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NON-LINEAR VARIATIONAL INEQUALITIES AND 
THE EXISTENCE OF EQUILIBRIUM IN ECONOMIES 

WITH A RIESZ SPACE OF COMMODITIES 
E. TARAFDAR, G. MEHTA 

Abstract; Using the concept of a variational inequality, we 
give a new proof of the Aliprantis-Brown theorem on the existence 
of equilibria in economies with a Riesz space of commodities. 
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Introduction. The object of this paper is to investigate 

the existence of equilibrium in an economy with a Riesz space of 

commodities. Riesz space methods have been used in economics by 

Aliprantis and Brown (1983). Their proof is based on a theorem by 

Ky Fan (1961) which generalizes the classic Knaster-Kuratowski-

Mazurkiewicz theorem. The main idea of the proof given by Alipran­

tis and Brown is to define a "revealed preference" relation on the 

space of prices and then to use Ky Fan's theorem to show the exis­

tence of a maximal element for this ordering. This maximal element 

is then proved to be an equilibrium point. 

The proof given in this paper is not based on Ky Fan's theo­

rem. Instead we have shown that the existence of an equilibrium 

point for the economy is equivalent to the solution of a non-line­

ar variational inequality which was first proved by Hartman and 

Stampacchia (1966) and Browder (1965) independently (see also 
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Tarafdar, 1977 and Mosco, 1976). For applications of non-linear 

variational inequalities we refer the reader to Hartman and Stam-

pacchia (1966) and Mosco (1976). 

1. Preliminaries. An ordered set is a non-empty set X with 

a binary relation -6 defined on it that is reflexive, transitive 

and anti-symmetric. 

A lattice is an ordered set such that sup <x,y} and inf «£x,y? 

exist for each pair , x,y in X. 

An ordered vector space (L,^) is a vector space L over the 

reals such that L is an ordered set and f.£ g implies f + h^g + h 

for all h in L and oc f £ ecg for all oc z 0. 

An ordered vector space L which is also a lattice is said to 

be a Riesz space. The set L+ = -tf e L/f2 0? is called the positive 

cone of L. 

Let L be a Riesz space. Then for f e L we put f* = fvO, f" = 

» (-f)vO and |f| »f v(-f) where x v y is the supremum of the two 

elements x and y. 

A linear functional f.L—** Reals is said to be order-bounded 

whenever f maps order-intervals of the form t-u.uJ = iae L/-u & 

£ a-£u}t where ucL +, into bounded subsets of the real line. The 

vector space of all order-bounded linear functionals on L is cal­

led the order-dual of L and is denoted by Lv . In T , an ordering 

> is introduced by saying f ? g whenever f(u)*>g(u) for all u e L+ 

The proof of the following result can be found in Aliprantis and 

Burkinshaw (1981. pp. 169-190). 

Theorem 1.1 (Riesz) If L is a Riesz space, then its order 

dual L~ is also a Riesz space. If feL and u & L+ then 

f*(u) = sup -tf(v)/0.* v*u| 

f~(U) = sup 4-f(v)/0* v -=u and |f|(u) = sup it (v)/ | v| ̂  U$« 
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Let L+ denote the positive cone of L~ . Its members are cal­

led positive linear functionals on L. f belongs to L~ if and only 

if f(u)Z- 0 for all u in L+. f is strictly positive ( f » 0) if u>0 

implies f(u)> 0. 

A proof of the following theorem can be found in Aliprantis 

and Burkinshaw (1981, pp. 190-191). 

Theorem 1.2. Let L be a Riesz space and let f£ L^ such that 

fZO. Then for every xtL, f(x+) = sup -[ g (x ) /ge L̂  , O i g ^ f ) , 

f ( x ' ) = sup { - g ( x ) / g e L~ , O^g^fJ and f ( | x | ) = sup { g ( x ) / | g U fi. 

An ideal or order-ideal A of a Riesz space L is a vector sub-

space of L such that* |f|£ |g| and ge A imply fe A. 

If L is a Riesz space and L' an ideal of L" separating the 

points of L, then the dual pair (L,L') is called a Riesz dual sys­

tem. 

Let (L,L') be a Riesz dual system. A price-simplex D for 

(L, L ') is a non-empty, w*-compact and convex subset of L'T. Here, 

w* is the weak-star topology on L"" , i.e. it is the w(L~,L) to­

pology. We assume that D satisfies the following condition: 

(*) The cone generated by S ={pe L + n D / p » 0 ] is w*-dense 

in L'+. 

Let D be a price-simplex for a Riesz dual system (L,L' ). An 

excess demand function E is a mapping E:D—>L, satisfying the fol­

lowing condition (Walras'Law): 

p E(p) = 0 for all p€ D. 

Bv an economy. we mean a Riesz dual system (L,L), a price-

simplex D for (L,L') and an excess demand function E defined on D. 

An economy is said to have an equilibrium price p if E(p)-ts 0 

where £ is the Riesz order on the space I. 

Let K be a subset of Hausdorff linear topological space F 
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over the reals and T a single-valued (non-linear) mapping of K in­

to F', the topological dual of F. Then a point u is said to satis­

fy the variational inequality if 

(T(u0),v-uQ)^ 0 for all v in K. 

Here, ( , ) denotes the pairing between F' and F. u is also called 

a solution of the variational inequality. The mapping T is said to 

D e monotone if (T(u) - T(v), u-v)^0 for all u, v in K. T is said 

to be hemicontinuous if T is continuous from the line segments in 

K to the weak topology of F ' 

2. Existence of equilibrium 

lemma 2.1. Let (L,L') be a Riesz dual system and let ueL. 

Then u >> 0 holds if and only if f(u)?0 for all f > 0 in L'. 

Proof. The proof of the lemma is based on the two Riesz the­

orems cited in the preliminary remarks (see Aliprantis and Brown 

(1983, Theorem 2.2)). 

We now prove the following important result. 

Theorem 2.1. Any point p in D is an equilibrium price for 

((L,L'),D,E) if and only if p is a solution of the variational 

inequality. 

Proof. Suppose that E(p)£ 0 for some p. Then qE(p)^ 0 for 

all q in D since q is a positive linear functional. This implies 

that qE(p).£pE(p) since by Walras'law pE(p) = 0 for all p. Conse­

quently, (E(p),p-q)£ 0, or, equivalently, (E(p) ,q-p).£ 0 for all q 

in D and p solves the variational inequality. Thus an equilibrium 

price p solves the variational inequality. 

Conversely, suppose that p is a solution of the variational 

inequality. Then (E(p) ,p-q)?. 0 which implies that 0 = E(p). p> E(p)-q 
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for all q in D, where the first equality holds by Walras'law . Hen­

ce, E(p)-q_=0 for all q in L' by the density condition (*c ), Now 

Lemma 2 .1 implies that E(p)^0 so that p is an equilibrium price. 

We now prove the existence of equil ibrium . 

Theorem 2 .2 . Let ((L,L),D,E) be an economy. Then there ex­

ists an equilibrium price for this economy, if either one of the 

following conditions holds: 

1) E:(D,w*) —** (L,w(L,L') is continuous. 

2) E \s hemicontinuous and monotone. 

Proof. Suppose first that E is continuous. Since E:(D,w*)~-v 

-KL,w(L,L')) and D is w*-compact and convex, E satisfies the condi­

tions of Browder's theorem 2 (Browder, 1968, p. 286). We conclude 

that there exists a p such that (E(p),p-q)z 0 for all q in D which 

implies that (E(p) ,q-p)*t£ 0 for all q in D so that p solves the 

variational^inequality. Theorem 2.1 now implies that p is an equi­

librium price. 

Suppose now that E is hemicontinuous and monotone. Again, "sin­

ce D is w*-compact and convex, E satisfies the conditions of the 

corollary of Theorem 2 of Tarafdar (1977). We conclude as above 

that there exists an equilibrium price for this economy. 

We now consider the existence of equilibrium prices for a more 

general class of economies. Suppose that (L,L') is a Riesz dual 

system and that D is a price-simplex for (L,L). We now suppose 

that the domain D' of E is a subset of D. An excess demand function 

E is now defined to be a mapping E:(0',w*)—> (L,w(L,L') which sa­

tisfies the following properties: 

a) Density condition. D' is a w*-dense convex subset of D. 

b) Walras'law. pE(p) = 0 for all p in D' 
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(c) Boundary condition. If pn is a net in 0' which conver­

ges to q in 0\D', then there exists a p in 0' such that the upper 

limit lint p (E(p R ) )> 0. 

We now prove the following theorem of Aliprantis and Brown 

(1983) without using the concept of a maximal element for the "re­

vealed preference" relation on the space of prices. 

Theorem 2.3. Let ( (L ,L ' ) ,D ,E ) be an economy. Then there ex­

ists an equilibrium price for this economy if E is continuous. 

Proof. Let A denote the collection of all the finite subsets 

of D'. For each a£A, let D„ be the convex hull of a. Each D„ is ' a a 

w*-compact, and the restriction of E to D is continuous so that 

Theorem 2.2 implies the existence of an equilibrium price p for 

the economy ((L,L'),D ,E). Since pg is an equilibrium price for 

Da, pa solves the variational inequality (E (p a ) ,q -p a ) <£ 0 by The­

orem 2.1. This implies that q E(pa).£0 for all q in Dg. 

Although the rest of the argument is similarto that in Ali­

prantis and Brown (1983, Theorem 3.6) we include it for the sake 

of completeness. Consider the net {p :aeA} where A is directed 

by inclusion . Since D is w*-compact we may assume that p — . * q 

in the w*-topology. 

We show first that q c D ' . I f qeD\D', then by the boundary 

condition on the excess demand function there exists a pe D with 

lim p ( E ( p Q ) ) > 0 . Since U Da = D', pcD a for some a, so that a ou € n a a 

there exists b€A such that pe D for all a?b. But then for all 

a>b p E(p )*£ 0 since p is an equilibrium price so that 

lim p E(p )J6 0, a contradiction. Thus qcD' 

We now show that q is an equilibrium price. To this end let 

peD'. The function p .E (r ) from (D,w*) to the reals is continuous 

as a composite of two continuous functions. It follows that 
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p E(q) = w*-lim p E(p0) since pQ .,-.*•» q. 
a a 

As above, there exists be A satisfying p E(p )& 0 for all a>b, 

and so p E(q)^0. This is true for all peD'. 

Now the density condition on the excess demand function imp-

plies that p E(q)£0 for all p£D since D' is w*-dense in 0. Sin­

ce D is a price simplex, the density condition * implies that 

p E(q)-f: 0 for all p€ L' . The lemma now implies that E(q)^ 0 so 

that q is an equilibrium price. 

Remark. Theorem 2.3 can be obtained in the same manner un­

der the assumption of monotonicity of the excess demand function 

E if the hemicontinuity condition on E is strengthened in the fol­

lowing way. Letfpa:ac Albe a net in D' with pge Dg and Da being 

as described in the above proof. Then we need to assume that if 

w* if p0—---> p in D and for each a, (E(p ) ,q-p0) <£ 0 for all q in D„ a a a a 

then it follows that (E(p) ,q-p).-= 0 for all q in D' 

R e f e r e n c e s 

U ] C ALIPRANTIS and 0. BURKINSHAW: Locally Solid Riesz Spaces, 
Academic Press, 1978. 

[2] C. ALIPRANTIS and 0. BURKINSHAW: Principles of Real Analysis, 
North Holland, 1981. 

13] C. ALIPRANTIS and D. BROWN: Equilibria in markets with a 
Riesz space of commodities , Journal of Mathe­
matical Economics 11(1983), 189-207. 

14] F. BROWDER:, The fixed-point theory of multivalued mappings 
in topological vector spaces, Mathematische An-
nalen 177(1968), 283-301. 

[53 F. BR0WDER: Nonlinear monotone operators and convex sets in 
Banach spaces, Bulletin of American Mathematical 
Society 71(1965), 780-785. 

U] P. HARTMAN and G. STAMPACCHIA: On some non-linear elliptic 
differential-functional equations, Acta Math. 
115(1966), 271-310. 

7̂3 KY FAN: A generalization of Tychonoff's fixed-point theorem, 
Mathematische Annalen 142(1961), 305-310. 

[83 U. M0SC0: Implicit variational problems and quasi-variatio-

265 -



nal inequalities, in Nonlinear operators and 
the Calculus of Variations(eds. 3. Gossez, EJ. 
Lami Dozo, 3. Mawhin and L. Waelbroeck) (Sprin-
ger-Verlag, 1976), 83-117. 

[9] E. TARAFDAR: Non-linear variational inequalities, Proceedings 
of the American Mathematical Society 67(1977), 
95-98. 

Dept. of Math., University of Queensland, St. Lucia, 4067 Australia 

Dept. of Economics, University of Queensland, St. Lucia, 4067 
Australia 

(Oblátům 19.7. 1985, revisum 18.12. 1985) 

- 266 -


		webmaster@dml.cz
	2012-04-28T12:31:09+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




