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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

26,4 (1985) 

ON BAiRE ISOMORPHISMS OF NON-METRIZABLE COMPACTA 
A. CHIGOGIDZE 

Abstract: Using a spectral theorem for Baire mappings bet
ween compacta i t i s shown that: (a) the first-ievei Baire isomor
phisms preserve the dimension dim of compacta; (b) there i s no 
Baire isomorphism between the Cantor cube of weight x and i t s 

CO 

hyper space for tr y 2 . 
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Ciassifioation: 54B25, 54C50 

A1X topological spaces considered will be compact and Haus-

dorff. 

fhe Baire sets of X of muitipiicative class 0f denoted ZQ(X)f 

are the zero-sets of continuous real-valued functions. The sets 

of additive class 0, denoted CZ (X)f are the complements of the 

sets in Z (X). Define Inductively for each countable ordinal oO 

the sets of multiplicative class oC + 1 f denoted Z ̂ ( X ) , to be 

the countable Intersections of the sets of additive class cc and 

the sets of additive class <*+1f denoted CZaC^(X)f to be their 

complements. The sets of multiplicative class A ( ft a limit or

dinal) t denoted Z^(X) - are defined to be the countable intersec

tions of countable unions of sets In ^ x \S^ • a n d *ht 8rt* °* 

additive class A f denoted CZ^(X)f are defined to be their oom-

plements. The sets from the collection ^ ̂ ^ Zo£(X) are called 

the Baire sets of I. It Is well-known that the oollection of aXX 
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Baire sets of X is the smallest collection of subsets of X which 

contains ZQ(X) and is closed under complementation, countable 

union and countable intersection. 

A mapping f:X—> Y is called a Baire mapping (of class <y ) 

if an inverse-image of each cozero-set of Y is a Baire set (of 

additive class 7 ) of I. A bisection f is called a Baire isomor

phism (of class {f 9<f)) if f is a Baire mapping (of class 3*) 

and f~ is a Baire mapping (of class of). 

Let us recall also that a hyperspace of X, denoted exp Xt 

is a collection of all non-empty compact subsets of X in the Vie-

toris topology. For any mapping f:X—*• Y there exists an associ

ated mapping exp f: exp X —> exp Y. It is well-known L6J that 

expsCOMP—> COMP is a covariant functor. 

Unless noted, definitions and terminology concerning inver

se spectra will be found in [61. 

Spectral representations of Baire mappings. Results of this 

section were announced in U3» 

- # •. Lemma 1# Let S » 1-^tP^ tAs be a t -spectrum and f:X—•* Y 

be a Baire mapping (of class Y ) where X • lim S and wY £ x . 

Then there exist an index 06 e A and a Baire mapping (of class 

T> *<**Xoc~* Y • ^ that f - **• P«:* 

Proof. By [61, our spectrum is factorizing and so, using 

transfinite induction, one can prove that each Baire set of X is 

cylindrical, i.e. if B is a Baire set (of additive class y ) of 

X then there exist an index aC e A and a Baire set (of additive 

class Y ) B^ of X^ such that B • p~ (B^). 

Let -\G^ s & c, "t I be any base of Y consisting of coaero-

sets of Y. Since f is a Baire mapping (of class J ), the sets 
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f~1(G~ ) , A e % , are Baire se t s (of addit ive c las s 3* ) of X 

and consequently, by the above remark, for each A 6 X there 

e x i s t s oC* e A such that f~1(G. ) » p"1 (p_ (f~1(G. ) ) ) . By 

T -completeness of A, 06 » sup "toc^ : A e> t; } i s an element of 

A. Clearly, for each A € X , *"1(G^ ) • p^1 ( p ^ (f~1 (G^ ) ) ) . 

Let us consider now any two points x-j and Xg in X with 

^(x- i ) • Paofxg). L e * u s s n o w *n a* *(x.|) * f(x.->). Suppose the con

verse. Then there e x i s t s hex such that f (x . j )eG^ and f (x^)^ 

$ Ĝ  . Consequently, x.| € f"" (G^) and x.-,^ f~ (G^). By the const

ruction of 06 , Po6(x1)€ o ^ J f " 1 ^ ) ) and pa,(x2)4.: ©^(f^^G^)). 

Hence ^ ( X i ^ P ^ X g ) . Contradiction. 

How we can define the mapping t.iZ.—*• Y by the following 
CC OCr 

way: f^ » f p" # Clearly, f » £ p ^ and so , i t only remains to 

show that f^ i s a Baire mapping (of c l a s s ^). Por, l e t G be a 

cozero-set of Y. Then a Baire set (of addit ive c la s s jr) f (G) 

i s an inverse-image of a set t^ (G) under a perfect mapping p^ . 

Consequently, f̂ . (G) i s a Baire set (of additive c lass -3") of X 

(C43f p. 153) and hence f^ i s a Baire mapping (of c l a s s '3*). 

The proof i s complete. 

Suppose we are given two inverse spectra S » {X^, poC,A} and 

S* • $Y^, ,q , ,A*} . A Baire morphism (of c las s f ) of S to S* i s 

a family { h , ^ , ! consist ing of a nondecreaaing function h from 

A* to A such that the se t h(A*) i s cofinal in A, and of Baire 

mappings (of c l a s s -y ) ^ s*hl*.') ~~* *<*' d e * i n e d * o r *** <*-' e 

e A# and such that <£et • t Pfc^') for any o c ' , ft'* k s a t i s 

fying oc' 4* / 3 ' • Any Baire morphism (of c la s s f ) of S to S * 

induces a Baire mapping (of c la s s -y ) of lim S to lira S '• To show 

this l e t us consider a thread x * 4 x J £ X » 11m S. Let us def i -

ne a point y « { v ^ , 5 of the product (~l ^^ , : cc'tf A'jby 
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&'" *' ( xh(at') ) # I t ** e a s y t 0 s e e t h a t l n 8 u c h a w a y w a <>****•» 

a mapping f:X—* Y « lim s ' with q^,f » f., p^/^,,) for any oc*' 6 

e A ' . Let us show that f i s a Baire mapping (of class nr )# For, 

consider a cozero-set G in Y. By the compactness of Y there ex

i s t a countable collection of indexes cC**ek* and cozero-sets 

G - in Yy/ such that G « U i q~1, (G , , )sk e c«>? . Then 
k k O O J - O C J U 

f-1(G) - U ^ C G ^ ) . * c *>} - ^ ^ ^ ( ^ ( G ^ ) ) : ^ ^ . 

Since f , are Baire mappings (of class y ) and the mappings p^ 

are continuous, the set f" (G) is a countable union of Baire sets 

(of additive class f ) • Thus f is a Baire mapping (of class y ). 

Thus we have 

Lemma 2. The limit mapping of the Baire morphism (of class 

f) is the Baire mapping (of class y ) . 

The following theorem shows that for X -spectra the conver

ge also holds: 

Theorem 1. Any Baire mapping (of class -y ) between the li

mit spaces of two X -spectra ( X 2: co ) with the same index sets 

is the limit mapping of some closed and co final Baire morphism 

(of class y )• 

The validity of this theorem is an Immediate consequence of 

the above lemmas an Proposition 1.3 from £61. 

Corollary 1. Any Baire isomorphism (of class {y9<f)) bet

ween the limit spaces of two X -spectra ( x 2" co) with the same 

index sets is the limit mapping of some closed and co final Baire 

morphism consisting of the Baire isomorphisms (of class (y9cf))* 

Preservation of dimension. Let us recall £43 that a bisec

tion between Z and Y is called the first-level Baire isomorphism 
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i f an image of any countable union of zero-se ts i s a countable 

union of zero-sets in both d irect ions . Clearly any f i r s t - l e v e l 

Baire isomorphism i s a Baire isomorphism of c l a s s ( 1 , 1 ) . An im

portant theorem of Rogers and Jayne £4] fl51 s ta tes that the 

f i r s t - l e v e l Baire isomorphisms preserve the dimension dim of me-

trizable compacts. 

Theorem 2. If X and Y are f i r s t - l e v e l Baire isomorphic com-

pacta, then dim X « dim Y. 

Proof. Without l o s s of general i ty we can suppose that 

w l » w Y > w . Let f:X—* Y be the f i r s t - l e v e l Baire isomorph

ism and dim X^n* Of course, i t i s suf f ic ient to prove that 

dim Y_£ n. Let us consider a sigma-spectrum ( i . e . cj -spectrum) 

s 1 • ^^oc^o-.*^ s u c i l t a a t l i m S1 * x a n d d i m *ac~n * o r e a c h ^ 6 

£ A. Since X and Y have the same weight we can suppose that Y i s 

the l imi t space of some sigma-spectrum S2 • *f^t<^tA-1 with the 

same index s e t as S... By the Corollary 1 there e x i s t s a Baire 

morphism {t^z cc e Aj:S-j—> S2 such that f • lim t^ and each t^: 

• 1 ^ — > y^ i s a Baire isomorphism of c lass ( 1 , 1 ) . I t i s easy 

to s e e , using closedness of the l imi t projections p^ and q^ , 

that each f̂  i s the f i r s t - l e v e l Baire isomorphism. (Indeed, l e t 

Z « U Z± be a countable union of zero-sets of X^ • Then, by con

t inu i ty of p^ , p~ (Z) • U p ~ (Z.̂ ) i s a countable union of zero-

s e t s of X. Since f i s a f i r s t - l e v e l Baire isomorphism 

f(p* (Z)) • U T^f ishere each T, i s a zero-set of Y» Since q ^ 

i s a closed napping we can conclude that q^C-^) i s a closed sub

set and, consequently, by metr izabi l i ty of X^ , i s a zero-set of 

1 ^ . I t only remains to note that f ^ Z ) « q<JC(f(p^1(Z))) • 

• q^( U f^) « U QjC^K) Consequentlyf by the above mentioned 

theorem of Rogers and Jayne, dim Y^ -£ n f oC c k. Thus dim Y.^n. 

The theorem i s proved* 
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Let us r e c a l l that the t r a n s f i n i t e dimensions ind and Ind 

are the ordinal valued functions obtained through the extension 

by t rans f in i t e induction of the c l a s s i c a l notions of small or 

large inductive dimension respec t ive ly ; the values of the trans

f i n i t e dimensions considered in the c l a s s of separable metrizab

l e spaces are always countable ordinals . The t rans f in i t e dimen

sions were f i r s t considered by W. Hurewicz who proved that for a 

Pol i sh space X the transf in i te dimension ind i s defined i f f X i s 

countable-dimensional ( i . e . X i s a union of count ably many zero-

dimensional s e t s ) . I t i s known C 53 that the l a s t property i s an 

invariant of f i r s t - l e v e l Baire isomorphisms in the c la s s of raet-

rizable compact a. 

Let 3C denote the c las s of compacta each of which admits a 

zero-dimensional mapping onto some metrizable compactum. 

Theorem 3* If X and Y are f i r s t - l e v e l Baire isomorphic com

pacta, X e 3C and the transf in i te dimension ind X i s defined, 

then Y t 3C and the transf in i te dimension ind Y i s defined. 

Proof. By Theorem 5 from 123, there e x i s t s a zero-dimensio

nal mapping g of X onto a countable-dimensional metrizable com

pactum K. By the well-known theorem of Tumarkin, K i s a union of 

countable co l l ec t ion of zero-dimensional G ^ - s e t s K±. Clearly, 

I « U«(g* ( K j h i 6 c*>l and for each i e co t g " 1 ^ ) , denoted 

X^, i s a zero-dimensional, Lindelof, Cech-complete space. Let 

S1 **{X4C,poCtA! be any atgma-spectrum, the l imi t space of which 

coincides with X. Using the above representation of X, the spec

t ra l theorem of S5spin 163 for sigma-spectra and the p o s s i b i l i t y 

of representation of any LindelSf and 5ech-complete space with 

dim^n as the l imit space of sigma-spectrum consist ing of Pol ish 

•paces with dim^n we can suppose without l o s s of general i ty that 

for eaeh oc e A, X^ i s a countable-dimensional compactum. Let 
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us note a lso that without l o s s of genera l i ty we can suppose the 

zero-dimensional i ty of a l l l i m i t project ions p^ in S.j. Indeed, 

X i s the l i m i t space of the sigma-spectrum S-j » 4X^,0^ ,Ai and 

X € 3C f i . e . there e x i s t s a zero-dimensional mapping g:X—p- Kf 

where K i s a metrizable compactum. Clearly there e x i s t an index 

eC^e A and a mapping g ^ :X —> K such that g « g . p . Now, 
<**o cc0 cc0 oc0 cc0 

i f x e l , then pC1 (x) c g*1 (k) where k » R (X) e K. By the zero-
aC0 cc0 <x0 

dimensionality of g f dim p~ (x) * 0 and, consequently, p is ze-
<*o ^o 

ro*-dimensional. F ina l ly , l e t us consider the sigma-spectrum S.j' * 

» <X fp^f at e A,oC2 oCQ}* Clearly, lim S.j' » X and a l l limit pro

ject ions of S.T are zero-dimensional* Let f;X—P Y be a f i r s t - l e 

ve l Baire isomorphism. Let S2 -» ^\c*%i*^ b e a n- f sigma-spectrum 

with lim So * Y» Since f i s a f i r s t - l e v e l Baire isomorphism bet

ween X and Y, by Corollary 1 f there ex i s t s a Baire raorphlsm 

.̂f̂ : oee AjxS-j--^ S2 such that f * lim f^ and each f^ i s a Bai

re isomorphism of c lass ( 1 f 1 ) . Moreover, each f^ , as i t i s easy 

to se , i s the f i r s t - l e v e l Baire isomorphism. (Precisely the same 

arguments are used in the proof of Theorem 2 . ) By £5J, taoh Y^ 

i s countable-dimensional. Let us note now that each l imit projec

t ion q^ in S2 i s zero-dimensional. For, l e t us consider any f i b 

re of the projection q . • I t i s easy to see that i t i s f i r s t - l e 

ve l Baire isomorphic to the corresponding f ibre of the project i 

on p^ • Since these f ibres are compact, we can conclude, by The

orem 2 , that q^ i s aero-dimensional. Consequently, Y e 3C . By 

£21, the trensf in i te dimension ind X i s defined. The theorem i s 

proved. 

I do not know i f the las t theorem holds without the addi t i 

onal assumption that X 6 % ? 
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Hyperspacea and Baire isomorphisms 

,r+ 
Theorem -U There i s no Baire isoraorp*-*8111 between B *»<* 
x* o> 

HXP D for X > 2 . 

Proof• Consider the Cantor cube D* of weight x + # Clear-

y D i s the l imi t space of the X •spectrum s ' • {DA,p?f 

exp^r t j where e x p ^ f + denotes the c o l l e c t i o n of a l l subsets 

of *t of cardinal i ty ^ x and p£ i s the natural projection of 

DB onto DA. Pix some k^& exp^ X* of cardinal i ty X . Clearly, 

the l imi t space of the x -spectrum S » -tD f p? t A .B^i * A B e 

e exp^ r̂ +} coincides with D* and a l l the l imi t promotions p. 

of S are homeomorphic to the natural projection of D* onto D*̂  • 

I t i s easy to see that exp S --{exp DA
fexp pjf i s a ^-spectrum 

and i t s l imit space i s homeomorphic to exp* • Let us suppose 

now that there ex i s t s a Baire isomorphism f between D* and 
t + 

exp D • By the Corollary 1 f we can conclude that there e x i s t s 

a Baire isomorphism t^tlr—> exp D (where A s t* and IA| • x ) 

such that -j^P^ * a*P P^%*» Consequently, for each point P of 

exp D the f ibre (exp p^)" (P) i s Baire isomorphic to the cor-
— 1 - - . 1 .*»*" 

responding f ibre pA (f^ (P)) which i s homeomorphic with D^ . 

Let T be a subs pace of J> such that T i s discrete i n the r e l a t i 

ve topology and I T I « x • Let P denote the closure of T i n D \ 

Obviously, P i s a point of exp DA and there e x i s t s a pair-wise 

d i s jo int c o l l e c t i o n of cardinal i ty X of open subsets of P. 

Indeed, by the construction, P i s the closure in D (I AI • x ) 

of a subspace T&D* such that |TI • X and T i s d iscrete i n the 

topology induced from ITS Let T • it^t oc 6 x} • Let G^ be an 

open subset of P with G ^ O T - \t^} {u « X ) • The c o l l e c t i o n 

iG^t oo s r l of open subsets of P i s desired. I t only remains to 

riote that 4 a too 6 t l i s a pair-wise d i s jo in t oo l l e c t i on . Por, 
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l e t us consider the in tersec t ion G^A % m <*• Clearly, G i s open 

in F and i t s in tersec t ion with T i s empty. Consequently, lay the 

density of T in F, G » Ĝ  fl Cu i s also empty. One can eas i ly 

check that the f ibre (ezp pA)~ (F) also contains a pair-wise 

dis jo int c o l l e c t i o n of cardinal i ty X of open s e t s . Then we can 

conclude that there e x i s t s a pair-wise dis jo int co l l e c t i on of 
1 t *tf+ 

cardinality t of Baire s e t s in p j (fT (F)) » D . Since each 

Baire set i s a union of zero-sets we can conclude that there ex

i s t s a pair-wise d i s jo int c o l l e c t i o n of cardinal ity t of zero-

se t s in D • But th i s i s impossible by the resu l t of R. EngeIking 
€J 

C 33 and the inequality f > 2 « The proof i s complete. 

Corollary 2 . (CH) There i s no Baire isomorphism between 

D * and exp D • 

As L.B. Shapiro Informed me, the above corollary holds even 

without using CH,[71. I t should be observed also that the Cantor 

cubes of weights o>n , n • 0 , 1 , 2 , are Baire isomorphic with their 

hyper spaces. (For n » 0,1 these assert ions follow from the w e l l 
ed &>.. 

known fac t s that the Cantor cubes D ° and D are even homeomor-

phic with the ir hyperspaoes. For n • 2 the assert ion follows from 

Shapiro's result ( [ 7 1 , Corollary 2 ) . ) 
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