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COUNTEREXAMPLE TO THE REGULARITY OF WEAK SOLUTION 
OF THE QUASILINEAR PARABOLIC SYSTEM 

J. STARA, O. JOHN, J. MALY 

Abstract: The example of the quasilinear parabolic system is 
given for which there exists a bounded solution of boundary value 
problem (with Lipschitz continuous initial and boundary data) ha­
ving the discontinuity developed in some t>0. 

Key words: Quasilinear parabolic systems, boundary value pro-
fa 1 em, nFe^fuTarTty. 

Classification: 35K35 

1. Introduction. Using standard elliptic counterexamples we 

can easily construct the quasilinear parabolic system with a boun­

ded weak solution which is not Holder continuous . Namely, we can 

consider the discontinuous solution u=u(x) of the elliptic system 

as a stationary solution of a corresponding parabolic system. In 

this case, each point of discontinuity is invariant with respect 

to the variable t. Thus, in general, the regularity for quasiline­

ar parabolic systems (with the number of spatial variables n > 3 ) 

does not take place and the partial regularity results (see e.g. 

L43,[53,163) play the important role. 

A more subtle question to be answered is whether some bound­

ed weak solution of the parabolic system could start as a smooth 

one and develop the discontinuity in some moment t>0. The first 

example giving the positive answer was constructed by M. Struwe 

[11. He considered the systems of the diagonal form 
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(1) u1 - Do<;(a^/ i(t,x)D /3U1) = f i ( t , x , u , D x u ) , i = l , . . . , 3 . 

(Here x= t x 1 , . . . , x 3 ] , u= I u 1 , . . . ,u3J , u^= d u V a t , D^u* = 

= Bux/dx^ and D u =-TD_,u1} . . . Throughout the whole paper, 
^ X eC aC , 1 = 1 

repeated indices are summed over 1,2,3.) 

The coefficients a00^ are supposed to be bounded and measurable 

with 

(2) a-^Ct.x) k J - 5 A | % I2 a.e.. 

Function f has the quadratic growth in p: 

(3) |fi(t,x,u,p)|^ a|p|2 + b, i=l,...,3. 

Struwe's example possesses the bounded weak solution u=u(t,x) 

on 

(4) Q = (0,co)xB (B is a unit ball in R3) 

which is Lipschitz continuous on the parabo l ic boundary V of Q 

and discontinuous just on the half-line -f Et,x] ;t £ 1, x = 0l. 

As it was shown in L23,[3], each bounded weak solution of the 

system (l)-(3) is Holder continuous on Q if 

(5) alul. A " 1 < 1 . 

In Struwe's counterexample the condition (5) is s t rongly violated 

- the left hand side in (5) is much bigger than 1. 

In our paper we 'give the positive answer to the problem fo r 

the system 

(6) u1 - D^A 1^ (t,x,u)Dftu$) = 0, i = l,...,3, 

(7) AJU (t,x,u) ^ eCiS/aj - H £ I2* VI e R
3 ~

R
3 > <<« * 0). 

The example is given in Section 3, meanwhile Section 4 contains 

necessary calculations. In Section 5 we return to the system (1). 

We construct fo r each & ̂  0 a system of this type which has the 
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solution with the discontinuity developed in some t> 0 and for 

which 

(8) a Hull, A" 1<l,5(l+eO. 

This result gives certain approximation to the Struwe's hypothe­

sis that the loss of regularity properties of initial data is pos-

. -V sible if only a Hull, A""1 ;> 1. Using numerical calculations we con-

jecture that for our system (constructed for €> > 0 sufficiently 

small) holds 

(8*) a llultL A r
1 ^ 1,21. 

2. Notations. Definitions. Auxiliarities. In this section, 

besides the definition of the weak solution we summon the proper­

ties of some functions E, F, <p, q used as the coefficients in the 

example constructed in the next sections. 

Denote for T>0 

(9) QT ={Ct,x3;t e(0,T),xe Bl, 

(10) W°'X(QT) = -Cue L2(QT); D^u€L2(QT), oC=l,...,3?. 

Let Q be given as (4) and let 

(11) F = L(0,oo) *dBl u Uo*x B3 

be its parabolic boundary. Suppose that the coeffidients AĴ i = 

= A^(t,x,u):QxR.-> R (i,j,«;,/3 = 1,...,3) of the system (6) 

are bounded, continuous on R, as the functions of u for almost all 

rt,x]€Q and measurable on Q as the functions of tt,xJ for all 

u € R,. Let further 

(12) u be given Lipschitz continuous function on V • 

Definition. The function u.-Q —** R, which is bounded and me­

asurable and such that for all Ty0 u belongs to the space 
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W2* (QT) is said to be a weak solution of the boundary value pro­

blem for the system (6) with the boundary condition u if 

(i) for all y <-: C W(Q) with the compact support in Q u 

uU0"**B3 holds 

(13) J^tuVt " AJ (K
uJ[W V^dt dx = 

- / u*(0,x) Y i < 0 . x ) dx, 
i03*B ° 

(ii) u(t,*) = u (t,0 in the sense of traces for almost all 

t e (0,co ). 

Remark. Similarly we could define a weak solution of the 

boundary value problem for the system (1). 

Define for £ e (0,oo) 

(14) E(C ) = fl e"* dt , 
* ° 2 

(15) F ( C ) =
 g (f> j B " f , 

(16) q(C ) = fili , 
? E(f ) 

(17) <j> ( p = 2E(£ ) - F(£ ). 

Denote for the function f:(0,oa)—-» R 

(18) f(0) = lim f(£)> f(oo) = lim f(£ )• 

Lemma 1 . For the functions E,F,q and 9 we have 

(19) E(0) = F(0) = ? ( 0 ) = 0, q(0) = | , lim i L l i = 1 
5 ^ -* 0+ f 

(20) E(00) = J ^ l , F(co) = 0, 9>(co) = tfF , q(cx?) = 0, 

(21) All the functions E, F, 5? and q are continuous and bounded 

on (0,oo), 

- 126 -



2 Л 
(22) E'(£ ) = e~* , F'(£ ) = 2(e"f - £i|-l), 

*'(£) = *EIL1, *(p - §*j'(p - 2E - 3F. 

Proof. All formulas can be established by means of elementa­

ry calculus. 

Lemma 2. For the function q holds 

(23) q((0,oo)) = (0,|). 

Proof. Try to find cC (>0) such that 

(24) q ( p < o C for all £ e ( 0 , o o ) . 

The last inequality takes place iff 

(25) H(f ) « E(£) - f e"f - o6^ 2 E ( p < 0 , £ e (0,00). 

But H(0) = 0 and 

.2 
(26) H'(| ) = £ 2 e"f (2 - <X ) - 2oC £ E(f ) 

2 2 
= £ 2 e"? (2 - 3cc) + let p f e"f - E ( p ) . 

2 
Setting oc= 4 in (26) we can see that the first term equals zero 

meanwhile the negativeness of the second term is obvious. So we 

have proved that q(£ )< j for all £ € (0,oo). This together with 

the non-negativeness of q, its continuity and the relations (19)-

(21) gives the assertion of the lemma. 

3. Counterexample. Let q and <f be the functions defined by 

(16),(17). Let |x| be the Euclidean norm of the point x in R,. 

For t<l put £ = |x|/2 i l l - t . The function 

•j-̂-j- for t£l, xcRjX-COt, 

(,27) ui(t>x> = ^ ^ . ^ 1 1 for t<l, x6R 3v€0l, 

0 for t € R, x = 0 
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is a weak solution of the boundary value problem for the system 

(28) u\ - D ^ U ^ ^ j • d ^ d j j V ^ - 0, i . l . . . . , 3 , 

^
1
 ''4(a-2) + (6+a)q(4-Зq) ^

1 

+(6+a) — S l ^ O - -i-^r(6
+
a)(l -2fti£^->J if t <£ 1, 

(30) d . = l -f-cT :(a-2) - ̂ -A-i-Sy(6+a)}, t£l, 
oCi V4(a-2) oC1 |*|2 

In the domain Q. (Here a is a real parameter. As a boundary func­

tion u we take here the trace of the function u given by (27) on 

the parabolic boundary P .) 

In the next section we sketch how the system (28)-(30) was 

deduced. Further we shall prove that for a>2 the operator 

-D^ [(<£,* <̂ 4 A + d^.d^.)D-] is elliptic. Thus the system (28)-(30) 

is parabolic in this case. Its coefficients are bounded. They are 

also continuous except the points of the half-line it t,x3;tS1,x=o) 

The function u itself is continuous at the same set meanwhile on 

the parabolic boundary F u is Lipschitz continuous. 

Summarizing we obtain 

Assertion 1. Let a>2. The function u defined as (27) is a 

bounded weak solution of the boundary value problem in Q for the 

linear parabolic system (28)-(30) with the Lipschitz continuous 

data on P The coefficients of the system are bounded measurable 

functions. The solution u develops the discontinuity at the point 

lt,xl = t l , 0 V 

Let 1] be the inverse function to y on <0,lOf> Denote 

, c q O i (V5r% <A> ) ) , o 6 o> < l , 
( 3 1 ) G ( c J ) = < 

I 0 OJ £ 1 , 

( 3 2 ) M(*>) = ( 6 + a ) ( l - ( . 3 / 2 ) G ( c a ) ) , *J> > 0 , M(0) = l i m M ( * > ) . 
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Then the function u defined by (27) is also the weak solution 

of the quasilinear parabolic system of the type 

(33) w* - B
o0
(A

<

i
J(u)D

x
wJ) = 0 

with the coefficients 

(34) bЦ- -Ctp^ii
 +
 ^cCІ^З' 

where 

(35) •*> 
o C 1

 V4(a-2)+(6
+
a)G(|u|)(4-3G(|u|)) 

X i _ c r c c i l a " 2 + ( 6 + a ) G ( . U * > : 1 " M ( | u | ) u i U o C * * 

Indeed, f o r u given by (27) we have |u| = ^ (P )/v'Sr" 

^ t , i ( u ) = d o C i ( t ' x ) ( c f - ( 2 9 ) » ( 5 ° ) ) -

Assertion 2. Let a>2. The function u defined as (27) is a 

weak solution of the boundary value problem in Q for the quasiline­

ar parabolic system of the type v33) with the coefficients given 

by (34)-(35) and with the Lipschitz continuous data on V The 

coefficients are bounded and continuous on R-,. 

4. Calculations. In the course of this section we often use 

Lemmas 1, 2 from Section 2 without mentioning it explicitly. Let 

us recall 

(36) £ = — l i L - for t<l. 

* 2 vT-t 
a) -E2B2E_i5__2__*!]5«_2_u__2D-.u-

Lemma 3. (i) The function u given by the formula (27) is 

continuous in R*R, except the points of the set 

(37) M = 4[t,xl; t> 1, x = 0|. 

(ii) For each T>0 u belongs to w5' (QT). 

(iii) The function u is Lipschitz continuous on the set P 
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given by (31). 

Proof. Ad (i). Discontinuity in the points of M is obvious. 

The continuity in all other points of R>< R, can be easily obtain­

ed realizing that 

(38) For x4r0 lim ui(t,x) = -- -J- lim v>( £ ) = —-- , 
t-*1- |x| W S~*cor * |x| 

(39) For t<l lim ui(t,x) = 0 
ixi->0 

and either convergences are locally uniform. 

Ad (ii). According to (i) and the boundedness of $> we have 

u e L - . For x + 0 we can calculate 

X< 1. 

As the functions in the squared brackets are bounded and measurab­

le and the estimate |D,u (ttx)| .£ C|x|~ a.e. is valid we obtain 

that 0<u
ie L2(QT). 

Ad (iii). The derivatives D^u are bounded and continuous on 

V . To check this fact it suffices to consider the points on P 

where the formula defining u changes and the point £0,03. There 

we get 

x x. 
(41) lim D u1 = - i - \6 . . - -2S-i" , 

t-*1~ * |x| oCl TTV 

(4Z) D VUJ.O) = lim D V ( 0 , X ) = —- -— cT . 
* U.-+0 * 3I/5P cC1 

Further, we calculate 

Д 
0 foг třl, 

(43) uţ ^ 
2 x

 <ў'(f ) f Þ
 foг t^l. 

fó |x|: 
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For x + 0 we have 

(44) lim ui(t,x) - 2 — - V . 
t*1- * | x V 

So ufis bounded on the set (0,0?)x d B. From the boundedness of 

first derivatives of u on corresponding subsets of P it follows 

that u is Lipschitz continuous. 

b) §_§________?3e__ed_c__20_2___De_0_E§bolic_syste 

so lut ion . Modifying the method used by 3. Soucek in the case of 

elliptic systems we try to find the parabolic system with given 

solution u in the form 

d . rt . 

t oC ccp ij (3',Dxu) P 
setting 

(46) 3 ^ - D / - b ^ . 

Substituting into the system (45) u (given solution) for w 

and d . from (46) we obtain the condition for b . , namely, 
aC 1 <sCl 

( 4 7 > u t • Sc-_i-

So for each definite choice of u we are to find reasonable b , 
oC 1 

which satisfy the condition (47). 

c) 9______9D_9l-_!}__B§E§bolic_system .with the_soluJion_u_gi-: 

_____.__(_Z) • We execute the more interesting part concerning the 

case t<l. Look for b . in the form 
cci 

( * 8 ) b,4 = -T75F- ( — p ( £ ) + ^ 4 Q(? ) )» ( f 9 i v e n Dv ( 3 6 ) ) -
oCl V5f |x| . |x(3 S * 

After simple calculations we get 

(*9> \b«i - | ^ r - # [ ( f p ' ( P - p ( ? » + <t?«>'<p * Q ( P ) J -

The functions P and Q are proposed to be of the form 
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(50) P(| ) = aE($) + gF(f ), Q ( p = cE(f ) + dF(f ), 

(a,g,c and deR). 

Differentiating we obtain 

c2 

9 P'(? ) « (a+2g) £ e~* - 2gF(f ), 
(51) * .2 

f Q'(f ) = (c+2d) ^ e~? - 2dF(f ). 

Substitution from (50),(51) to (49) leads to the following form of 

the condition (47): 

£ 2 

(52) (c-a)E(f ) + (c+2d+a+2g) £ e~* - (d+3g)F(f ) = 

: < f ) - 4 f = 4E( C > - 4 ř fi"*£ 

Comparing the coefficients standing by E, F and £ e~* we have 

(53) c-a=4, c+2d+a+2g = -4, d+3g = 0, 

from which 

(54) g = f + 2, c = 2(f + 2), d = -3(f + 2). 

This together with (49)-(51) yields 

(55) h . = -4-[-2--i (aE + (S +2)F) + -^-4 (|+2)(2E-3F)J . 
*i VJT |x|

 2 |xp 7 

Rewriting the corresponding part of (40) in the form 

(56) D u 1 = J L - [ - ^ 1 (2E - F) - ̂ -i(2E - 3F)3 

we get with use of (46) 

(57) d . = [-<T .(a-2+(a+6) f) - -4(a+6)(l3)J-

*1 V5T|x| < " 7 UP * 
Now we can ca l cu la te 

> F 2 

(58) (d,0Yu) = — - — y U ( 2 - a ) + (a+6)q(3q-4) l -
ar lx r 

Lemma 4. Let a>2. Then (3f,Dxu)<£0 and the operator 
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* ^^
 1 J

 (d,D
x
u)

 P 

is elliptic. Thus, in this case, the system (45) is parabolic. 

Proof. If (?, D u)<-0, then 

3 ^d.. ^
 9

 (d,J )
z
 o 

'x"' ' x 
*? 1 J

 (d,D u)
 Л e

-
l J
/»û * (d,Dvu)

 S 

so the ellipticity is obvious . 

The relation (d,D u)< 0 for a;> 2 follows immediately from the 

fact that q:(0,00) —-*- (0,-|), as it was proved in Section 2 (Lemma 2) 

Substituting now to (45) for d, (d,Dxu) from (57) and (58) we 

obtain in the end the system (28),(29). 

Remarks. 1) In the case n >3 we may proceed in the si­

milar way. 

2) The idea of the expression of the functions b . in the 

form (48),(50) arose in the connection with our attempts to exploit 

the original Struwe's counterexample [13 Trying to use it direct­

ly, we were not able to remove the discontinuity of the obtained 

system of the type (1) from the points of the whole hyperplane 

<Ut,x3; t = l, x £ R3$ . 

3) The standard proof of the fact that the function u defin­

ed by (27) is a weak solution of the boundary value problem (13) 

with the coefficients given by (28)-(30) is omitted. 

5. Remark to the systems with quadratic growth. Let u be the 

function defined by (27). After an easy but tedious calculation 

(which we carry out for t< 1 only) we get for arbitrary A>0 

ui - AAu 1 x. , 
(59) -i * — = — i (A+l) i Y ( £ ), 

|Dxu|
2 |x| * S » 
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where o 
t c -i2 

(60) y ( C ) « \ f i ? r ~ * 8 % * 
* EZ - EF + | F Z 

So u is a weak solution of the boundary value problem for the 

system 

(61) w* - A A w1 = J!i (A+l) 4 y (f ) |Dw|2 

% |x| * X 

( s f(t,x,w,Dxw)) 

with Lipschitz continuous boundary data on V. 

So for the right hand side in (61) we have the estimate 

(62) f(t,x,w,p)^a |p|2 

with 

(63) a = (Afl) \ sup ¥ (£ ). 

Because of II uL = 1 and A= A we have 
00 

(64) a »u»L A""1 = (1 + £> \ sup y( £ ). 

Provided we had an estimate 

(65) \ sup y(f ) = K 

we could choose for each & > 0 such A>0 in (61) that 

(66) a Hul. X"l< K(l + €,). 
00 

Assertion 3. The estimate (65) holds with K = 1,5. 

Proof. Using (16) we can rewrite 

(67) *(<) = g , ^ E - £ e-f2 
' 1 - q + {oT E2 

Taking account of q £(0,-j) and 1 - q + j q2 = 3(iq - i ) 2 + 1 we 

have 

(68) ^ \ tL<\ VF. 
1 - q + j q 

Denoting 
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E(f ) - f a"* 
(69) S(£) = - -r-t 

* EZ(f ) 
we get S(0) = 0, S(o0) = ——- and using (15),(16) and Lemma 2: 

VW 
2 2 

S ' ( £ ) = 2E"3 e"f £ 2(E-F) = 2E" 2 e"f f 2(l-q)>0 

for all £ > 0 . Thus S increases and 

(70) 0 < S ( C )< -"-?=--. 
From (67)-(70) we obtain 

(71) Y ( p < | l / F -^r- = 5, V £ > 0 . 

Remark. The estimate (65) holds probably with a K < 1 , 2 1 as 

the following calculated values of V s u g g e s t . 

1 í 1 0,1 1 0,5 | 1,0 | 1,2 | 1,87 1 1,89 | 

|Y(Ç )Ю,1767 |0,8962 |1,7563 |2,0268 |2,3997 12,4003 | 

1 ? 1 1,91 1 1,93 | 2,0 | 3,0 | 5,0 1 15,0 | 

| Y(£ )|2,4005 |2,4003 |2, 3971 |2,2258 |2,0807 |2,0089 | 

we can conjecture that sup Y( £ )< 2,42. 
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