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rnMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

26.4 (1985) 

SOME ASPECTS OF RADICAL THEORY FOR FULLY ORDERED 
ABELIAN GROUPS 

B. J. GARDNER 

Abstract: It is shown that hereditary classes (with respect 
to convex s u b g r o u p s ) of fully ordered abelian groups determine 
hereditary lower radical classes and homomorphically closed-
classes generate homomorphically closed semi-simple classes. 
Some radical and semi-simple classes determined by the chain of 
principal convex subgroups are presented, including a large 
collection of semi-simple radical classes. 

Key words: Radical class, semi-simple class, fully ordered 
abelian group. 

AMS: 06F25 

Radical and semi-simple classes of fully ordered groups were 

first investigated by Chehata and Wiegandt [2]. Subsequently 

Jakubik [7], [8], [9] and Pringerova [11], [12] have studied 

radical theory for fully ordered groups and abelian groups. 

Our concern here is with the abelian case, of which we treat two 

aspects. We first show that not only does a hereditary class 

define a hereditary lower radical, but also (and this is a bit 

unusual) a homomorphically closed class generates a homomorphically 

closed semi-simple class. The rest of the paper is mostly 

devoted to radical and semi-simple classes which are determined in 

some way or other by real groups (subgroups of the reals with 

standard order): more specifically, by conditions on the skeletons 

of member groups. Examples of homomorphically closed semi-

simple classes which are not radical, and of hereditary radical 
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classes which are not semi-simple, are presented. (Analogous 

examples for fully ordered groups were given in [2], In view 

of the symmetry alluded to above, the first type of example should 

not be more surprising than the second.) In addition, two large 

families of semi-simple radical classes are given. 

We mention a few conventions and pieces of notation. All 

groups discussed are abelian; "f.o.group" accordingly means 

"fully ordered abelian group". A convex subgroup is indicated 

by the symbol < . Convex subgroups are normal subobjects, and 

accordingly we call a class of f.o. groups hereditary if it is 

closed under convex subgroups. If a € A, a f.o. group, we denote 

by [a] the convex subgroup generated by a and call subgroups like 

this principal* We make heavy use of an invariant called the 

skeleton, due to Ribenboim (see [13]) though in the slightly 

different version used by Fuchs [3]. A jump in the chain of 

convex subgroups of a group will be indicated by the symbol <. 

Lexicographic products are denoted by r. p .A. or X r Y. 

Following [6] we let II $8 denote the order type of an ordered set $. 

The lower (resp. upper) radical class defined by a class X 

will be denoted by L(X)(resp. U(X)) while S(X) will denote the 

smallest semi-simple class containing X. 

1. Characterizing Radical and Semi-simple Classes 

Chehata and Wiegandt [2] give several characterizations of 

radical and semi-simple classes of (not necessarily abelian) 

f.o. groups which are equally valid in the abelian case. We 

shall find other characterizations convenient, and introduce them 

in this section. 
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THEOREM 1.1. A non-empty olase R of f.o. groups is a radical 

class if and only if 

(i) R is homomorphioally closed^ 

(ii) joins of chains of convex subgroups from R are in R and 

(iii) R is closed under extensions, i.e. if A < C and both 
3 J c 

A and C/A € R, then C € R. 

This theorem is well known (at least for some other 

structures) and goes back to Amitsur's early paper on radical 

theory [1]. A proof in an adequately general setting is given 

in [4J. 

THEOREM 1.2. A non-empty class S of f.o. groups is a 

semi-simple class if and only if 

(i)* S is hereditary3 

(ii)* A/f)Nx € S whenever A € S and XN-jA G.A} is a set 

(chain) of convex subgroups of A with each A/N, € S and 

(iii) S id closed under extensions. 

Proof. Suppose S is a semi-simple class, and let R be the 

corresponding radical class (i.e. S • (G|R(G) « 0}). Transitivity 

A of convexity of subgroups gives (i) . Let A and the N, be as in 

(ii)*, and let B/QN, - R(A/0N,). If some N, c B, then 
A A AQ -

B/N , < A/N, Є S, so B/N, Є S and 
Л

л
 C A

л
 A

л 

B/N, * (B/0N-.)/(N, /ON-.) € R, 
A0 A0 

so B - N, . It follows that B S ON, , so A/ON, € S and (ii)* is 
A0 A A 

satisfied. Finally, if C < c D and C,D/C € S, then either 

R(D) < c C € S or R(D)/C < c D/C € S, so R(D) < c C anyway, and then 

R(D) - 0. Thus (iii) is also satisfied. 

- 823 -



Conversely, suppose S satisfies (i) , (ii)* and (iii). 

Clearly (i)* implies (SI) of [2], p.145, so we pass to (S2) of [2], 

p.145. Let X be a f.o. group of which every non-zero convex 

subgroup has a non-zero homomorphic image in S. Let 

I - 0{Y|Y <c X and X/Y € S}, 

J • f){W|W < c I and I/W 6 S}. 

Then by (ii)*, X/I, I/J € S, so by (iii) X/J € S,whencel • J. 

Thus I has no non-zero homomorphic image in S, so by the 

hypothesis of (S2), I * 0. Thus X s X/I € S, (S2) is satisfied 

and S is a semi-simple class. / 

We note in passing that the two theorems of this section remain 

true for non-abelian groups. In Theorem 1.2 some extra work is 

needed to show that J is normal in X, but the essential ideas are 

contained in [2]. 

2. Hereditary Radical Classes; Homomorphically 

Closed Semi-simple Classes. 

In most contexts where radical theory is studied, hereditary 

classes determine hereditary lower radical classes. Somewhat 

less commonly, radical classes are hereditary if and only if they 

have semi-simple classes which are closed under essential 

extensions (in an appropriate sense). More rarely, there are 

analogous results involving homomorphically closed semi-simple 

classes and small (normal) subobjects. (For some fairly 

inconclusive remarks on all this- see [5].) For f.o. groups, 

all proper convex subgroups are both essential and small, but all 

the results just mentioned are valid. 

THEOREM 2.1. Let R be a radical olaes of f.o. groups, S the 
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corresponding semi-simple class. Then R is hereditary if and 

only if S satisfies the condition 

0 * A <c B & A € S -> B € S. (*) 

Proof. Let R be hereditary, O + A C S , A < B . Since R is 

hereditary, we cannot have A 5 R(B), so R(B) S A. But then 

R(B) <c A, so R(B) S R(A) *- 0, i.e. B € S. Conversely, if S 

satisfies (*) and X < c Y € R, then X/R(X) <c Y/R(X), whence 

Y/R(X) € S. But Y/R(X) € R, so X/R(X) € S n R - {0} and thus 

X € R. / 

COROLLARY 2.2. Let M be hereditary and homomorphioally 

closed. Then L(M) is hereditary. 

Proof. Let S be the semi-simple class corresponding to L(M). 

Then S consists of all those A which have no non-zero convex 

subgroups in M (cf. [2], p.149). If 0 4s A € S and A <c B» let M <c B 

withM € M. If M S A, then M=-0, as A € S. If A S M, then 

A < M, so M € S and thus M - 0. Thus in any case M « 0, so 

B € S. Accordingly, S satisfies (*), so L(M) is hereditary. / 

THEOREM 2.3. Let R be a radical class of f.o. groupss 

S the corresponding semi-simple class. Then S is homomorphioally 

closed if and only if R satisfies the condition 

0 * A/B € R •* A € R. (t> 

Proof. Let S be homomorphically closed, 0 -1- A/B € R. 

Suppose R(A) S B. Then 

A/B a [A/R(A)]/[B/R(A)] € S, 
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so A/B = 0 - a contradiction. Hence we have B S R(A). But then 

A/R(A) a [A/B]/[R(A)/B] € R n S, 

so A - R(A) € R. Conversely, if R satisfies (f), then for 

X < c Y e S, there exists W <c Y such that W/X = R(Y/X) € R, and 

thus W - X or W e R. The second possibility requires that W = 0 

as W <c Y e S, so in any case, W/X =-0, i.e. Y/X e S. / 

COROLLARY 2.4. Let M be hereditary and homomorphically 

closed. Then the smallest semi-simple class S(M) containing 

M is homomorphically closed. 

Proof. The radical class corresponding to S(M) is U(M). 

Let 0 * A/B e U(M), and let A/D be in M. If B £ D, then 

A/D s [A/B]/[D/B] is a homomorphic image of A/B e U(M), so A/D -= 0. 

If D S B, then A/B s [A/D]/[B/D] e M n U(M), so A/B - 0 -

a contradiction. Thus A/D • 0 and A e U(M). Since U(M) 

therefore satisfies (f) of Theorem 2.3, we have the result. / 

3. The Lower Radical Class and Snallest Semi-simple 

Class Defined By a Set of Real Groups. 

In this section we first look at the effects of certain 

f.o. group constructions on the skeleton, and then use the 

information gained to obtain description of L(M) and S(M) for a 

set M of real groups. 

LEMMA 3.1. Let A <c B, and let [nA,B^Cir e n fl . 

[nB,Bw(Tr e Il-j)] and [nn/A>B1TCTr € % / A ^ denote the skeletons of 

A, B, B/A respectively. Then 

(i) Hl-gl • in.l + --1g/Al and (up to isomorphism) 

(ii> {BJ- e nB} - {BJ- e V u {BJ- e nB/A}. 
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Proof. Let a be in A. Then a generates the same principal 

convex subgroup [a] in A and B. If X < B and a C X, then 

[a] $ X, so X £ [a] and therefore X < A. From this it follows 

that a determines the same jump D < [a] in A and B. 

Let b be in B\A. Then [b] £ A, so A J [b]. Also 

[b]/A < B/A. But if b + A € Y/A < B/A, then b € Y < B, so 

[b] £ Y, whence it follows that [b]/A » [b+A]. If W/A <Q B/A 

and b + A C W/A, then b C W so (as W < B) W J [b]. Conversely, 

if A S V < B and b C V, then V £ [b]. Let G < [b], H/A < [b+A] 

be the jumps corresponding to b in B, b + A in B/A respectively. 

Then 

H/A = U(K/A < c B/A|b + A t K/A} 

= U(K/A|A S K ^ c B and b C K} 

= U(K|A S K < c B and b C K}/A 

= U(LJL < B and b C L}/A = G/A. 

It follows that the chain of principal convex subgroups of B/A is 

order-isomorphic to that of the principal convex subgroups of B 

which contain A, and that at corresponding jumps G < [b], 

H/A < [b+A] we have 

[b+A]/(H/A) - [b+A]/(G/A) a ([b]/A)/(G/A) 

a [b]/G. / 

An ascending convex aeries for a f.o. group A is an ordinally 

labelled series 

0 " A0 % Al % ••• % Aa *c Aa+1 V ' % \ * k <*> 

in which AD - U A„ whenever $ is a limit ordinal. The f.o. 
B a < $ *a 
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groups A
a + - j / A

a
 ar© called the factors of (*). A descending 

convex series for A i s an ordinally-labelled series 

A - A0 > A1 > . . . > Aa > A01*1"1 > . . . > AX-= 0 (**) 
c c c c c c ' 

in which Afi * 0 A„ whenever B is a limit ordinal. The A a/A a + 1 

3 a < $ a 

are called the factors of (**). 

Series of these two kinds will be used in the description of 

radical and semi-simple classes respectively. We now describe 

the skeletons of f.o. groups having series of either kind. 

For infinite sums of order types, we refer to Sierpinski [14]. 

pp.246-247. 

THEOREM 3.2. Let A be a f.o. group with an ascending 

convex series (*). Let <f> be the set of ordinals {a|0 < a < u}, 

equipped with reverse order. For each a € $ let A +-i/A have 

skeleton [IIa>Bir(tT € -1a)]> and let A have skeleton [Ii.B^Tr € II)]. 

Then llllll « \ IITI II and {Bjfr € II} - U (B In € II } . 

a € $ a C $ 

Proof. If a € A, there exists an ordinal y such that a € A 

and y is minimal for this. It is clear that y is not a limit, 

and we therefore have A - * [a] £ A . By Lemma 3.1, that part 

of the skeleton of A determined by jumps occurring after A - and 

not after A is equivalent to the skeleton of A /A ., It 
follows that UUtt * J III I. The second assertion also follows 

a€ $ a 

from Lemma 3.1. / 

THEOREM 3.3, Let A be a f.o. group with a descending 

convex Beries (**). Let V be the set of ordinals {<x\0 < a < A}, 

equipped with standard order. For each a € ¥ let Aa/Aa"*"* have 

skeleton [Ha,Bw(ir € -1a)L and let A have skeleton [&,B (v € It)]. 

Then Hill - \ in I .+ 1 and {BJTT € 11} - {BJTT € II 1 U {0}. 
a€f a * o € f * a 
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Proof. If 0 4s a € A, there is an ordinal Y such that 

a € AY and Y is minimal for this. Since a € Aa for every a < Y> 

we see that Y is not a limit. We therefore have AY~ J t*3 - AY . 

It now follows as in the previous proof that the order type of 

the "non-zero part" of the skeleton of A is J *nr,'- Hence 
aev a 

(adding in the zero jump) we get Bill «- J ItII S + 1 as desired. 
ae* a 

The other assertion follows similarly. / 

THEOREM 3.4. Let M be a set of real groups. The 

following conditions are equivalent for a f.o. group A. 

(i) A € L(M). 

(ii) There is an ascending convex series 

0 - An < A- < ... < A„ < A„. 1 < ... < A - A 0 c 1 c c a c a+1 c c u 

for which every factor is in M. 

(iii) The skeleton of A has the form [nfB (ir € II)] where U 

is inversely well-ordered and each B_ e M. 
9 IT 

Proof. As normality of subobjects (i.e. convexity of 

subgroups) is transitive, the equivalence of (i) and (ii) follows 

as in [10], pp.276-277. 

(ii) «• (iii): We first show that every convex subgroup of A 

is an A . If 0 * X < A, let Y - mln{a|X 9 A A . If y - 1 a c ' ' a ' 

exists, then A y - 1 S X S Ay, so X / A ^ <c Ay/Ay_r But Ay/Ay^1 

is a real group, so X/A 1 * 0, i.e. X * A -. If y is a limit, 

on the other hand, then A. S X S A for every 6 < yf so 

Am y A X S X S A^ - a contradiction. 
Y 6<Y 6 Y 

We conclude that the set of convex subgroups of A is well-

ordered. So, therefore, is the set of principal convex subgroups, 
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whence n is inversely well-ordered. Let D < C be a jump in the 
TT TT 

chain of convex subgroups. Then there exists an ordinal X such 

that 

Dw = A, and C * A , , - , 
TT A TT A + l ' 

s o B = C / D w = A , . - / A * € M. 
TT TT TT A + l A 

(iii) •* (ii): If n is inversely well-ordered and if 

B - C /D for each TT € II, then the set {C ITT € 11} of principal 
TT TT TT TT ' r r 

converse subgroups is well-ordered by inclusion. We augment 

this well-ordered list as follows: for every jump D < C 

for which D_ is non-principal, insert D before C . Then 
TT TT TT 

K - IKcJc j c } - UCcJc 5 c J u U(DJC £ c }. 
TT P ' P ^ T T P ' P ^ T T P ' P ^ T T 

There results a well-ordered list 
0 - A^A-p. ..,Aa,Aa+1,... ,Â  - A 

of the convex subgroups of A, labelled by .ordinals, with the 

order matching that of inclusion. For each a, A. < A - is a 

jump, so A .-/A € M. If 8 is a limit, then Ag is not a 

successor and is therefore non-principal, so as above Aft» U A . 
15 a<8 a 

Thus we have the kind of series required in (ii). / 

We have an analogous result for semi-simple classes. 

THEOREM 3.5. Let M be a set of real groups and let S(M) 

denote the smallest semi-simple class containing M. The following 

conditions are equivalent for a f.o. group A.. 

(i) A € S(M). 

(ii) There is" a descending convex series 

A = A0 > A1 > „ . . . > „ Aa > A a + 1 >„...> Au - 0 c c c c c c 

for which each factor is in M. 

- 830 -



(iii) The skeleton of A has the form [II,B (ir 6 II)] where U is 

well-ordered and each B € M. 

Proof. The equivalence of (i) and (ii) follows as in 

[10], p.283, Theorem 7. 

(ii) «* (iii): Let X be a convex subgroup of A with 

0 * X J A. Then if y = min{a|Aa <= X}, we have AY c X S A6 for 

6 Y every <5 < Y- N O W Y is not a limit, as otherwise X S f) A = AT, 

!lY""'1 onH or. П ± Y / A
Y t£ Ä Y - 1 

<S <ү 
so A

T £ X £ A T~ X and so 0 * X/A7 < c A
T X/AT € M, whence 

Y-l 

X « A' . It follows that the set of all convex subgroups of 

A is inversely well-ordered by inclusion. In particular, every 

convex subgroup is a successor, and therefore principal (cf. [13], 

p.15). Finally this means that n is well-ordered. Let D < C 

be a jump. Then there is an ordinal X such that D„ =- A and 
TT 

C - A x~ 1, whence B w - C /D . AX~1/AX € M. 

(iii) »• (ii): If II is well-ordered, then the set of 

principal convex subgroups is inversely well-ordered by inclusion. 

This means in particular that there is a largest principal convex 

subgroup, i.e. that A (as the union of all principal convex 

subgroups) is principal. Suppose there exists a non-principal 

convex subgroup Y. Then there is a jump Y < C, where C is 

principal and Y is the join of all the principal convex subgroups 

properly contained in C. But there is a largest such subgroup, 

so Y is principal. From this contradiction we deduce that all 

convex subgroups of A are principal. We can label them by 

ordinals to give a well-ordered list 

A - A0, A1, k2
9...9k

a
9...9A

]i - 0. 

For each a, A a + 1 < Aa is a jump, so A a/A a + 1 € M. Let B be a 
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limit ordinal. Then A has no successor, but for every 

aQ < 6 we have 

A ^ ? 0 Aa 5 A3, 
a<$ 

whence 0 Aa = A^. Thus 
a<(3 

A - A° > A1 > ...> Aa > A a + 1 > ...> A» - 0 c c c c c c 

is a series of the kind required in (ii). / 

4. Examples 

We now consider some examples of radical and semi-simple 

classes. 

EXAMPLE 1. Let M be a set of real groups. By Theorem 3.4 

L(M) consists of those f.o. groups whose skeletons are inversely 

well-ordered lists of groups from M. By Corollary 2.2, L(M) is 

hereditary. It is not a semi-simple class, as the following 

example shows. Let A » {0,1,2,... ;u>} with its natural order, 

and for each X € A let A, be a group in M. Consider the 

lexicographic product r, e .A,. 

Let G„ • r{A,\\ > n} for each n. Then n A 

FAX/Gn a r { A0'* , , , An-l J € L ( M ) f o r e a c h n (cf* F u c n s -3^» P-55) 

while rA,/n G„ - rA,/A A n A w 

a r { A 1 , A 2 , . . . } C L(M), 

as its skeleton is not inversely well-ordered. By Theorem 1.2, 

L(M) is not a semi-simple class. 

EXAMPLE 2. Let M be a set of real groups. Then U(M) is 

not hereditary unless M contains all real groups, for if X € M 

and Y is a real group, then X < Y r X, so ifU(M) is hereditary 
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Y r X is in S(M) (by Theorem 2.1) whence (as by Corollary 2.4 

S(M) is homomorphically closed) Y € S(M) and hence Y e M. 

EXAMPLE 3. Let M be a set of real groups. By Theorem 

3.5, S(M) consists of those f.o.groups whose skeletons are 

well-ordered lists of groupr from M. Since M is homomorphically 

closed, so is S(M),(by Corollary 2.4). However, S(M) is not a 

radical class. To see this, consider the lexicographic product 

rAeAAA» w n e r e A * {• • • »-2,-l,0} with the integers in their 

natural order and each A^ e M. For each n, let H =r{AA|A > n}. 

Then as {n,n+l,...,-2,-1,0} is well-ordered, Hn is in S(M) for 

each n. However, r A e AA X » UH n € S(M). 

EXAMPLE 4. Let X,Y be distinct real groups. Then 

L({X r Y}) is not hereditary as the only homomorphic images of 

X r Y are 0, X and X r Y, so Y C L({X r Y}) although Y <Q X r Y. 

We have seen that homomorphically closed semi-simple classes 

need not be radical (Example 3) and that hereditary radical 

classes need not be semi-simple (Example 1). We conclude with 

some discussion of semi-simple radical classes, which we shall 

call, for brevity, SSR classes. 

Since a SSR class is homomorphically closed and hereditary, 

it must contain, together with any group A, every C/D, where 

C < D is a jump in the chain of convex subgroups of A. Thus 

SSR classes can be expected, in some sense, to be determined by 

the real groups they contain. We shall consider two distinct 

ways of generating SSR classes from real groups. 

EXAMPLE 5, Let M be a set of real groups and let T(M) 

denote the class of f.o. groups for whose skeletons [n,B (IT € II)] 

we have B € M for all w. By Lemma 3.1, T(M) is hereditary, 
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homomorphically closed and closed under extensions. If A has a 

chain {A. |X e A} of convex subgroups in T(M), let A = UA,. . 

If 0 t a C A let a be in A, . Then as in the proof of Lemma 3.1, 
A0 

the jump D < [a] and the factor [a]/D are the same whether 

considered in *K or A,. Hence [a]/D € M and A € T(M), so by 

Theorem 1.1, T(M) is a radical class. Finally let a f.o. group 

G have a chain {G |p e P} of convex subgroups such that each 

G/G € T(M). If g C QGn then g C some G . Since 
P p pQ 

G/Gft a [G/0Go]/[Gn /HGJ 
P0 p pQ p 

it follows as in the proof of Lemma 3.1 that [g + OG ] determines 

the same real group as [g + G ] in the appropriate skeletons. 
p0 

We conclude that G/OG e T(M), whence by Theorem 1.2, T(M) is a 

semi-simple class also. 

For a given set M of real groups, T(M) is not the smallest 

SSR class containing M. We now present a transfinite induction 

method of constructing the smallest such SSR class. For each 

ordinal a we construct a class M as follows: 

Wl * M ; Ma+1 * S L ( Ma* f o r e v e r v a» 

Mfl - U M if $ is a limit. 
e . a<6 a 

THEOREM 4.1. For a set M of real groups, U*L is the 
a a 

8malle8t SSR class containing M. 

Proof. It is clear that there is a smallest SSR class 

containing M; call it SSR(M). If Ma S SSR(M), then, since 

SSR(M) is a radical class, L(Ma) S SSR(M), and then, since 

SSR(M) is a semi-simple class, M a + 1 « SL(Ma) S SSR(M). Since 

everything is clear at limits, we conclude that UM„ S SSR(M). 
a u 

Thus we need only show that U*L is a SSR class. 
a a 

- 834 -



By Corollary 2.4, SL(C) is homomorphically closed for every 

class C. Hence UM is homomorphically closed. Similarly 

(more obviously)UM„ is hereditary. Let A be such that every 
a a 

non-zero homomorphic image has a non-zero convex subgroup in 

MM . Then for every N < A, A/N will have a non-zero convex 

subgroup in some M ,„.. If y is chosen greater than every a(N), 

then every non-zero homomorphic image of A will have a non-zero 
convex subgroup in M . so that A € L(M ) S SL(M ) = M, ,- 9 UM . 

Y Y Y Y+-- a a 

Analogously, if every non-zero convex subgroup of A has a non­

zero homomorphic image in JIM , then for some 6 we have 

A € S(M6) SS(L(M6)) - M 6 + 1 - U M a . 

Thus (cf. (R2), (S2), p.145 of [2]) UM„ is a SSR class. / 
a a 

To show that SSR(M) * T(M) we obtain a condition which the 

skeletons of groups in SSR(M) must satisfy. For this purpose we 

make use of some classes of chains which we now define. For a 

class V of chains, let 

V* « {A| IIAII = J "AJ> where $ is inversely 
$ € $ * 

well-ordered and each A. € P}, 

and let 

P = {A|IIAII *- I IIA.H, where Y is well-ordered with 

greatest element and each A. € V } . 

Now let 

C^ « the class of singletons, 

C .« -= C for each ordinal a and a+1 a 

Ce » U C for every limit ordinal $. 

g a<3 a 

PROPOSITION 4-2. Let M be a set of real groups. If 

A 6 SSR(M) then the order type of the skeleton of A is in Borne C . 
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Proof. Obviously if A € M- then the order type of the 

skeleton of A is in C-. Suppose the analogous result is true for 

M and C for every y < a. Then clearly it persists if a is a 

limit, so we look at the case where a-1 exists. Let G be in 

M • SL(M - ) . By Theorem 3.2, [10], pp.276-277 and the 

inductive hypothesis, the order types of the skeletons of groups 

in L(M -) are in C* -. Then by Theorem 3.3 and [10], p.383, 

the groups in M « SL(M ..) have skeletons with order types in 

K-x - < v ' 
Thus to show that SSR(M) * T(M) we simply have to exhibit a 

chain which is.not dn any C . Consider the interval (0,1] of 

real numbers with its usual order. Clearly (0,1] € C-. 

Suppose (0,1] € Ca, with a minimal. Then a is not a limit, so 

(0,1] is a disjoint union O U J O < y < fS} of intervals I 

(labelled by the ordinals from 0 to some 3) each of which is in 

C -. In turn each I is an inversely well-ordered disjoint 

union of intervals from C -. Thus (0,1] is a disjoint union of 

intervals (with greatest elements) from C -. Since (0,1] is 

equivalent to any non-trivial such unit, each of them must be a 

singleton (by the minimality of a). But then each I is 

inversely well-ordered, and an interval, hence a singleton, so 

(0,1] • U-L is well-ordered - a contradiction. 
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