ) : By Theorem 2 we need to prove the relation 

( 9 ) for every T£ G A Q and we are going to do it by induction. 

Let r e M , r > 1 . From the assumption: (9 ) holds for every 

function r^ c A , we are going to deduce: 

lim < F , ф
 n

 y 

for every <jp G ^r-i • Indeed, if <f is such a function, then 

the function 

П : =
 2 Г У

V 2 - У 

belongs to A and by the induction assumption it satisfies ( 9 ) . 

We have (for k = 1,2,...,n) 
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1 2 k ~ n 

2 Ҙ k-n-1 " 92k-n 

and therefore 

i*
 0

r 

.z 
2Ł - 1 

jJt*i 2kr Z2k-n ^ 2-n ^ 

By ( 9 ) it gives lim < ? > & „ „ } = 

"* 2 r - 1 
lim 21, c-=— • < F , 7-1 . > = 

since 

52. 2
Г
 - 1

 = x 

.51, iFr 
% * 1 2 

lemma 3. For the Remainder of the Taylor development of any 

function o> 6 2) (XL) 

(14) <u>(x+h) = X ( - | ~ ) j o>(x) t-r + ^ m ( x , h ) 

we have estimates 

1 ( - & ) k « m < x - h ) 1 * CK i h i m 

with numbers c. z 0 independent from x and h . 

Proof. For k = 0 it is a well known estimate. For the other 

k's the estimate follows from the fact that the derivative of 

(14) is the Taylor development of the derivative of co . 
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Lemma 4. For co e 3) , <y tf 3 ( { z .f ; | z | . é r ) denote 

(see (14)) 

( i 5 ) $ 8 f l i ( " , y> -

-N 
Ь f 9(z " Гt^ <?u + l V } *>m(x > " 2 e z ) dz 

Then • 

supp C m ( x , y ) c -C d ist(x,supp * > ) . * 2 6 r , | y | i 6 2 £ r j 

If IzI > r we have 

(16) 9 (z - ^ - ) 9 (z + ^ - ) = 0 

and therefore in the formula (15) it suffices to integrate over 

the set \ |z| < r \ . 

Proof. If |z| z r we have either |z - y/2& | 2r r or 

|z + y/2e I 2: r which gives (16). 

If |y| > 2e r then for any z the points z - y/2 c, , 

z + y/2 t> have the distance greater than 2r . So they do not both 

belong to supp 9 c i |z| £ r \ which gives (16) for all z 

and consequently ^ * m
( x , v ) = ° 

If dist(x,supp <o) > 2 c r with 2 e r > 2 e | z | (according 

to the last part of Lemma) it follows that neither x nor 

x - 2e z belong to supp o> and by (14) .̂-.(x » -2ez) = 0 

which gives C = 0 
» £>ro 

Lemma 5. Let R,S <s 3)'(-Q.) and co * 9) (il) , 9 € 9) 

be given and let o be the order of the distribution 

R(x-y)S(x+y) on some neighborhood of the set supp CJ (x) x 0 

(zero in (RN)y ). Then if m > N + o ( m * N ) we have (see 

(15)) 
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(17) lin» < R(x-y)S(x+y) , $ m(x,y) > = 0 
t,".a 0 * Ztm 

and if |i| > N + o we have 

(18) l^m0 < R(x-y)S(x+y) , e|i'"N cj(x) 

• / 9 (z - ̂ ) 9 (z + -j*-) z1 dz > = 0 

Proof. We will prove (17) only, the proof of (18) being 

similar. According to Lemma 4 we have to estimate the derivatives 

of order -. o of the functions C „ . By Lemma 4 we have 
£ C » m 

<-̂ >1<-l7>j S,,.<*.y> -

• ' 7 A & ( ^ ) k * ( z - 1 * - ^ * * * ? ( z + i*-> 

• ^ 1 * . < * • - 2 & z ) dz -

2
-ІJІ

 ft
-N-b| f ç (J)(.i)W

D
k

9(ж
 . ,*-)D>Vz • -£-) 

• ( ^ j ) 1
 Wm(x , - 2 * D n« 

If we admit |j + 1| -Ss o only we obtain from Lemma 3 

,m-N-|j| 

^ 1 ^ W-'* ' * cь" 
where the constant c depends on o,^ ,m,&> but does not depend 

on x,y, & . Since m > N + o > N • |j| we obtain (17). 
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Lemma 6. If T = R 5 S on Jl then V co e 3 (il) 3 q 

such that the relation (18) holds for every i i 0 provided 

<? e Aq • 

Proof. Let K be a compact set in -0. . We are going to 

prove inductively the lemma for any 6-> « 9> (K) . Suppose a 

number p e N , p ? 1 , satisfies the following induction assump­

tion: 

V c-> c 9>(K) 3 q' such that the relation (18) holds for 

every i with | i | > p provided tf e Jl , . 

By Lemma 5 if o is the order of R(x-y)S(x+y) on some neigh­

borhood of the set -f (x,0 ) ; x 6 K } then the number p = N + o 

satisfies the above assumption even for every q' . From the 

above assumption we are going to deduce: 

V co 6 3)(K) J q" such that the relation (18) holds for 

every i with |i| £• p provided <f e A „ 

Thus the lemma will be inductively proved. So, let co e £0 (K) , 

|i| - p . In Lemma 1 we replace the function co (x - 26 z) by 

its Taylor development from Lemma 3 ( h = -2e z ). If m > N + o 

(17) gives 

(19) < T, co > = 

2 lim izllllL & i j | - N . < R(x-y)S(x + y) , 
f£| </m, e ^»0 J ! 

(_̂ _)j c o ( x) j ^ (2 . ̂ y_) ^ ( z + ^y_) zj d z ^ 

Let us denote by n, ,n2,...,n c { 1,2,...,N 5 indices for which 

(20) zn zn ... . zn 
nl n2 П

p 
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( z - ( z 1 , . . . , z N ) ) . For any complex numbers t,, . . . , t , from 

the relation y € "^O+D At follows easily 

(21) 9 (z) := y(z) • I (1 + t.zn ) e An J A* 4 K nk q 

( q is chosen by Lemma 1 ) . We have 

• (22) f 9 (z - -j*-) 9 (z + ̂ - ) zj dz 

= / y (z - y£-) y (z + -y|-) z^ 

2 
** yn 
J [1 + 2tzn + t2 (z2 - — M j dz 
b4 K nk K nk 46 2 

Substituting 9(z) by (21) into (19) gives in the second member 

of the equality (19) a polynom of variables t , , . . . , t . As the 

equality holds for every t-,...,t , the coefficient of the 

power t - +,i,---,t of the polynom in question must equal to 

zero. By (22) and (20) it means 

£ iim íz__łj_łi
 e

Ш - N < R(
x
-y)S(x+

У
) 

|£|< m Є * 0 j! 

(
"lx"

)j
 *>

(x) I Y ( z
 " _€Г} УU +

 __~
} Z > І dz

 > 

By the induction assumption all the terms of this sum with j / 0 

equal to zero (provided y e A > where q' > q + p is large 

enough) and therefore the term with j = 0 equals to zero, loo. 

Thus the induction*is proved. 
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Proof of Theorem 1. I. Suppose T = R 3 S on JI In the 

sum (19) all the terms with j t 0 equal to zero due to Lemma 

6. So we have: V o> e 3 (-11) 3 q such that Vcy e »# 

(23) < T,o>> = lim < R(x-y)S(x+y) , <*>(x) " c ( y ) > 

(see Notation 1 ) where 

(24) ^ ( y ) = J g>(z - - £ - ) <p (z + - £ - ) dz = y * y ( y ) 

( 9 (z ) = y ( - z ) ) . In (23) we substitute instead of ^ t n e 

function 

*» * n n 

1 1 1 - ' 

jЧ - n + п 

where n = 9 * 9 • F r o m -* a r , d from (23) we deduce 

< T,o>> = 

lim < R(x-y)S(x+y) , <a(x ) 4 [ i ) ' ( y ) + i ' ( y ) 3 > » 

l im. < A [R(x-y)S(x+y) + R(x+y)S(x-y)3 , co(x) t i ' (y) > 

& \ i 0 - *•& 

Now Theorem 3 says that the distribution 

< -| L R(x-y)S(x+y) + R(x+y)S(x-y) ] , oix)}
 x

 has for y = 0 

the value equal to < T, co > . 

II. Suppose the distribution 
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\ l R(x-y)S(x*y) + R(x+y)S(x-y) ] 

has for y = 0 the section equal to T(x) . Then for any even 

function % = ij[ e 2b we have 

lini < R(x-y)S(x+y) , o>(x) «-(y) > = <T,o>>/^ 
i>i 0 

Consequently (18) holds for every i i 0 and for every 

CO e 3)(&) and (23) holds for the function -̂  defined by 

(24) With <p € JL . By Lemma 5 also (17) holds for m > N -.- o 

Now the Taylor development of <y(x - 2&z) by Lemma 3 gives the 

condition in Lemma 1. 
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