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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

27.1 (1986) 

DESTABILIZING EFFECT OF UNILATERAL CONDITIONS 
IN REACTION-DIFFUSION SYSTEMS 

Milan KUČERA, Jiří NEUSTUPA 

Abstract: Stationary solutions of reaction-diffusion systems 
with unilateral constraints are considered. It is shown in examp­
les that the spatially homogeneous stationary solution of the sys­
tem with unilateral constraints can be unstable even for diffusion 
coefficients for which it is stable as a solution of the classical 
problem with Neumann conditions. A general result of this type is 
announced. 

Key words: Reaction-diffusion system, unilateral conditions, 
inequalities, destabilization, spatially homogeneous stationary 
solution, eigenvalue. 

Classification: 35B30, 35B35, 35P30 

Introduction. Consider a reaction- diffusion system of the 

type 

ft-"l-$-"u.v) 

(RD) for [t,xJ € <"0,co)x <T0,1> 

8v .u 8 2v / x 

** 2T7 + 9 ' 
o 

where f, g are real functions on (R , dlt d2 are positive parame­

ters (diffusion coefficients). First, consider Neumann boundary 

conditions 
(NO f^t.O) = |£(t,l) = §£<t,0) = |~(t,l) = 0 on<0,eo). 

In some cases connected with chemical and biological models there 

exists a stationary spatially homogeneous (constant) solution u,v 

of (RD), (NC) (i.e. f(u,v) = g(G,v) = 0) which is stable only 
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for some parameters d,, d2 (lying in so called domain of stabili­

ty). See e.g. LlOj,CllJ. 

The aim of this paper is to show how this situation can chan­

ge by introducing unilateral c o n d i t i o n s . We give simple examples 

and announce one general result showing that "u, v can be an unstab­

le solution of (RD) or at least of its linearization with unilate­

ral conditions even for some d,, d« lying in the domain of stabi­

lity of (RD), (NC) . One of the simplest examples of unilateral con­

straints we have on mind are boundary conditions 

(1) l£ ( t>0 ) = Ulx>l) = °» ix- ( t'0) = °» 
v(t,l)r> v, |y:(t,l)>0, (v(t,l)-v) f~(t,l) = 0 on <0 + « ? ) . 

The stability of a stationary solution of any initial value prob­

lem ( e . g . of (RD), (NC) or (RD) with some unilateral conditions) 

is understood in the following sense: If , v is stable with respect 

to a given norm II • H if for any e, > 0 there exists <f >- 0 such 

that any solution u,.v of the problem considered satisfying 

llu(t0,O-u X < <f , • Ilv(t ,0-v II < <f for some tQ is defined on 

<(t0, + co) and ll_u(t,-)-u \< * , II v(t, O-v II < £ for all t€<tQ,-M»); 

u,v is unstable if it is not s t a b l e . In all examples below, we 

shall show an instability with respect to any arbitrary norm. 

In what follows we shall suppose u = v" = 0 without loss of 

generality. 

We shall study mainly a destabilizing influence of unilateral 

conditions for the linearization 

2 

4 T " dl §^ + bll U + b 1 2 v 

(RDL) 

4 ? • d2 f ^ + b21 u + b22 v 
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of (RO), where b n = g(u,v), b 1 2 -|£<H,v), b 2 1 = § £ ( * : * ) , 

b 2 2=|A(u,v). 

The main idea is to show the existence of a positive eigenva­

lue of the problem 

d. SL-Si + b,-u + b10v = Au 1 3^1 11 12 

(R0
Л
) 

d
0
 -L__l + b

0
,u + b

00
v = Лv j i. _• T

 U r ) 1
u -* u

0 0
v 

2
 ix

2 21 22 JX 

with the corresponding unilateral conditions and with some d,„ d
2 

from the domain of stability of (RD), (NC). The instability of the 

trivial solution of (RD,) with the corresponding unilateral condi­

tions is an easy consequence. In one situation we shall show that 

it means also the instability for the original nonlinear system 

(RD) with unilateral conditions . 

Notice that some abstract results of the mentioned type are 

proved in -5l,t6l. An influence of unilateral constraints to the po­

sition of the first bifurcation point of the corresponding statio­

nary problem is studied in 14_l , 193 . 

Remark 1. (Domains of stability and instability - classical 

case. See e.g. tlO],tll] .) Let us denote 

B = 
/Ь_i.ь

1 2
\ Ђ я / -.0 4 

V ь
2 1
, ь

2 2
/
 v

 0,1 ' 

Suppose that the assumption 

(2) b
1 1
> 0 , b

2 1
> 0 , b

12
-<0, b

2 2
< 0 , b

n
 + b

2 2
< 0 , det B> 0 

is fulfilled. This is true in some models from chemistry and bio­

logy where u and v represents a density of an activator (or a prey) 

and a density of an inhibitor (or a predator), respectively. Remem-
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ber that the trivial solution of (RDL), (NC) is stable if all ei­

genvalues of (RD^), (NC) have nonpositive real parts and it is un­

stable if there is an eigenvalue of (ROO, (NC) with a positive 

real part. Any solution U = f,u,vj of (RD^), (NC) can be written as 

CO 

U(x) = 21A C cos n fl* x 

(with some Cne fR
2, n = 0,1,2,...) and therefore (RD,), (NC) is 

equivalent to the system 

Un*r)2D - B + A E J Cn = 0, n = 0,1,2,... . 

It follows that A is an eigenvalue of (RD^), (NC) if and only if 

(3) A2 - [(bn + b22) - (dx + d2) (n?r)
2JA + 

+ [ b u - (n*r)2 dxJ • [b22 - (n#)
2 d2J- b 1 2b 2 1 = 0 

for some n. 

In this case U(x) = C cos n # x is the corresponding eigenvector. 

Denote by F the hyperbolic curve in the quadrant d,, d2£ 0 given 

by 

U 1 1 - (nir)2 d 13-Tb 2 2 - (ntf )
2 d22 - b12b21 = 0 

(n = 1,2, ...) and let ? be the envelope of P , n = 1,2,... (see 

Fig. 1). Elementary investigation of the roots of (3) shows that 

for any d1,d2> 0 all the complex eigenvalues of (RD.), (NC) have 

negative real parts; for d,, d2 on the right from F all the re­

al eigenvalues are negative; for d,, d2 on the left from F there 

exists a positive real eigenvalue of (RD,), (NC). Hence, P divi­

des the quadrant d,,d2> 0 onto the domain of stability (on the 

right from P ) and the domain of instability (on the l e f t from!"1). 

See Fig. 1. 

Example 1. Let (2) hold. Consider (RD. ) with unilateral con­

ditions 
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(4) 

u
x
(t,o) = v

x
(t,o) = o, u(t,i)гo, v(t,i)гo, 

u
x
(t,i)гo, v

x
(t,i)гo, u(t,i)u

x
(t,i)=v(t,i)v

x
(t,i) = o . 

The corresponding boundary conditions for the eigenvalue problem 

(RD.) read 

(4') 

u
x
(o) = v

x
(o) = o, u(i)гo, v(i)гo, 

u
x
(l)20, v

x
(l)Г0, u(l)u

x
(l) = v(l)v

x
(l) = 0 . 

Let us search for nonnegative eigenvalues of (RD*), (4') correspor-

ding only to eigenvectors of the form [u
k
,v.3with 

(5) v
k
(x) = (-l)

k+1
 cos(k + \) * x . 

It follows from the second equation in (RD*) that 

(6) u. (x) = (-l)
k+1 [tr-£(k + i ) 2 * 2 - JZ—Jcos(k + i) <?r x. 

K D 2 l l D 2 l L 

The boundary conditions (4') are fulfilled with respect to (2) 

for X 2 0. It is easy to see (by substituting into (RD,)) that 

X > 0 is an eigenvalue corresponding to uk,vk if and only if 

X2 - [ < b n + b2 2 ) - (d x + d 2 ) ( k + \)2X21& + 

(7 ) 
+ [ b x l - (k + \)2 ir2 dxJ • Cb9 2 - (k + \)2 n2 d2J -

" b 1 2 b 2 1 = 0 . 

Denote by !"\ (k = 0 , 1 , . . . ) the hyperbolic curve in the quadrant 

d - , d 2 > 0 defined by 

[ b n - (k + \)2K2 d-J . [ b 2 2 - (k + \)2n2 d2] - b 1 2 b 2 1 = .0 

and let T* be the envelope of f*., k = 0,1,2,... (see Fig. 2). 

It follows from an elementary investigation of the roots of (7) 

that for any 6^t d2 on the left from f* there exists a positive 

eigenvalue X of (RD*), (4') with the corresponding eigenvector 

uk,vk from (5),(6) for some k. The couple u(t,x) = exp (Xt) • 
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» gu. (x), v(t,x) =• exp (^t).i5vk(x) with an arbitrary small 6 > 0 

is a classical solution of (RD,),(4) satisfying lim llu(t,Ol = 
L t -• +<» 

= lim exp (At).eflu. Il = + <x> , lim l)v(t,*•) 1) = + ao for any 
%-***> k t >+<*> ^ 

arbitrary norm H • « . Hence, for d,, d« on the left from P , the 

trivial solution of (RD. ),(4) is unstable. A comparison of P with 

P from Remark 1 shows that there is a nonempty intersect )n of 

the domain of instability of ( R D , ) , ( 4 ) with the domain of stabili­

ty of the classical problem (see Fig. 2 ) . 

Example 2.(A simple free boundary p r o b l e m . ) Consider the 

problem 

(8) ut = d i u
x x

 + -̂ iiU *t-,b-»i2v o n ^°>ao^ x ^°>-^> 

f vt " d2vxx " b21 u " b 2 2 v e 0 ' v ? 0 ' 
(9) 4 

^vt " d2vxx " b21 u " b22 v^ v = ° a,e" o n ^ ° > a > ) x<0,l>, 

(10) v is continuous on <0, + oo) x <0,1>, (NC) holds, 

where (8) can be understood in the classical sense, (9) should be 

fulfilled a.e. on <0,<-©) x <0,1> with the derivative v. existing 

a.e. on < 0 , c o ) x <0, 1> . It is another formulation of the free boun­

dary problem 

u. = cliuxx + bll u + Dio v o n ^° ,oc>^ x ^°>-^> 

(11) vt = d2vxx + b21 u + b22 v o n Q+' 

v = 0 on <0,oo) x <0,1>\Q +, v is continuous on 

<0,oo) x <0,1> , (NC) holds, 

where the domain Q+ - «{i t ,xj s <0,a.>) x<0,l>; v(t,x)>0{ is un­

known. We shall neither give here a precise definition of the so­

lution (this will be given in a more general setting in Remark 5) 

nor discuss its existence and properties. We want to show only 

that under the assumption 
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(12) b u > 0 , b 2 1 ^ 0 

spatially homogeneous classical solutions tending to infinity (as 

t ~-> + co ) start in any neighbourhood of the origin . For this, it 

is sufficient to realize that for any £ ^ 0 the couple u(t,x) = 

= exp (bi:it) § , v(t, x) = 0 satisfies (8)-(10) c lass ica l ly . It 

follows that the trivial solution of (8)-(10) ( i . e . of (ID) is un­

stable for any d,, d? (even for those from the domain of stability 

of (RDj), (NC) under the assumption (2) -.see Remark 1). Moreover, 

this is an instability even with respect to spatially constant so­

lutions only. 

2 Remark 2. (A motivation for inequalities in fR .) A couple 

of functions u(t), v(t) is a spatially constant solution of (8)-

(10) if and only if 

u. - b^u - b,2v = 0 on^OjOo), 

(13) 

v>0, (vt-b21u-b22v)( y-v) Z 0 for all i|/s <0,o>), a .a . t € < O.oo) . 

This system can be written also in the form 

U(t) £ K for all t €<0too>), 

'(14; 

<Ut(t) - BU(t), 1 - U(t)>>0 for all 1 e K,a.a.t <s <0,o>), 

where U = tu,v3, K = K* = i t = C <$> , y 1 c IR2; y > 0}, <. , «> is the 

2 scalar product in IR Hence, the study of spatially constant so- , 

lutions of (8)-(10) can be a motivation for an investigation of 
• * • * » 

the inequality (14) which has a good sense for any closed convex 
2 

qone K in IR with its vertex at the origin. 

2 
Remark 3. (Trajectories of inequalities in JR .) Let K be 

2 
a closed convex cone in lR with its vertex at the origin determi­
ned by half-lines kp k2 (Fig. 3). Denote by K° and SK the inte-
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rior and the boundary of K. For any V e IR2 let Uy(t) be the solu­

tion of the system of equations 

(15) U t * BU 

sat isfy ing U(0) = V. I f Vc K, V + 0 then the following cases are 

possible: 

(a) V + t ;BVeK0 for a l l tr > 0 su f f i c ien t ly small; 

(b) V + r B V ^ K for a l l tf > 0; 

(c) V + TBV e dK for all % > 0 sufficiently small. 

The conditions (a),(b) and (c) mean that the trajectory of (15) at 

V tends into K°, outside of K and along dK, respectively. In the 

case (a) we have Uy(t)e K for t e<0,tQ) with some tQ> 0 and it fol­

lows that Uy(t) is simultaneously a solution of (14) on<0,to). 

The cases (b),(c) can occur for V e d K only. If (b) holds then the­

re exists Xn such that 

o 

(16) < %QM - BV, }>- V > ^ 0 for all f> e K. 

Indeed, this condition means that the vector O - B V shifted to V 

tends into K and is perpendicular to the half-line k. containing V 

(see Fig. 3). It is clear from Fig. 3 that this is fulfilled with 

some X . In other words, in the case (b), V is an eigenvector cor­

responding to some eigenvalue X of the inequality (16). It fol­

lows (by substituting into (14) and using (16)) that Uj(t) = 

= exp ( X t)V is a solution of (14) on<0, + oo). Moreover, XQ> 0 

or XQ< 0 if <BV,V> > 0 or <BV,V> < 0, i.e. if the trajectory of 

(15) and the oriented half-line k. enclose an acute or an obtuse 

angle, respectively; see Fig. 3, 4; it is &Q » 0 if <BV, V>*0, 

i.e. if the trajectory of (15) is perpendicular to dK at V. 

In the case (c) we have Xv « BV for some X , i.e. V is an 

eigenvector corresponding to some eigenvalue of B (and simultane-
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ously of (16)). The function Uy(t) * exp ( :XQt)V is simultaneously 

a solution of (14) and (15) on <0,oo). 

Now, for any VcK, V-#0 we can set ty « inf |t2rO;Uv(t)« K}. 

(The cases tv * 0, tv « * oo are possible.) It follows from our 

considerations that the function 

UK,V(t) = UV ( t ) for * e<0»V> 
exp A Q(t-t v) • Uy(ty) for t*t v 

is a solution of (14) on <0,ot?), where A (if tv < oo) is an ei­

genvalue of (16) corresponding to the eigenvector V = U v(t v). It 

is easy to see that it is a unique solution of (14) satisfying 

UK,V(0) = V' 

2 
Example 3. (Oestabilization for inequalities in JR and a free 

boundary problem.) Suppose that b,,>0, b 2 1> 0 and B has a pair 

of complex conjugate eigenvalues with negative real parts. Let 

K = Kv = iCu,v3e IR ;v£0?. In this case the character of trajecto­

ries of (14) and (15) is shown on Fig. 5. Any solution of (15) 

tends exponentially to the origin. Any solution of (14) touches 

the line k, = -C £ u,0] ;u< 0i and then tends to infinity in the di­

rection of the eigenvector [-1,01 corresponding to a positive ei­

genvalue of (16). (See Remark 3, where (b) with<BV,V>>0 holds 

for any Vsk,.) It follows that any spatially constant solution 

of (8)-(10) tends to infinity in spite of that any spatially con­

stant solution of (RDL), (NC) tends to zero. Particularly, the tri­

vial solution of (8)-(10) is unstable for any d,, d« as we have 

known already from Example 2. 

2 Example 4. (Stabilization for inequalities in /R and a free 

boundary problem.) Suppose that b|2< 0, b 2 2< 0 and B has a pair 

of complex conjugate eigenvalues with positive real parts. Fig.6 
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shows the character of trajectories of (14) and (15) with K = K = 

s4tu,v]c IR ;u>:0i. Any solution of (14) tends to zero along the 

half-line k, *-[ £0,vJ ;v > Oj in spite of that any nontrivial solu­

tion of (15) tends exponentially to infinity. Notice that 1.0,13 is 

an eigenvector corresponding to a negative eigenvalue of (16). (See 

Remark 3, where (b) with <BV,V>< 0 holds for any V€k,.) Now, con­

sider the unilateral problem 

(17) 
• V V x x " b H U ' b 1 2 v г ° ' u 2 ° -

( u t - d l u x x - b l l u * b 1 2 v ) u " °. 

( 1 8 ) v
t
 = d

l
v
xx

 + b
l l

u + b
1 2

v 

(19) u are continuous on <0,<x>)x <0,1>, (NC) holds (cf. Exam­

ple 2 ) . Using considerations analogous to those from Remark 2 we 

obtain that any spatially constant solution of (17)-(19) tends to 

zero, i.e. the trivial solution of (17)-(19) is stable with res­

pect to constant p e r t u r b a t i o n s . Simultaneously, the trivial solu­

tion of (15) is unstable even with respect to spatially constant 

perturbations because any constant solution of (15) tends to infi­

n i t y . Of course, we do not obtain any result about the stability 

for the inequality (with respect to nonhomogeneous perturbations). 

2 
Remark 4. (Eigenvalues and stability for inequalities in (R .) 

Using Remark 3 and the fact that the eigenvectors of the inequality 

(16) lying in K° coincide with those of the matrix B, it is easy 

to determine all the eigenvalues and eigenvectors of (16) for a 

given 2x2 matrix B. By a detailed examination of all possibilities 

of the behaviour of trajectories ot (15) and using the considera­

tions from Remark 3 it is possible to prove that the trivial •so­

lution.of (14) is stable if and only if there is no positive 
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eigenvalue of (16). 

This assertion does not hold for-inequalities in higher-di­

mensional spaces. (It is not difficult to find a counterexample in 

1R .) We have no analogue of a complex eigenvalue for an inequality. 

Example 5. (Destabilization in a nonlinear case.) Consider 

the problem 

(20) ut = d1uxx + f(u,v) on <0,oo)x <0,1>, 

( vt = d2vxx " 9(u,v)£0, v?0 

^ £ vt " u2vxx 
(21) 

(22) vx are continuous on <0,oa)x <0,1>, (NC) holds 

representing a free boundary problem (cf. Example 2). If f(0,0) = 

= g(0,0) = 0 (i.e. u = v = 0) and f, g are two-times differentiab-

le, then spatially constant solutions of (20)-(22) are solutions* 

of the inequality 

U(t)£ K for all t e<0,oo), 

(23) 

<Ut(t) - BU(t) - N(U,t)), 1 - U(t))20 for all y € K > 

a.a. t£0 

with K = K* (cf. Remark 2) and with a mapping N: IR2 — > IR2 satis­

fying 

(24) (t lim -4-i-U = 0. 
Hu.i~->0 *u* 

The assumption (2) together with (24) ensure that the trajectory 

of the system Ut = BU + N(U) tends outside of K at any V = tu,03, 

u e <-& ,0) (with some e > 0) and <BV + N(V),V> *> 0 for these V. 

Considerations analogous to those from Remark 3 imply that for any 

V = Cu,0], ue(-&,0) there is a solution U of (23) such that 

U(0) = V, U(t) = tu(t),0l with u(t) e (-£, ,0) for t &(0,tQ) and 
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U(tQ) = £-e.O] for some t Q>0. This gives the instability of the 

trivial solution of (23) and also the instability of the trivial 

solution of (20)-(22) (even with respect to the spatially homoge­

neous perturbations) for all d,, d« (even for those from the domain 

of stability from Remark 1). 

Remark 5. (A general formulation of unilateral problems.) 

Let wi = wi(0,l) be the usual Sobolev space with the norm I * B1 2 

(see e.g. [33), K a closed convex cone in wi with its vertex at 

the origin. Consider the inequality 

f{ut(t,x) 9>(x) + d1ux(t,x) g>x(x) -

- [bxlu(t,x) + b12v(t,x)3 f (x)j dx = 0, 

v(t,-)e K, 

(25). 

)/-;vt(t,x)[Y(x)-v(t,x)3 + d2vx(t,x) Eyx(x)-vx(t,x)J -

j - [b21u(t,x) + b22v(t,x)J [y(x)-v(t,x)j{ dx>0 

^ for all <j>e W2, ye K, a.a. t€<0,oo). 

We do not need a general definition of a solution in fact because 

our aim will be to show only the existence of a smooth in T solu­

tion starting arbitrarily close to the origin and tending to in­

finity; for such a solution it will be clear in which sense (25) 

is fulfilled. In general* the solution on<0,T) (eventually with 

T « oo) could be defined as a couple u,ve L2(0,T;W2) such that 

ut,vte L2(0,T;(W2)*) and (25) is fulfilled for a.a. te(O.T) (cf. 

e.g. L2J). A function from L2(0.T;wi) has a derivative in the sen­

se of distributions with values in wi, i.e. also with values in 

L2(0,1). By ut£tL2(0,T;(wi)*) we mean that this distribution can 

be represented by a function ut with values in L2(0,1) such that 

sup fTif1u.(t,x)g> (x) dxl2 dt is f i n i t e . 
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Notice that any function ueL2(0,T;W2) with u^e L2(0,T;(W2)*) is 

continuous as an abstract function with values in L2(0,1). Hence, 

initial conditions u ,v e L2 for (25) can be considered. 

Remark 6. If we set for instance K = •(v«e wi;v(l)ir Oi then 

u, v satisfies (25) if and only if (RD._),(1) is fulfilled in the 

classical sense. It is not hard to show by using integration by 

parts, boundary conditions (1) and elementary considerations about 

the regularity of the solution (cf. e.g. i 3J). 

If we set K = -£veW*;v>0 on<0,l>? then (25) is another for­

mulation of the free boundary problem from Example 2. This follows 

by integrating by parts again. * 

In general, we can say that (25) is an abstract formulation 

of (RD, ) with the constraints given by the cone K. 

Remark 7. (An eigenvalue problem for inequalities in W„ and, 

stability.) The unilateral eigenvalue problem corresponding to 

(25) is 

//Ld1ux «yx-(bjj.u + b12v -Au)gOdx = 0 for all 9 e W2, 

(26)} v e K > 

'/4[d2vx( yx-vx)-(b21u + b 2 2v-Av)( Y-v)]dx^ 0 for all y e K. 

A real X Q is called an eigenvalue of (26) if there exists a 

nontrivial couple u ,v 6 W2 satisfying (26). In this case, [u0,v 3 

is called the corresponding eigenvector. It is easy to see (by 

substituting into (25) and using (26)) that then for any % y 0 

fixed the couple u(t,x) = exp (%Qt). fuQ(x), v(t,x) = 

= exp ( A t ) • % vQ(x) satisfies (25) on <0,oo). If A Q > 0 then 

l)u(t,OII + I v(t, •) H -~* °° for t —* 00 (for any reasonable norm 

II • II ) and this implies the instability of the trivial solution 
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of (25) for such dj, d 2 . 

Set 1̂ . =-f£d1,d23; tdx -<T,d23 6 P? for any oT ̂  0, where 

r is the curve from Remark 1 (see Fig, 1 ) . 

Theorem 1 . Let (2) be fulfilled and let 0 < f < ij • T n e n 

there is cf > 0 such that for any £d,,d2Zi lying between P , fj-

and satisfying | «-» d2 -ss ̂  , d^> 0, there exists a positive ei­

genvalue of (26), 

Consequence 1• The trivial solution of (RD,) with unilate­

ral constraints given by K (see Remark 6) is unstable for all 

rdpdjj between P , l̂ .,£ -£ d2 ^ ^ , d-^ 0. It follows directly 

from Theorem 1 and Remark 7. 

Remark 8. Theorem 1 is a special case of a more general re­

sult proved in [6J. The proof is based on a continuation theorem 

related to the known Dancer's global bifurcation result [13 and 

on an investigation of branches of solutions of the corresponding 

penalty equation (cf. also C7J ,[8J ,[ 53 ). 

Remark 9. Theorem 1 together with Consequence 1 say that the 

domain of instability of the problem with unilateral constraints 

intersects the domain of stability of the classical problem. For 

any 0 < | < n* there is a cf-strip G? (d*) (see Fig. 1) such that 

for [d1,d23c G^ (cf) the trivial solution of (25) is unstable in 

spite of that the trivial solution of (R0L), (NC) is stable (see 

Remark 1). In the case of chemical or biological models, u and v 

represent the density of an activator (or prey) and of an inhibi­

tor (or predator), respectively, under the assumption (2). Hence, 

unilateral conditions for the inhibitor (or predator) have a de­

stabilizing effect. On the other hand, analogous unilateral condi-
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tions for the activator (or prey) have a stabilizing effect in a 

certain sense (see [ 9 3 ) . Notice that in applications the instabi­

lity of a spatially constant solution signals that the correspon­

ding spatially homogeneous equilibrium state will not occur and, 

eventually, some spatially nonhomogeneous patterns can a r i se . 

Remark 10. The problem ( R D L ) , ( 1 ) ( i . e . (25) with K = 

= { ve W^vd)*- 0} ) looks like that from Example 1 at the first 

sight, but an analogy of the considerations from Example 1 gives 

no r e s u l t . (The eigenvectors of (RD~ ) , (1 ) cannot be expressed ela-

mentarily; this is a consequence of the fact that different con -

ditions are prescribed for u and v . ) A destabilizing effect of the* 

conditions ( 1 ) follows from Theorem 1 and Consequence 1. 

In the case of the problem ( 8 ) - ( 1 0 ) (i.e. (25) with K = 

= 4v€wi;v£0 on <0 ,1>{ ) , Theorem 1 gives a weaker information 

than the elementary considerations in Example 2. 

Theorem 1 cannot be used for the problem from Example 1 be­

cause (4 ) represents unilateral conditions for both u and v. Even 

the more general theory given in 16J (cf . also t51) ensures a de­

stabilizing effect of unilateral conditions prescribed for v only 

under the assumptions of the type (2 ) ( i . e . for an inhibitor or a 

predator). 
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