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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

27,1 (1986)

THE MONOTONE LIMIT CONVERGENCE THEOREM FOR
ELEMENTARY FUNCTIONS WITH VALUES IN A VECTOR LATTICE
Peter MALICKY

Abstract: A necessary and sufficient condition for the monn-
tone TImit convergence theorem for elementary functions with va-
lues in a vector lattice is found.

Key words: Vector lattice, inner regular measure space, ele-
mentaTy function. ' '

Classification: 28B15

All papers on the integration theory of functions with va-
lues in a vector lattice are based on the assumption that a measu-
re space (X,Ef,po) and a vectbr lattice are such that the foliow-
ing statement holds for every sequence {fr&1:=l of elementary L-
function s defined on X:

(VxeX:f ()N0) =p ([ £,(x) d@())N0.

This is the monotone 1limit convergence theorem.

This paper gives a necessary and sufficient condition for a
vector lattice L so that the monotone limit convergence theorem
holds for all "reasonable" measure spaces and any sequence of e-

lementary L-functions.
Definition 1: A real vector space L is called a vector lat-
tice if it has a partial ordering #£ such that:

(i) Vv aj,a,,b;,b,€L:a,£a,, bj4b, =>a +b, £a,+b,
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(i1) Va,belL yYAe R :aéb, 0£A=>Aa£Ab

(iii) Va,belL 3Jc,del:c£€a, c£b,Vc'el:ic’'€a,c’€b=>c2c
agd, w£d, Yd'el:a2d", bsd'= d<d”.

The elements c, d are called infimum and supremum of a and b res-

pectively and they are denoted by anab and avb.

Definition 2: Let L be a vector lattice and '{an}(::l be a se-
quence of elements of L. We say that {an§°:=1 decreases to a&l and
write a Na(n—-o00) if:
Vn:a  ,£a., afa,
Va'e L:(Vn:a'2a )= a'ga.
The symbol an/a is defined dually and we say that {ania:ﬂ incre-

ases to a.

Definition 3: A vector lattice L will be called Archimedean

if Vae L:aZD@(n_la)\U (n—>o00).

For a deeper theory of vector lattices see [1] and [4].

Definition 4: Lef (X,!f,‘u.) be a measure space, i.e., X be
a set, d be a 6 -ring and @ be a 6-additive nonnegative set
function, and L be a vector lattice.
A function £:X—> L is cailed elementary, if

3££j}'g=1 ALy Vji: Eje.‘f,\M(Ej)<oo,c.eL

) J
¥ xeX:f(x) =,}§4 cyxg, (XD
J

ii=1°¢

iy
The element é§4 cjf"(Ej) is called an integral of f and is deno-
ted by [ £0x)d @(x).

J
Proposition 5: The integral j;(f(x) dw(x) of an elementary

function f:X —~> L does not depend on the representation f(x) =
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= Z 43 xE (x). For any elementary function £:X —>» L there exist
xej} ., and {cj}j ) such that Yi,j: 1+j = E{NE; = B and
Vxax:£(x) = ?§ c {E:j(x)

The proof does not differ from the case when L is the real
line R

Now we are going to find a condition for the monotone limit
canvergence theorem. Suppose that a vector lattice L is such that
for any sequence {fn}"::l of elementary functions defined on ([0,1)

with the Lebesgue measure we have:
1
(1) (¥x6l0,1):2 (IND (n—> 00 )) m [ £, (x)dxNOD (N> 00 ).

Consider the sequence of decompositions {:Dnl';o of the interval
[0,1) into the intervals [(k-1)2"",k 2°™) k=1,...,2". Suppose, we
have a sequence {f '} -p Of elementary functions f_ : [0,1)—> L

which are consistent with the decomposition :Dnv, .e.:
3{a(n, k)in -0, k 1 :V¥nVkedl,...,2"¢:a(n,k) el and
(2) f,(x) = a(n,k) whenever xe [(k-1)2"" k 27™M).

The sequence {f }n =0 is uniquely determined by the double sequen-

2N
ce fa(n k)}n -0, k 1
o 2
Suppose that the double seguence {a(n,k)}mo k=1 'is such that
,
a(n,kn)\o for every sequence {kn}°r‘:=0 such that k°= 1 and Vn:

tke1= 2 KoV ko = 2 k- 1. Then (2) implies Vx €l0,1):f (x)\

n+1 +1

Y0 (n — ),

4
From (1) we have .[) fn(x)dx\U (n —>00). Looking at (2) we see

lﬂ\v
that (Z'n-kg" a(n,k))N0 (n—» ). The preceding consideration

motivates us to formulate the following definition.
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Definition 6. Let L be avector lattice. A double seguence
n
-la(n,k)'in::ﬂ E=1 of elements of L is called a dyadic tree.

A sequence -fbnr::n is called a chain of the dyadic tree

{aln, “)}:20,521 if there exists a sequence {knln:zn such that:

kg =1

Yok, = 2kvk =2k -1, b =alnk).

The dyadic tree -i'a(n,k}}:o;g‘kfr; is called chain-decreasing to zero

if all its chains decrease to zero.

We sey that L satisfies the dyadic tree condition (briefly DTC),

"
if (27" h‘%‘d a(n,k)™ 0 (n—>00) for every dyadic tree

n
-ia(n,k)}‘:_'u E*l which is chain decreasing to zero.
=0, k=

Theorem 7: Let L be a vector lattice such that the implica-
tion
1
(Vxel0,1):f ()N0) = J; £,(x)dx N0

holds for every segquence {fn}::l of elementary functions defined
on the interval [0,1) with Lebesgue measure. Then L is Archimede-

an and satisfies DTC.

Proof: The fact that L satisfies DTC was proved before the
Definition 6. Suppose that L is not Archimedean, i.e.
JaclL:az0, (n'la) 0 (n—>00).

For every natural n define an elementary function
| [0,1)—> L

£,00 = 0if x6l0,1 - 1)

t.(x) = ait xell - 51,

Then we have:

chtu,l):fn(x}x 0 (n —s00) and
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1 -
_f; £,(x)dx = n 1 a ™0, which is a contradiction.

Now we are going to precise the notion "reasonable" measure

space.

Definition 8: Let (X, ¥,«) be a measure space. It is called

inner regular if there exists a system ¢ ¢ ¥ such that:
[~
(2] < -
V"‘Kn}n=1:(_vn’Kn+1C Kps K€ €, Ko+ 8) "‘7«\,[-)1 Kn4=ﬂ.
Yaed () = supf@(K):KcAK e €Y.

Proposition 9: (i) If (X, 4,«) is an inner regular measure
space and A ¢ & then (A, 'a’A, ¢v,) is an inner regular space, where
‘d’A ={8:Be ¥ ,Bc A} and (4, is the restriction of w .

(ii) If X is a Hausdorff space and « is a measure in Bour-

baki’s sense then (X, B(X),m) is an inner regular space.

The part (i) is obvious. The part (ii) follows from the Bour-
baki s definition of measure, see [ 71 pp. 435-540. Our definition
of the inner regular measure is less strict than Pfanzagl-Pierlo’s

definition of a compact approximable measure, but the idea is the

same, see [21.

Lemma 10: Let (X, ‘f,(w) be a probability measure space and

2
{Em,jkuma;l,jgl be a system of f-measurable sets such that
Ao .
() ¥m:Xx = 5 Ep,gr JFI=2 B (NE o= )
(4) VmVSE{l,...,,l’m+l} djed1,..., £ t:E CE

m+l,s m,J
(5) ¥Ym ¥Vi,jedl,..., £ %, Vr,sefl, ..., L0 §:

i<j, E < E E <

: - 2 == -
m+l,r m,i’"m+l,s r-s

Em?J
(6) Ym Viedl,..., £ %: ((L(Em’j)>0
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Then:
@, 'em

(i) For every e > 0 there-exists a system {‘a‘m,j}m=1,j=1

of dyadic-rational numbers such that:

tm L .
(D Ve Z A =1, LT AL - @E, Dl<e - 2™

?

(8) Ym Yjef1,..., £m§: am,j = am+1,5’ where the sum on the
right hand side is taken over the set of all s e{l,...,,eml}
.such that Em+1,sc Em,j'

(9) Vm Vied1,..., 2 }: Am’j>0.

(i1) 1If moreover (X, ¥, w) is inner regular then Ve>o
3EeY: wE) e and Vi330 :Vm:j edl,..., 23,

©0
Emel, 30006 Ema3r miaa Enygy =8 A mosEn 5 <
o

£
Proof: (i) The system {am,j}:;l,j':l will be constructed

by the ‘induction with respect to m. Let € > 0 be fixed. Take m =
= 1. If 11 = 1 then put 11 p = 1.1 .fl>l then for every j €
»

efl,..., 11 - 1% let 9\.1 3 be a dyadic rational number such that
’
< < W< A . A i
0 A‘l,j &(El’j) 1,3 * 4.11 Such 1,3 exists because
the set of all dyadic rational numbers is a dense set in [0, 1].
2,1
Put 7“1,11 =1 -4’24 7“1,3- Then 7&1’11 > (“‘(51,11)>ﬁ1,11 -
y
- £ and the system 'f"A'l j} le has the required properties.
4 ’ -

2
Suppose that {Am j}jTl has already been constructed. We are
, =

}‘m+1
m+l,8 s=1
(3) - (5) it follows that there exists a sequence of integers

§Zm+1
{pj 3=1 such that:

going to construct the system £ . “From the properties

1 = p1< p2<...< %m< plm"l = ’em+1 + 1 and

%- 4

P‘.'Jﬁ’ EM+115 =

m,3 for every je-il,...,,lm}.
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let se{1,..., £, %, then 5e.{'pj,...,;:|j+1 - 1% for some je¢ {1,

)
be the number -—‘“——Eﬁ'ﬁ . A

("" m,j) mJ

"“m" Let (“"m+1,s

Then we have:

et Ap s 3
= —Tud f (“"(Em+l §) =

“(Ey 3
‘M ‘Lny “‘1-1
,?, l ‘“’Im«'-l,s - (“'(Em+1,s)| = ?'-71 ,g?';p? (“’(Em-»l,s)'l -

Ao . Am km

STy L E - % (E - -
&(Em,j) 1-4 (U'(Em J ((L m+1, S 3‘"21 “
L

- .
) L) =, A I ] < - 2~Mm

G _)l wEp ) =3 & 1€y ) - Ay sl <e -2,

e m,J

The last inequality is the inductive assumption.

Unfdrtunately f‘"nnl,s are not dyadic rational and they wmust

s ‘

be "repaired". We shall "repair" the numbers f"m+1,s in the fol-
lowing way. Let jedl,..., ,Zm'i be fixed. If Pye1 = Py + 1, then
the sy ey P - . ‘

set {pJ, ,r.vJ+1 1% has only one element pJ and (“‘m+1,p
= A 30 which is dyadic rational by the induction hypothesis

In this case "a'm+1,p. -

J.

’
‘"’m+1,p.| = 0. If Pie1” Py * 1, then for all 5€{Pj:---,Dj+1 -2}
1

take dyadic rational .'A-m+1 s such that
. ’

- 4
and we put a’m+1,pj = c"m+1,pj'

0 g ©
< mm+1,3 < (“'m+1,s< ?"m+1,s + m+21

m+1
-2
Let A be th A A ‘
m+l, Pie1” 1 be the numbe: m,J “aspg -Cimel,se Then we have:
x :
m*l,pj+1_1 is dyadic rational,
~-e(p -p:-1)
A - (w' 5 ol A
m+1,pj+1-1 m+1,Pj+1-1 2m+2 -'em_L_+1 mel, p:“l
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fsgd.?\. = A 'and

. m+l,s m,J

-2 e(p..,-p.-1)
|?\. - ! < ( ! & ) + J+1 | =
b:i""‘i m+l,s (‘"m+1,5| ne g ZM+2'em+1 2m+21m+1
E(ﬁj+1-Pj'1)< s(pj+1-pj)

m+1 m+l o
2 lm” 2 £m+1
This means
lmw; 2 15,4~
' _ m g+1 ’
,2,:4 ly\'ml,s - ("'m+1,s| - 351 sy l‘a‘m+l,s - (“’mq»l,sl<
. 2,
3 g' (3
ml 25 P3Py T TRl (p,e +1-p1) =
£n,102 ? 2 £pey OO
€ : s Fmat
= ;ﬁ:l_;?— (lm+1+1-1) = ZTH . Therefore p_£1 I‘Am«‘l,s -
m+l . A%""’ , Lyt
- ﬂ“'(Eml,s)’ £ 251 l‘7"m+1,s - ‘u'm+1,s| * ‘:‘-4 ' “mel,s

1 & 1
T By OB o) s iy s e (- )

The proof of (i) is complete.

(ii) Now 'let (X,‘;?,(w) be an inner regular probability measu-
re space and € be a system such that: € c ¥ , (Vn:K & € K €
o0
CKpy K ) => O K *#8and YAed : «u(A)>0 = VYe>0 3Ke
n m=41 "N

c¥€: (A -K)< €& . Let & >0 be fixed. We shall construct a

2
system {Km,j}:l,:.l,j:'r such that:
(10) Vm, Vje{l,...,,emkzxm,jc Em,j, Km,j ey Km‘j =@
(11) Vm,Vjé{l,‘.,,,r’,m}Vse{l,...,,Emd}:Emd,scEm’j==>
> K cK

m+l,s m,J
s /em N -m
(12) Vm:}gd\u(Km’j)7l- e (1 -2"M.

£
The system {K 3"' Tl will be constructed by the induction

m,37m=1,3

with respect to m. Take m = 1. For all jeil,...,zl} let Ky j be
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t such that K
a se uc 1,3

13
2-.81

o<

The syst

m be a fixed integer.

ructed the systems 4
for all m £m. We ar
A +1
Let {p:ﬁ Jfl be a se

1= p14 p2<

Vied1,

i

Let sefl,..., £ mel

o &nt,
:u.(Em”,sn Km‘j)}u, 1

K nK

m+l.SCEm+1,s m,j
£ Then (

W_ £ En
m+1

fm.w! jﬂﬂv 't*m» 'réﬂ
=§E Ky ) - . F, Z, Uy 0Ky 3) -

w2y (K )

m+l.s

-Km+1,5)>1~ e (1

oo
The system {K ."sm_'l

1f (‘"’(Emi-l,

e ¢, Kl,jc El.j and (U'(El..j - Kl,j) <

{ ‘tl .
em Kl,_‘ﬁj:l has the required properties. Let
S.ppose that for all m £ m we have const-

L,
m
Km',J}_‘|=1 such that (10) - (12) are satisfied

‘em+1

e going to construct the system {Km”” 5=1

guence of integers such that:

.<p£m.c [:1!'“"1 = £m+1 + 1 and

~ .
ﬁ's’_ mai e ™ En 3 (see the proof of (i))

then se'l-p ,pj+1 - 1f for some Jedly

s Ky 3) = 0, let K be #. It

m+l,s

et K be a set such that K

e €

m+l,s m+l,s :

m+1,snxm,j} - K|11+1,s

10) and (11) are satisfied and

and w((E ) <«

-4

=1 »d =1 s qy

-—) - ¢ ——r = 8= g ARy

lm

j_lis constructed

S
LetE=x-(f"l \.J K .).Then{u.(E)_f.-E, and E has the

required property.

ned 334 m,J

Let {jmi':::l be a sequence such that for all m:
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Jpefy, ..., L%, E e cE, ; and n EmJ = 8.
Then for some m, we must have Km 3 = @. In the opposite case we
o’“m
o
d .
would have a sequence {Km,jm} m=1 Such that Vm‘Km,jm* g, Km,jmc ¢,
. K « .

Kmd’dec Km,Jm and @ #m‘é‘, Km,j c de Em,jm’ which is a contra-
diction. Since K =@, then E_. . NnK_ . =8. If jefl,...
mo’jmo ’ mo’JmD O,Jmo

.. t n K =@, .
E lma}, J#jmo, hen Emo'jmo mg .3 #, because K'“o'J c
cE and E NE = @ by (3). Therefore E R c X -
my»d MO,J,,,O "' W3 mD’J'"o
“u. l,..,
S G, X GO K - .

The proof of (ii) is complete.

Theorem 11: For every vector lattice L the following proper-
ties are equivalent:
(i) L is Archimedean and satisfies DTC.
(ii) For every inner regular measure space (X,S’,fb) and every
sequence {fm};:l of elementary functions fm:X —> L the following
implication holds:
(chx:fm(x)\o(m-—-)oo))z?.& £, dm(x)N0 (m—> o0 ).

Proof: The implication (ii) = (i) follows from the Theorem
7. Let L be an Archimedeanrvector lattice with DTC property,
(X,4,~) be an inner regular measure space and {rm}:f:l be a se-
quence of elementary L-functions decreasing to zero. There exist

2 )
systems {E_ j}m 1 jml’ {cm,j :\,;1,.‘121 such that

YmViefl,..., zm‘;Em,j e ¢, ‘“‘(Em,j)< w0 , cm,j€"
'’
VmVxeX:f (x) =i’§1 Cn,j ZEm,j(x).
2
Since &(5531 El,j)< o and f (x) V0 for every xe X, without

loss of generality we may assume that ( X,‘.f,(«.) is an inner
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A

regular probability measure space and the system {E ‘”“_ =
m,y m=1,j=1
has the properties (3) - (6) of the Lemma 10.

Let {3 }m 1 be a sequence of integers such that

(13) Vm:j oedl,..., L3, E"‘*l'jmuc Em,jm.

£c_ . but we are not able to

Since f (x)N¥0, we have c m3,’

m+l, 3001

o0
prove that cm,jmx 0. But when ,mg Em,jm+ g, we have cm,jmuo, be-

cause cm,jm = fm(x) for' some x sm;:\1 Em,jm' We are going to modi-

Ly
m _] m= 1 j=1"
ma 10 there exists a system }‘m,ji with the properties (7) - (9)

fy the system {c Let € > 0 be a real number. By Lem-

and a set E ¢ & such that:
(14) Mm(E) < &

- .
(15) \-/-{Jmim:l:(Vm:Jme-U,...,/em{, Em+1.j CEm,j ) =>
m+1 m
= 3 mD:Emo’jm c E
Put o
A ¢ g if Ep JEE
(16) dm y =
' 0 if Em,j c E
Then we have:
. . . ,00
amn dM,jm w0 (m—~ ) for every sequence 3j. }._; with the pro-
perty (13).
o0
If qu Em J + @, then Oédm,jmé cm,jm = fm(x)NO for some
o 0
= . o= >
X emf;\4 Em,jm' If ml;\‘ Em,jm g, then dm’Jm 0 for all mzm, by
(15) and (16).
. Lm N
We are going to prove that (’;”z_&.'1 dm,j' m,j)NO (m—0). We

n
shall construct a dyadic tree {a(n,k)3°:;0 '3:1 which is closely re-

1
lated to the systems {dm’ °r: ’1 Jml and U\.m J}m 1,3:1" Since all

Ay j are dyadic rational with the properties (7) and (8), there
’
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£

oo o, m
exist sequences of natural numbers {nm}m=1 and {tm,j}m=1,j=1
such that

M "m
(18) Am’j = tn,j 2 ", tm'je{l,...,z $.

We may assume that the sequence {nm}:Ll is increasing, i.e.
n1< n2< ...<'nm< nm+1< ... . If 0<¢ n<n1 we put:
2, n
(19) a(n,k) = .\, d, . for all ke{1,...,2"3.
; =1 1,3

It np<n<n , and kedl,...,2 "} we put:

(20) a(n,k) = d, ; where j is a natural number such that:
’

J

n-n n-n

e
m 2 m
<k‘(n§4 tm, ) 2

§-1
(21) (/ggof 1:I1'I,S) 2 S

From (18) and (7) we have (oé; tm,s) 2 ™= 2" which means

that j is uniquely determined by k and je{1,..., zm}. We are go-

ing to show that the dyadic tree {a(n,k)}ﬁto’zzl is chain-decrea-
sing to zero. Let {kn&:=0 be a sequence such that:

(22) Kk, =1, Vn:kn+le(2kn,2kn - 1%,

If n <ny then we have from (19):

24
(23) a(n,k,) = ;&q dl,j‘
For every natural m let j"|e{1,..., lm} be such that
A+3m . Fm
(28) AEE, tm,s< knIn £ h%?ﬂ tm,s'

Then we have:

(25) a(n,kn) =d whenever n & n< Ny and

m,jm +1

¢ E, ; for all m.

(2¢) E R

m+1,jm+1
(25) follows from (24),(22),(21) and (20).
We are going to show (26).
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1+2
Let m be a fixed natural number and {pjlj=1m be a sequence

such that:
(27) 1 = p,<p,<...<p, <P = £ + 1 and
1 2 L £m+1 m+1
-4"'&
Fasl -
(28) ‘hﬁﬂi Em+l,5 - Em,j

(see the proof of Lemma 10).

Since the both sides in (24) are integers, it may be rewrit-

A3 . *m Usi
ten as (d§a tm,s) + 1< knm = 5%% tm,s' sing (28),(3) - (5),

(8) and (18), we have
PEY %)

-(n_..-n_) ~Ary -(n__.-n_)
m+l"m tm . v m*l ''m
2 iZa tper,i) *DE kn, < 1 tee1,i)?
n -n n -Nn
The inequality 2 ™1 Mk - <k, €2 ™1 ™k follows
m m+1 m

from (22) by the induction. Comparing the last two inequalities we

i M,
have: .1{54 tm+1,i< knm+1 < .z, tm+1,i‘ Looking at (24) we
see that j_ , must be found in the set ijm,...,pjm+1—1}, which

proves (26).

n
Finally {a(n,k)iztb §=1 is chain-decreasing to zero by (25),

(26) and (17). Since L satisfies DTC, we have:

" 5 £
2 h};‘4 a(n,k))N0 (n—> 00 ) and (2 4 a(nm,k))NO (m—> 00 ),

which means

"y
(29) (i=£4 Am,j dm,j)\ﬂ (m—> 00 ) by (20) and (18).

Computing integrals of £ and using (16),(14), (3) and (7) we ob-

tain:
L, Ao,
fx £a00) dulx) = ;,§4 ®m,3 (“'(Em,j) = 4§4 dm,jy‘m,j *

2 Ry

™
3 ) - . > .- . )=
* '1?" dn, 5 “(Ep ) J\m,J) MPrE R dm,3>~“'(5m,3)
Lom, 3
5'9.4 dm,j]tm,j”zcl’» » where C =_' €y 3
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From (29) it follows
Ly L () dux €2 Ce

Since L is Archimedean and & is an arbitrary positive real
number, we have: (j;‘ £,(x) d(x))N0 (m—> 00 ). The proof is com-

plete.

Now, we shall give some examples of vector lattices satis-

fying DTC.

Proposition 12: The vector lattice R of all real numbers

with natural operations and order satisfies DTC.

Proof: The monotone 1imit convergence theorem holds for real

functions.

Proposition 12 may be proved also in a direct way using Dini’s

theorem for compact spaces.

Definition 13: A vector lattice L is called separative if for
every x,ye L, x«*y, there exists a linear form f:L — R such
that:

Yaz0:f(a)2 0

\/{an}‘:'ﬂ.an\o (n-—->00 )= £(a IN0

f(x)41(y).

Theorem 14: Any separaiive vector lattice satisfies DTC. This
fact follows from the Definitions 2, 6 and 13. It follows also from

the results of Sipo%  paper [5].

Theorem 15: Let (Y, ,v ) be a 6 -finite measure space (not
necessarily inner rqdular). For all pe (0,0 ] the vector lattice

LP(Y,T,») satisfies DTC.

Proof: If pell, o] then Lp(Y,?’,v) is separative and satis-
fies DTC - Theorem 14. If pe (0,1) then l?(Y,'T, ») need not be

- 66 -



separative (see [4] p. 318), but it also satisfies DTC. We shall
use the fact that UD(Y,G’,V) satisfies DTC which was shown above.

"
Let {f k}n 0, k 1 be a dvadic tree of functions fn,ke Py, 7, »)

which is chain-decreasing !'n zero.

fn k0 g fo, 1 () #0

f (x)
Put 9, k(x) = 0,1

0, if fD l(x) = 0.
)
Then V¥n: Yk e{l,...,Zn}:Oég kél, ie.: g ke;L°"(Y,"J‘,v). Mo-
’

N
reover, the dyadic tree {gn k}n 20 k i is chain-decreasing to zera.

_ 2™
Therefore, (2 nk§4 9, k)&ﬂ which means (27" %’. fn,k)\o.
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