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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

27,1 (1986) 

FREE SEQUENCES IN PSEUDO-RADIAL SPACES 
Angelo BELLA 

Abstract. It is proved that for a pseudo-radial regular spa­
ce X the inequality t(X)»F(X) holds. Sufficient conditions in or­
der to have t(X) = F(X) are given and some consequences derived. 
It is also proved that for a regular space X the inequality q?((X)̂  
£ F(X) holds. 
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1. Introduction and basic de f in i t i ons . Pseudo-radial or chain-

net spaces were first introduced by Herrlich in 1967 (see f7?), as 

a generalization of sequential spaces. Recently many authors have 

studied this class of spaces particularly in connection with the 

theory of cardinal invariants. One of the results in this direc­

tion, obtained by Jang, Meyer, Simon, Wilson in 1981 (see [83), 

is that if X is a pseudo-radial Hausdorff space then t(X)^S(X), 

where t(X) and S(X) are respectively the tightness and spread of X. 

In this paper we improve this result for a pseudo-radial re­

gular space X, proving that t(X)f F(X), where F(X) = sup i v such 

that there exists in X a free sequence of length f i . Then we gi­

ve sufficient conditions in order to have t(X) = F(X). As an ap­

plication of these results we generalize a theorem, recently pro­

ved by Arhangel skii-Isler and Tironi, concerning the relation 
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between t(X) and q$(X), where qj((X) is the quasi-character of the 

space X (see Def. 4 be low). At the end of the paper it is also pro­

ved that for a regular space, without any assumption of pseudo-ra-

diality, q%W^ F(X) . 

For terminology and definitions not explicitly mentioned here 

we refer to [5] and [9], 

All cardinal numbers are supposed to be initial ordinals and 

<C will denote the successor cardinal of the cardinal number X • 

The cardinality of a set S is denoted by |S|, Given a topological 

space X, a set A£ X and a cardinal number X we put fA3r = KJ Tf 

such that B£A and |B| .£ *f . All spaces considered here are sup­

posed to be T,. We recall the following: 

Definition 1. A space X is said to be pseudo-radial or chain-

net, if for every non-closed set A £ X there exist a point xcX\A 

and a (transf inite) A-sequence (x.: oc <• & ) in A converging to x. 
Ctf 

Without any loss of generality we can always assume that, in. 

the preceding definition, the length of the sequence is a regular 

cardinal. 

There are other equivalent definitions of a pseudo-radial spa­

ce. One of the most interesting, due to Arhangel'skii (see [2J), 

is the following: 

Definition 1 . A space X is pseudo-radial if and only if for 

every non-closed set Ac X there exist a point xcA\A and a subset 

B of A of regular cardinality such that for every neighbourhood U 

of x |B\U|<|B|. If for a topological space X every point xgT*\A 

has the properties described in Def. 1 or 1', the space is called 

radial or FrSchet chain-net. 

In [41 Arhangel'skii, Isler and Tironi introduced a new class 

of spaces that lies between pseudo-radial and radial spaces*. The-
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se spaces are called almost-radial and in certain sense, they ge­

neralize sequential spaces better than pseudo-radial spaces. 

Definition 2 . A space X is said to be almost-radial if for 

every non-closed set A there exist a point xiAS A and a (transfi-

nite) A-sequence (x : cc -*c % ) in A converging to x and such that 

x does not belong to the closure of every initial segment of the 

K-sequence. 

Definition 3 . For a pseudo-radial space X , SAY.) is the le­

ast cardinal number such that for every non-closed set A there is 

a sequence in A of length ,A -fc #C(X) converging to a point xfe A\A. . 

Definition 4. Let X be a topological space, A Q X and xcA\A. 

We call the primitive quasi-character of x with respect to A, 

pqX,(x,A), the least cardinal number X such that there exists a 

family *$ of subsets of A such that \ J | ̂  f , x ^ B, for every 

B in 7 , but x e U y . We call the quasi-character at the point 

xeX, the cardinal number q^(x,X) = sup -[ pq%(x, A): A£ X and x e A \ A} 

and the quasi-character ofsthe space X, the cardinal number qJ((X) = 

= sup •{ q^(x,X) :x e X r. For a discrete space X we put q3(,(X) = 1. 

2. Free sequences in pseudo-radial spaces. 

Theorem 1 . If X is a pseudo-radial regular space then t(X)~=. 

-6FCX). 

Proof. Let *tf-<t(X). By the definition of tightness there 

exists a set A£ X such that tA3,c = AiM. Since X is pseudo-radial 

there exist a point pc"A\A and a linearly ordered set Si=.A such 

that every neighbourhood of p contains a final segment of S. For 

every ordinal oG <. t we construct transfinite sequences of points 
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x € S and open sets V^ satisfying the following properties: 

( i ) if &< p * f* then x^< x.; 

(ii) for every <* < t + 4x^: (3 <- ocjc y^; 

x̂  x 
(iii) S n V^ = 0, where S denotes the final segment of 

S with initial element x^ . 
OO 

We proceed by transfinite induction. Let us suppose we have 

just constructed Xa and V« for every l3 < oc* , where oc < f . 

Since K*^ : (3 <r oc 1 | •& r we have p <£ { x^: /3 < oc | , and then the­

re exists a closed neighbourhood U of p such that U fKx* : j3 <«cf = 0. 

U contains a final segment of S. Let x. be the initial element of 

this segment and put V^ = X-U. It is easy to verify that x^ and 

V . have the required properties. Now we show that the sequence 

(x,), 4. is free. From the construction made above it follows that 
OC c*C< X^ 

for every oc -c tr+, -Cx : (3 <ot]GV. and -ix̂ : j3 2* aC} £ S oC. From 

(iii) we have l**1 A ^ ^ n ^ x ^ : /3 > ocl = 0 and this proves that 

the sequence is free. By the definition of F(X) we have !C £.F(X) 

and, since x is an arbitrary cardinal number less than t ( X ) , we 

can conclude that t(X)£F(X). 

Corollary 1. If X is an almost-radial regular space then 

* C ( X ) - S F ( X ) . 

Proof. It follows from Theorem 1 and from the fact that, 

for an almost radial space, tfp(X) = t(X) (see C 4l Th. 2 . 9 ) . 

Corollary 2. If X is an almost-radial regular space and F(X)£ 

--» & the space X is sequential. 

Question. (Does Theorem 1 or Corollary 1 hold for Hausdorff 

spaces? 

For a topological space it is important to know when t(X) = 

= F(X). A wellknown case is when the space is compact Hausdnrff 
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(see U ] ) . 

Lemma 1. Let X be a topological space. If L(X)<F(X), then 

F(X)£t(X). 

Proof. On the contrary, let us suppose t ( X ) - c F ( X ) . Let A = 

= max -Ct(X) ,L(X)$, we have A+.^ F(X), then there exists a free se­

quence S = (x,) n. of length A*. Since L(X) < X* and A + is re-

gular there must exist a complete accumulation point p for the set 

S. But t(X) J£ X , so there exists a set B£ S such that p e F and 

|B| £ & . 

Since X is regular there exists oC <c X such that B£fx-: 

: ft < cCQ\. Then, p e *Cx-: ft < oCQ} £ X - i x. : ft £ <xJ05 and this con­

tradicts the fact that p is a complete accumulation point of S. 

Theorem 2. If X is a pseudo-radial regular space and L(X)< 

<F(X) then t(X) = F(X). 

Proof. It follows immediately from Theorem 1 and Lemma 1. 

Theorem 3. If X is a pseudo-radial Lindelbf non discrete spa­

ce, then t(X) = F(X). 

Proof. Since X is non discrete, we have t(X) >z i*. and then 

if t(X)<F(X), we must have L(X)< F(X) in contrast witft Lemma 1, 

so F(X)^ t(X) and the result follows from Theorem 1. 

We recall that, as usual, a Lindelbf space is assumed to be 

regular. 

As a consequence of Corollary 2 and Theorem 3 we obtain a cha­

racterization of sequential spaces in the class of almost-radial 

Lindelbf spaces. 

Corollary 3. An almost-radial Lindelbf space X is sequenti­

al if and only if F(X) £ &Q. 
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In 13J Arhangel'skii, Isler and Tironi have studied relations 

between t(X) and q^(X) for a pseudo-radial space X. While it is 

known that, for almost-radial spaces, t(X) = q%(X) (see f4?, Th. 

2.7), it is not clear if the same relation holds in general for 

pseudo-radial spaces. 

In [31 several partial answers have been given. One of them 

is that under G.C.H. if X is a pseudo-radial compact Hausdorff spa­

ce, then t(X) = q?t(X). 

In this theorem (see [33 Th. 2.9), compactness needs only to 

guarantee that t(X) = F(X), so we immediately obtain the following: 

Theorem 4. Under G.C.H. if X is a pseudo-radial Lindelbf 

space then t(X) = q^(X). 

Proof. If X is not discrete, the theorem follows from Theo­

rem 3 and Theorem 2.9 in t3j, while if X is discrete, we have 

t(X) = q*(X) = 1. 

To conclude, we give a result similar to Theorem 1 for the 

quasi-character that holds without any assumption of pseudo-radi-

ality. 

Theorem 5. If X is a regular space, then q%(X)^F(X). 

Proof. Let A be a non-closed subset of X, and pe A - A such 

that pqiv(p,A) = t . We construct for every ordinal cc <x trans-

finite sequences of points x^eA and open sets V^ satisfying the 

following properties 

(i) for every oc < f , K x^: |3 < ct\ £ V^ ; 

(ii) for every 00 < * ^ p ^ i n ^U^ v^ = 0. 

We proceed by transfinite induction. Let oC < f and suppose 

we have just constructed x- and V* for every /3 < oc . Since 
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|ocl < vs 9$\ » for every fi < <*> , and pq^(p,A) = v , it fol­
lows that p k U "\fn . Then there exists a closed neighbourhood U 

% < tC (* 

of p such that U o U V« = 0 . Choose x^ € UHA and put V, = X-U . 
P<flt I5 06 <3v 

It is easy to verify that x^ and V^ have the required properties. 

Now we show that the sequence (x_̂ ) is free. From the construc-

tion made above it follows that for every oc < T 4 xfl: /3-cocl.SVg 

and -Cx-: (J -?oc}n ^ = 0. Thus, we have -fx~: /$-*-: cc} nix^: fiZacl* 0 

and this means that the sequence is free. We have f -£ F(X) and by 

the choice of t we can conclude that q^(X)-£ F(X). 

Remark. Theorems 1 and 5 together with Proposition 2.1 in t3j 

and Proposition 7 in [10]suggest that the behaviour of the quasi- . 

character in a certain class of topological spaces C is similar to 

the tightness in the subclass of all pseudo-radial spaces belong­

ing to C. 
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