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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

26,4 (1985)

ON BAIRE ISOMORPHISMS OF NON-METRIZABLE COMPACTA
A. CHIGOGIDZE

Abstract: Using a spectral theorem for Baire mappings bet-
ween compacta it-is shown that: (e) the first-level Baire isomor-
phisms preserve the dimension dim of compacta; (b) the*:e is no
Baire isomorphism between the Cantor cube of weight ©v' and its

hyperspace for 7 > 2“ .
Key words: ~+ -spectrum, Baire set, Baire mapping.
Classi fication: 54B25, 54C50

All topological spaces considered will be compact and Haus-
dortf.

The Baire sets of X of multiplicative class O, denoted zo(x),
are the zero-sets of continuous real-valued functions. The sets
of additive class O, denoted czo(x), are the complements of the
sets in zo(x). Define inductively for each countable ordinal o<
the sets of multiplicative class o< + 1, denoted 2 ,, (X), to be
the countable intersections of the sets of additive class oc and
the sets of additive class « +1, denoted CZ ,, (X), to be their
complements. The sets of multiplicative class A (A a limit or-
dinal), denoted za(x), are defined to be the countable intersec-
tions of countable unions of sets in ), 2 (X), and the sets of
additive class A , denoted CZ,(X), are defined to be their com~-
plements. The sets from the collection «.E) tq z‘(x) are called

the Baire sets of X. It is well-known that the collection of all
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Baire sets of X is the smallest collection of subsets of X which
contains zo(x) and i8 closed under complementation, countable
union and couritable intersection.

A mepping f:X—> Y is called a Balre mapping (of class < )
if an inverse-image of each cozero-set of Y is a Baire set (of
additive class 7 ) of X. A bijection f is called & Baire isomor-
phism (of class (y ,d’)) if £ is a Baire mapping (of class %)

=1 i5 & Baire mapping (of class J).

and £
Let us recall also thaet a hyperspace of X, denoted exp X,
is a collection of all non-empty compact subsets of X in the Vie-
toris topology. For any mapping f:X —> Y there exists en associ-
ated mapping exp f:exp X —> exp Y. It is well-known [6] that
exp:COMP —> COMP is a covariant functor.
Unless noted, definitions and terminology concerning inver-

se spectra will be found in [61.

Spectral representations of Baire mappings. Results of this
section were announced in [1]1,

Lemma 1, Let S = {Iﬂc,pﬁ sJAY be & 7 -spectrum and £:X—> Y
be a Baire mapping (of class ) where X = lim S and wY < 7.
Then there exist an index of € A and a Baire mapping (of class
¥) £, 31X —> Y such that £ = f_.p .

Proof. By [6]1, our spectrum is factorizing and so, using
transfinite induction, one can prove that each Baire set of X is
cylindrical, i.e. if B is a Baire set (of additive class ¥ ) of
X then there exist an index o ¢ A and a Baire set (of additive
class 4 ) B, of X mich that B = b (B).

Let {G, : A € ¥! be any base of Y consisting of cozero-
sets of Y. Since f is a Balre mapping (of class y ), the sets
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1‘1(01), A e T , are Baire sets (of additive class y ) of X

and consequently, by the above remark, for each A € Tt there
-1 -1 -1

exists o, e A such that £7 (G, ) = pa‘a (pd)\(f (GJ\ ))). By

2’ -completeness of A, o = sup{t, : A e ©1 is an element of

A. Clearly, for each A € T , £7'(G,) = b (b (£71(6,))).

Let us consider now any two points xy and x in X with
pac(x.,) = p(x;). Let us show that f(x,) = f(x,). Suppose the con-
verse. Then there exists A € T such that f(x,)eG, and f(x,)¢
4 G, . Consequently, x4 € ! (G,) and x, ¢ e (G,). By the const-
ruction of o« , p(x)€ g"(fd(Ga)) and p (x,) & %c(f“(Ga))-
Hence p (xy)% P(x;). Contradiction.

Now we can define the mapping {,(‘:Ioc —> Y by the following
way: £ = ¢ p;1. Clearly, f = £ p, and so, it only remains to
show that f  is a Baire mapping (of class ¥ ). FPor, let G be &
cozero-get of Y, Then e Baire set (of additive class y ) - (G)
is an inverse-image of a set 20'61 (G) under a perfect mapping P
Consequently, f;1 (G) is a Baire set (of additive class ") of X
(£43, pe 153) and hence £ 1is a Baire mapping (of class ).

The proof is complete.

Suppose we are -given two inverse spectira S = -[x*, p:.A} and
S = {Yd,.qil,,A'}. A Baire morphism (of class 7 ) of S to S° is
a family {h'foc/} consisting of a nondecreaaing function h from
A" to A such that the set h(A") is cofinal in A, and of Baire
mappings (of class 1? fa‘,.:xh(‘,)—? Y, defined for all o’ €
€ A and such that q::f,,: =1, pgff,; for any o«‘, B’6& A satis-
fying o«’ < ‘. Any Baire morphism (of class 3 ) of S to s’
induces a Baire mapping (of cless 9 ) of 1im S to 1im S'. To show
this let us consider a thread x --{xoc}e X = 1im S. Let us defi-
ne a point y '{L-3 of the product M 4Y ,: <’e APby
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Je.= &,, (xh(‘,)). It is easy to see that ip such a way we obtain

a mapping £:X—> Y = 1im S with q‘,t = Ec' Pp(x’) for any o’e

e A", Let us show that f is a Baire mapping (of class a ). PFor,

consider a cozero-set G in Y. By the compactness of Y there ex-
,

ist a countable collection of indexes ccké A" end cozero-sets

-1
cd,k in Yd’k such that G = U { q&,k(Goc,k)zk 6 w? , Then

-1 -1 . -1 -1 .
=) = U éqd,k(ecc,k).k cwt= U{ph(oc'k)“ 'k‘G"k))'k € w3.

Since f , are Baire mappings (of class ) and the mappings Poc
L"

are continuous, the set 1'1 (G) is a countable union of Baire sets
(of additive class Y ). Thus f is a Baire mapping (of class Y ).

Thus we have

Lemme 2. The limit mapping of the Baire morphism (of cless
~#} is the Baire mapping (of class ).

The following theorem shows that for < -spectra the conver-
;e also holds:

Theorem 1, Any Baire mapping (of class ¥ ) between the 1li-
mit spaces of two  -spectra ( @ = cw ) with the same index sets
is the limit mapping of some closed and cofinal Baire morphism
(of class 7y ).

The validity of this theorem is an immediate consequence of

the above lemmas an Proposition 1.3 from [6].

Corollary 1. Any Baire isomorphism(of class (4 ,d")) bet-
ween the limit spaces of two < -spectra (7 Z w) with the same
index spta is the limit mapping of some closed and cofinal Baire
morphism consisting of the Baire isomorphisms (of class (y,d")).

Pregervation of dimension., Let us recall [4] that a bijec-
tion between X and Y is called the first-level Baire isomorphism
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if an image of any countable union of zero-sets is a countable
union of zero-sets in both directions. Clearly any first-level
Baire isomorphism is a Baire isomorphism of class (1,1). An im-
portant theorem of Rogers and Jayne [4]1,[5) states that the
first-level Baire isomorphisms preserve the dimension dim of me-

trizable compacta.

Theorem 2, If X and Y are first-level Baire isomorphic com-
pacta, then dim X = dim Y.

Proof., Without loss of generality we can suppose that
wX=wY>w , Let £:X—~—> Y be the first-level Baire isomorph~
ism and dim X< n., Of course, it is sufficient to prove that
dim Y< n, Let us consider a sigma~spectrum (i.e. G -spectrum)

Sy =4X,,p",A} such thet 1in S; = X and dim X £ n for each o €
€ A, Since X and Y have the same weight we can suppose that Y is
the 1imit space of some sigma-spectrum S, = {Yd,q:;,A} with the
same index set as S,. By the Corollary 1 there exists a Baire
morphism {£ : ¢ € A}:S;—> S, such that f = lim £, and each £ :
:X, —> Y, is & Baire isomorphism of class (1,1). It is eesy
to see, using closedness of the limit projections P amd q.
that each £, 1is the first-level Baire isomorphism. (Indeed, let
Z = uzi be a countable union of zero-sets of X . Then, by con-
tinuity of p , p: (Z) = Up;1(Zi) is a countable union of zero-
sets of X, Since £ is a first-level Baire isomorphism
f(p:(z)) = U T;, where each T, is a zero-set of Y, Since q
i8 a closed mepping we can conclude that %(mi) is a closed sub-
set and, consequently, by metrizability of Y., is a zero-set of
Y. It only remains to mote that £.(2) = q (£(p3 (2))) =
- q‘(U ) = v q*(‘!i).) Consequently, by the above mentioned
theorem of Rogers and Jayns, dim ¥ £ n, o£ € A, Thus dim Y<n.
The theorem is proved.
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Let us recall that the transfinite dimensions ind and Ind
are the ordinal valued functions obtained through the extension
by transfinite induction of the classical notions of small or
large inductive dimension respectively; the values of the trans-
finite dimensions considered in the class of separable metrizab-
le spaces are always countable ordinals. The transfinite dimen-
sions were first considered by W. Hurewicz who proved that for a
Polish space X the transfinite dimension ind is defined iff X is
countable-dimensional (i.e. X is a union of countably many zero-
dimensional sets). It is known [ 5] that the last property is an
invariant of first-level Baire isomorphisms in the class of met-
rizable compacta.

Let K denote the class of compacta each of which admits a

zero-dimensional maepping onto some metrizable compactum,.

Theorem 3., If X end Y are first-level Baire isomorphic com~
pacta, X € X and the transfinite dimension ind X is defined,
then Y ¢ X and the transfinite dimension ind Y is defined.

Proof. By Theorem 5 from [2], there exists a zero-dimensio-
nal mapping g of X onto a countable~-dimensional metrizable com-
pactum K. By the well-known theorem of Tumarkin, K is a union of
countable collection of zero-dimensional G, -sets K;. Clearly,
I= U-is"(Ki)zi 6 w}? and for each i ¢ w , 3'1(1(1), denoted
X;, is a zero-dimensional, Lindelof, Cech-complete space. Let
CH -{I‘c.p‘f.ﬂ be any sigma-spectrum, the limit space of which
coincides with X, Using the above representation of X, the spec~
tral theorem of SZepin [6] for sigma-spectra and the possibility
of representation of any Lindeldf and (‘.eeh-conplote space with
dim< n as the limit space of sigma-spectrum consisting of Polish
spaces .':Lth dim<n we can suppose without loss of generality that
for each o & A, X, 1is a countable-dimensional compactum. Let
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us note also that without loss of generality we can suppose the
zero-dimensionality of all 1limit projections p, in Sy, Indeed,
X is the limit space of the sigme-spectrum S; = 1X.,p/,A} and

X eX , i.e. there exists a zero-dimensional mapping g:X—» K,
where K is a metrizable compactum. Clearly there exist en index

oL o€ A and a mapping 8°‘o=x°‘o

if xeX then p"1 (x)25'1 (k) where k = g (x)c K. By the zero~
Lo Lo L2

—> K h that = . + Now
suc at g g"‘ogto ,

dimensionality of g, dim po""1 (x) = O end, consequently, P, 1is ze-
) 0

ro-dimensional, Finally, let us consider the sigme-spectrum S,’ =
«{X ,pP, o« € A,z « }. Clearly, lim 5, = X and all limit pro-
oL’ "k o

jections of S, are zero-dimensional, Let f:X—> Y be a first-le-
vel Baire isomorphism. Let S, = {{‘,qf,A} be any sigma-spectrum
with lim S, = ¥, Since f is a first-level Baire isomorphism bet-
ween X and Y, by Corollary 1, there exists a Baire morphism
£f,: & A}:S,—> S, such that f = lim £  and each f, 1is a Bai-
re isomorphism of class (1,1). Moreover, each ., aa it is easy
to Be, is the first-level Baire isomorphism. (Precisely the same
arguments are used in the proof of Theorem 2.) By [5], each Y
is countable~-dimensional. Let us note now that each limit projec-
tion q in S, is zero-dimensional. For, let us consider any fib-
re of the projection Qe o It is easy to see that it is first-le-
vel Baire isomorphic to the corresponding fibre of the projecti~-
on p, . Since these fibres are compact, we can conclude, by The-
orem 2, that q, is zero-dimensional., Consequently, Y ¢ X . By
[2]), the trensfinite dimension ind Y is defined. The theorem is
proved,

I do not know if the last theorem holds without the additi-
onal assumption that X ¢ K 1?7
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Hyperspaces and Baire isomorphisms

+

(1
Theorem 4, There is no Baire isomorphism between D~ &nd
ot
uxp D

+
Proof. Consider the Cantor cube D° of weight ~*, Clear-
+

for v > 2“.

y D'v is the limit space of the < -spectrum s’ =-{DA,pi,
exp,y v*} where exp,a,’r.’*' denotes the collection of al)l subsets
ot 7" of cardinality 4« and pb is the natural projection of
DB onto DA, Fix some Ays exp,, ©¥ of carginality © . Clearly,
the limit space of the -sp:ctrum S = {DA,pE, A,B_:_:AO; ABe
€ exp, = *} coincides with D end all the limit projections »,
of S are homeomorphic to the natural projection of D""* onto DT .
It is easy to see that exp S = {exp b, exp pif is & 4 -gpectrum
and its 1imit space is homeomorphic to exp""+ . Let us guppose
now tﬁat there exists a Baire isomorphism f between D‘g and

exp D'=+. By the Corollary 1, we can conclude that there exists
a Baire isomorphism IA:DA-—-b exp o (where A & «* and |A) = 7))
such that fA‘ Py = exp pAd. Consequently, for each point P of
exp DA the fibre (exp p,)~'(F) is Baire isomorphic to the cor-
responding fibre p;1 (111 (P)) which is homeomorphic with Dc*.
Let T be a subspace of ph such that T is discrete in the relati-
ve topology and |T| = v . Let P denote the closure of T in ok,
Obviously, P is a point of exp DA and there exists & pair-wise
disjoint collection of cardinality ~ of open subsets of F,
indeed, by the construction, F is the closure in D‘(lLl = )
of & subspace Pc DA such that || = ¥ and T is disorete in the
topology induced from DA, Let T = {t 3 6 T} . Lot Gy be an
open subset of P with G, N T = {t,} (oc € T ). The collection
Gt o € v} of open subsets of P is desired. It only remains to
rote that {3 1 ¢ & TYis & pair-wise disjoint collection. Por,

- 818 -




let us consider the intersection Gdn Gp = G, Clearly, G is open
in P and its intersection with T is empty. Consequently, by the
density of T in F, G = G N G, is also empty. Ome can easily
check that the fibre (exp pA)'1 (P) also contains a pair-wise
disjoint collection of cardinality 2 of open sets. Then we can
conclude that there exists a pair-wige disjoint collection of
cardinelity & of Baire sets in pi‘(ff(?)) = D'#. Since each
Baire gset is a union of zero-seis we can conclude that there ex-
iats a pair-wise disjoint collection of cardinality 7 of zero=-
sets in IV . But this is impossible by the result of R, Engelking

3] eand the inequality 7 > 2% |, The proof is complete.

Corollary 2. (CH) There is no Baire isomorphism between
D 3 and exp 6)3.

As L.B, Shapiro informed me, the above corollary holds even
without using CH,L7]. It should be observed also that the Cantor
cubes of weighis w , n = 0,142, are Baire isomorphic with their
hyperspaces. (For n = 0,1 these assertions follow from the well-
known facts that the Cantor cubes D0° and D‘o1 are even homeomor-
phic with their hyperspaces. For n = 2 the assertion follows from
Shapiro ‘s result ([7], Corollary 2).)

References

{11  A.CH. CHIGOGIDZE: On SZepin’s spectral theorem, Bull. Acad.
Sci. Georglan SSR 104(1981), 25-28,

f2] A.CH, CHIGOGIDZE: On infinite-dimensional bicompgota, Sibir-
skii Math, J. 23(1982), 157-164.

(3] R, ENGELKING: Cartesian products and dyadic spaces, Pund,
Math, 57(1965), 287-306.

[4) Ce.A. ROGERS, J.,E, JAYNE and others: Amalytic sets (Academic
Press, 1980).

[5] J.B. JAYNE, C.A. ROGERS: First level Borel funciions and
- 819 -



isomorphisms, J. Math. Pures Appl. 61(1982),
177=205.

[6) E.V. SCEPIN: Punctors and uncountable powers of compacta,
Uspehi Mat. Nauk 36(1981), 3-62,

[71] L.B. SHAPIRO: On Baire isomorphisms of spaces of uncountab-
le weight, Dokl., Akad. Nauk SSSR 1985 (to appear).

Moscow State University, Moscow, USSR

(Oblatum 26.7. 1984)

- 820 =



		webmaster@dml.cz
	2012-04-28T11:55:03+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




