Commentationes Mathematicae Universitatis Carolinae

Jaroslav Haslinger; Jan LoviSek

The approximation of an optimal shape control problem governed by a
variational inequality with flux cost functional

Commentationes Mathematicae Universitatis Carolinae, Vol. 26 (1985), No. 4, 771--788

Persistent URL: http://dml.cz/dmlcz/106414

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1985

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/106414
http://project.dml.cz
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THE APPROXIMATION OF AN OPTIMAL SHAPE CONTROL
PROBLEM GOVERNED BY A VARIATIONAL INEQUALITY WITH FLUX
COST FUNCTIONAL
Jaroslav HASLINGER, Jan LOVISEK

Abstract: The paper deals with the finite element appro-
ximatTon of an optimel shape design problem, when the state re-
lation 1is given by a unilateral boundary value problem., Dual
norm of the normel derivative of the solution on the boundary
is taken as the cost functional, The relation between continu-
ous model and its finite dimensional approximations is estab-
lished.

b Key words: Structural optimization, optimal shape, design
problem.

Classification: 49A22

It is the aim of the preaent paper to continue the analysis
from [1], where the existence of an optimal shape for a problem,
governed by & variational inequality with the cost functional
expressed as the dual norm of the normal derivative of the ste-
te along the unknown part of the boundary, has been proved. The
present paper deals with the approximation of this problem, us-
ing approximate finite element spaces., The main effort is devo-
ted to the study of the relation between discrete and continu-
ous model. Using an equivalent expression for the dual norm,
it is possible to give another form of the cost functional,
more convenient for the practical computations.

In Section 1, the continuous problem is defined. In Seo-
tion 2, the approximation of the optimal ghape control problem
is described, using piecewise linear functions in 1 and 2
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variables, for the approximation of the shape, the state rela-
tions, respectively. In Section 3 it is proved that discrete
optimal shapes are close in the appropriate sense to the conti-
nuous ones. In Section 4 we derive the exact form of the cost
functional gradient in the discrete case. It is shown that the
cost functional, as & function of design paremeters is 1x con-

tinuously differentiable.

1. Setting of the problemy Let {0 (x)§f, e %ad be a
family of bounded plane domains,

Ugg = v e CO(<0,17) 1 0< oy 2 adxy) 23,
lec'(xp) 12 0y5 [ wolxp)ax, = op3 Ty (0,12,
where oc o9 (30, Gqs C, are given positive constants, With any
o € 'u“ we associate the following unilateral boundary value
problem:
(1.1) ~ay() + y(ec) = 2 in §1(=0),

on y(ec),

7(&)20;-&%&120; y(oo)mé-—)- =0 on My,

where the decomposition of the boundary 8L («) into r‘,(oo).
M(ct) 18 clear from fig. 1:

‘4\ M(x)

M@  0c) Mo (o)
M () %
Pig. 1

Our aim is to determine such N(c*)e {0 ()}, x € Uy, 1o0
sach a function ofe U ., satisfying

- 772 -



(®° Ban2ilec) Voo & U,
where

(1.2) F(x) = 1/2 n *)

n-1/2 ()
and y(oc) is & function of o through (1.1).
In order to give the rigorous mathematical formulation, we
introduce some notations.
Let oce Ugye Set
V() = B (D(x))
K() =4ge V(x) logz 0 on ()}
and
1) =3 191 00 - (290000
with
te Lzuw; 03 = (03 B)x(041)s Bz,
e denote by I b o0eeys 3 )ogae) E (2(e6)) = norm,I2(0 ()
- gcalar product, respectively.
By a weak formulation of the state inequality (1.1) we call
the problem
(Plee))” find y = y() e K(x) such that J (y(c)) 43 (@)
Vg e K(o¢)
or equivalently
find y = y(o¢ )€ K(cc ) such that
(Plc)) (3()y@=3(w))q g )2 (2530 -3(cC))g o(y)
Vg & K().
As 8’1/2( 90 ) - norm, by means of which the cost functional E is
defined, is not suitable for the treatment, we reformulated in

*) lcol_;/z‘an denotes the norm of the linear functional

we (B(ALN".
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(1] our problem under the consideration, as follows:
(P) find e U, , such that E(x*)¢B() Voo e Ugy
where
172 i 2
E(w) = 1/2 U297 o)
z(y) € V(¢ ) is the unique solution of an auxiliary problem
£ind z(y) € V() such that (2(y)39)q e =

= (30D @)q gy = (139 )0 o(a) 9 V(@)
and y(ec)e K(x) 18 a solution of (P(oc))e In [1] 1t hes been

(Ae0))

proved thet ( [P) possesses at least one solution.

2. Approximstion of (@), Let Dy:0wxi®< x{Mc . .cx{Ma 1
be a partition of {0:3>, the norm of which tends to zero and set

Sy = ot € CCO317) Loty )y (110 (W e 2y (x$x{ty

h
Wgq = UgqnSy -
In other words, N(oy), %y € ’U.;’d is & domain wi th a piecewise-

12

linear varieble part M,(,). A8 N(ey) 1is & polygonal domsin,
one can construct its triangulation Th( o%y)e Next we shall assu-
me on}y such families of {7, (cc,)? which are uniformly regular
with respect to cche‘u,ﬁda h —> 0%, i.e. there exists 4?°>0 such
that
(2.1) min  aMhy ecp) 2 Ya—o,,
m‘v‘ 'u“‘

where (hj och) is the smallest interior angle of !1, computed
among all 7, ¢ ¥, (xp).

With any Fp(ecy), Lpe ’U.Ed we associate the finite-dimen-
sional space vh(‘"h)' oontaining all continuous, piecewise-line-

ar functions and its closed convex subset xh("‘h)‘
V() = {@pe CO(R(xy)) gy n P Ve Tplecp)}
E(xy) = {@peVy(cy) lgpz0 on My(acy)ie
-4 -



The approximation of (P(ary)), with acy €%%,, will be defined
by means of Ritz-Galerkin procedure on K,(c¢,). The approximate
of state inequality (take fixed o, € UD,) 1s definea vy

?ind yp, = ¥p(oty) €K (ecy) such that
(PCxy))y
R g () €3 (gy)  Vopek ()

where
In(ay) =1/2 llqhﬂf’wh) - (£3910,004,)
or equivalently
find yp(c¢y) e Kp(ocy) such that
(Play)ly  OulEp s ouinlen))r0g ) Z
z(f; ?h”’h("“h))o,nech) Veye Ky, -
Thus the optimal shape control problem ( [P) can be stated as fol-
lows:
(1P), find ¥ Upy such that By ()< Bylecy) Voo, U,
where
(2.2)  By(ety) = 1721 zh(yh)llfm%)
and z € vh(ech) is a unique solution of
(ACety))y (zy3 9h)1r°~(°‘h) = (ypleey)s ?h)"ﬂ("‘h) -
-(f3 ‘Ph)o,n.(ech) Vope Vp(<y).
YploCy,) eppearing in the definition of (A(cy)), denotes the smo-
lution of (P(ccy))ye
Using the classical compaciness arguments, one can easily

prove

Theorem 2,1, Por any h>0 there exists at least ome soluti-
on of (lP)ho

- 715 -



3. Relation between ( IP)h and ( P). In this section we shall
analyse the mutual relation between a family of ( IP)h and the con-
tinuous problem ( IP) if h—o%,

let o« e uad' By P we denote the mapping from H (2(c))
into 12((031)) defined through the relation

G @i E - Ly () 1) E ((xy) m)ax,,
where y~ = (ly| - y)/2 is the negative part of y. It is easy to
see that
ye K(x) &> (P(y)3£ )y = O YEeD (Rz)’

First we introduce 2 auxiliary results, useful in what follows.

Lemma 3,1. Let o, =3 o (uniformly) in <031, o(he’légd,
< € Ugqe Let Yp € vh(och), y€ V(e ) be such that
(3.2) Yp—7 (weakly) in H' (Gy(ax)) for any m integer, where

(3.3) 6p(oc) = {[xy3x,) € IRyIxy€ (0500 (x;)=1/m), x,(031)f.Then
(3.4) (B(yy)s g)"‘h_-) (P(¥)5 &) V& € D(R,).
Por the proof we refer to [2],

Lemma 3,2, Let &€ U,, and ge K(«c). Then there exists an
extension g¥ of @ from () on Qﬁ and functions {(_p*j}";_“
g:“Je 31(11’:3) such that

(1) " —>9* in a‘(nﬁ)

(11) &p*:-qf+’7"j; where ¥ Z0 in 07 , qjec,"o(_czﬁ)
and 74(xy3x,) = 0V [x1,x2]cG“(3), where 62(3) .
=ilx;35,) € Myl x, € (0,1) , 3y € (% (xy) = gryy—s B Nand n(§) — 05
J— 0.

Proof can be found in [11.

Now we prove & fundamental result, by means of which we es-

tablish the mutual relation between ( Il’)h and ( IP).
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Lemma 3.3. Let oty =% ¢ 1n<(0,1>, <, eUn,, <%,
and let yhdyh(ach)e K(och), Z, 6 Vh(och) be solutions of
( CP(och))h. (.R,(ech))h, respectively. Then there exist subsequ-
ences iy, iciyt, {shd Jciz t and elements yeK(x), z€V(ex)
such that

. —7
by

zhj'"" z
in H (Gn("‘)) for any m, where Gn(x) is given by (3.3) and y, s
are solutions of (P(x)), (A(x)), respectively. Moreover,

(3.5) My, |l —ly! , Nz |l —>ls] R
ngl1.065, ) b0 "o, 104, ) RV
nj-»o*.
Proof. Sequences Yps %, 8T bounded in the following sense:

(.6 3 ¢> 0 independently oén h, <, € u‘;d and such that

Indeed, substituting g, = 0,2y, into (P(x,), and using the
fact £ eLz(.Q.a), we immediately obtain the boundedness of y,.
Prom this and (A (o, )),, the boundedness of z, follows.
Let m be fixed. Then there exists ho-ho(n) such that

G.Z«.)c Q. (o) for any hé&h  and (3.6) yields
(3.7) lyhﬂ1.cné ¢, ush|1’6-é c Yh<h,.
Thus there exist subsequences {yhkn) feiyyt, {z,(")} cigl aad
functions y(') 3 MOPS (Gy(ec)) such that

yl(‘ll) . ,(n)

SRS U EIIR
Proceeding in the same way on G q4(cc) with { vf\‘ ézg")} one
can choose -fyi("ﬂ )}C { ’l(tu)}' fsg'n )} cA ;,;“r“:: #ae L that
- 11 =



yl(1,,,.,.1)___b y(.m)' 'ﬁ“"—* (@) 4o H‘(Gmn(“’))'

Purther, it is clear that
y® . y(mn)' gfm) | G(mel) Gylec)e
The diagonal sequence, constiructed by means of {yl(lq)i, {z,(lq)},
q =m, m+1,... (and denoted by {’hé} R {zh; for sake of simpli-
city) have the following property:
Yp Y
(3.8) 9 in H' (G, ()
’hi"’" *
for any m, with y and z defined by
(3.9) y= i('), z = 2™ on Gule)e

Moreover, it is clear that y,z ¢ V(oc )., We next show that ye K(x).
Por this we need the lemma 3,1, As ’hjE ’hJ("‘hJ)eK(“‘hd)' we
have

(3.10) (Bl )odday =0 VE € DR,

On the other hand, (3.4) yields
(3.11) (P(yhj), g).,ghj—» (Bed)g s By—> o*.
Combining (3.10) and (3.11) we have
(P(3)&)c =0 Vi e D(RY),

i.e, ysK(ot). Now we prove that y, z solve ( P(«<)), (A(x)),
respectively.

We do it for the funotion y, Let £e K(c¢) be given. Accor-
ding to Lemms 3.1 one cen construct its extension &* from O(x)
onto D.a and functions Q"‘Je n‘(nﬁ). g“j =Y+, ¥vZ 0in
D4 v mye (D), my =0 1n 0™ (defined 1n Lomms 3.1) ant
such that

(.12) By —E*  aE'(0p).
Without loss of generality, one cen agsume Y € c“(ﬁé—). ¥vz0
- 778 =




(if not, ¥ can be replaced by regularizations vy€ C”(-ﬁ%—),
Y30 in Of end yy;—>y in H’(.ﬂ,’;)).
Let

é.‘]h - ﬂ'h( ég‘ﬂ(dh)) = wh(wlﬂ.(dh)l)*' th( njln(dh))é vh(d'h)

be & piecewise linear Lagrahge interpolate of E,*J ',O.(a( ) over
h

Tn

of the sequence &“J it follows that éjh“‘ K(c<y), provided h

(och). Let j be fixed and h — 0%. Then from the conmstruction

is small enough and moreover:
(3.13) 1§Jh. A 1,06e) % °F lg;t\z,nuh)

Let hy be a filter of indices, for which (3.8) holds.
If h, is sufficiently small, £, € K(«, ) and one can substi-
t Jht ht

tute giht into (Ploy )):
(3.14) (yht, gjht-}'hth ’Q(‘ht)z (z, %jht"ht)o’n(‘ht)'
Let m be fixed. Then one can write:
RN &dht'yht)hﬁ(&ht) = (3 531:;’1;21.6,(«) +
+ (ops ﬁjh{’nt’un(ocht)\n(m) *
" Ong Sam T 1, (600,000 n 00, ) £
‘(‘nt‘ E,mt”hth,em(oc) + (’ht‘ §3nt)1,0.(echt)\mac) +
* Ongd B, 0006, 60) a0y )
Prom (3.8) and (3.13) we conclude that
3
(3.15) }bi:_’!lolg (Yhti gjht-’ht)1»5mk)é (643 53‘1)1'(;'(‘)-
In view of (3.8) and the fact that ¢ht:soc 1n <0,1> 1t holds
+
(.16) (3 Egn 1 Doy WD) 0 Bg—>0.
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As

| ¢

|G, tht‘ £, (B(0NGy ) 0 ey, )

we have:
yn g, Gns S L @GONGLINOLy )
*
LR TR Ong Ea’nmrac)\cm(a))nn(xht) +
*3n TP Ond Sing S, @G0Ne, 08 D6ty ) 7
’ »
PR Ong 5P, 000ne,@)n00, ) 2
»
<o V&5 neone (e
which elong with (3.15) and (3.16) yields
(3.17) %: mup, (v 3 gdht"ht)"n%t) <

< (33 §§‘Y)1,Gm(¢c) +c Mg 1,00NG () *

Also we have
5 $imyTn 0,06y, ) = 5 Sy Tn o600 ¢
+ (f‘ gdht-yht)o'g'(dht)\n(d) +

* (5 Sim Tn )0, (NG, @) 065, )*

Hence

(3.18) 1‘1':315* (13 Ejht-rht)o,n(q‘ht)? (s 9'3"’0,@_(«) -
-c N“o,n(cc)\Gn(e() + kgt 1.&1(&)\0-(«:()“

Teking into account (3.14), (3.17) and (3.18) we see that

(3.19) (33 2'3-1)1,%(,@ +c “5‘3“1 $2{aN G () z

z (f; g*j.’)O’Gm(¢) - ¢ &n an.ﬂ-(e()\G.(oc) +
- 780 =



*
+ “g;\h ’Q_(‘)\Gmw} .

Letting m —> o0 in (3.,19) we have

O3 5591 000 Z (55 5570 00
Pinally if j—> 00 o, then

s 5-9)1,000) 2 (83 €7D0 gy VE € (),
i.e. y is & solution of (P(«)). In a simil®r way one can prove
that z, defimed by (3.9) is a solution of (R(ot)), taking into
account (3.8),. Let us prove (3.5). As K(“hj) is a convex cone
containing zero, one has:
(3.20) (Yh iyh )1’_Q( ) - (f§yh )o.ﬂ(‘ )

30y 3 LY

so that

2
G-z g w06, ) - 3 5, ‘f%vhd’o,mdh:‘) -
sup

+ (fﬂhj)o,(Q.(og)\am(d,))nn(dhj)} £ (fs!)o'Gm(ﬂc)-r c(m)y

c(m) = %1::;1%* (fiyhj)o'(n(x)\(}m(oc))nﬂ(dhj)

holds for any m. It is readily seen that c(m)—> 0, if m —> 00+
Indeed, we observe

which, using (3.21), implies
2 2
On the other hand
2 2 2
5 o = 5 0 02
holds for VY m, so that

2 2
- T81 =~



Combining (3.22) end this inequality we obtain (3.5)1. Now it
will be shown below (3.5)2. Inequality

iim int |l zh 1&(% )y Z \lzll1’ﬂw
is obvious. Let ¥ yhj' zhje 12 (.0.’\) be functions, defined by means
of
Yo, o0 f2(oc0y )
th ~0 onm Qf,\ﬁ(oshj) ( ogougly zh;)‘
As

Wy, 02 - W7 N2 e ATy 02
th ’-M“hj) Yh 0,04 th 0,04

2

uzhj“1's'(dhd) - %2 ‘0 na+ “Vzh 0 “ﬂ
elements @, = (F) » ¥, )» ", = (2, , T2y )e (12(04))7 are

n, ny* Vn, by hy? Y %hy 3
bounded as follows from (3.6)., Thus there exist subsequences of
0,3, -i'\‘)'h;x (denoted again by the same symbol) and elements
0, Pe (12(.03))> such that

0, — 0 = (37,5,,7,) € T2(3))>

(3.23) By 199253 2
-thj — 1 = (21"2"3) e (L (n.a ).
It is cleer that y, = 2, =0 in .(1‘3\,0.(«,),

32073 o) = VI 0
and .
9 = y(d‘). Zy = z(c)e
Furthermore
2 2 2 2
Taking into account (3.24) and (3.23), we get
— o 1n (1P
- 782 -
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This, in turn, implies
(3.25} (yhd‘zhd)‘l’n(&hj) - (Ohj‘ ﬁhj)o’nﬁ _—> (op’l})o,ﬂé\ =

= (y'Z)1'D-(o(:).
From (3.25) and (3.8), we obtain

(3.26) J;i;m sup llzhj 1,0y ) him suB* -i(yh 32y )1r9-(n¢h ) -
- (£32, ) - t )
zhj 0,8, (<) ( 5zhj o,n(ahj)\n(ac)
- (f‘zhj)o.(ﬂ(ot)\Gm(OC))nﬂ(dhn)} £ 521 060y =

- (2 .
32)0,6_(w) * 1 (@)
where
¢4 (m) = ]"'1:;_’_?84.{-(£.'th)0,(.Q(K)\Gm(cc))f\n(dfh )} .
Moreover, one can easily verify that 1lim c, (m) = 0, which, us-
m -y o0

ing (3.26) implies
s A “hn(«h )£ 321 060 = (320,00 =

= “2“1’0_(“') .

This completes the proof.
The main result of this section iss

Theorem 3.1, Let «*,cUB, be & solution of ( IP), and let
y*l; ¥ («*,) be the corresponding solution of ( F( o))y Ther
there exists a subsequence {oc*} } C {x% 1, and elements
e Ugqs ¥* =y(x*) 6 K(¥) such that uc*hjzg «* 1n<0,1;

®

’h;!(“‘”hj) — y*( o) in H1(Gn(uc*)) for eny m, where oc* is a
sotution of ( [P) and y* =y*(«*) is the solution of the correspon-
ding state inequality ( P(oc*)).

Proof., As ’U.Ed c u’sd and ’U.‘d is a compact set in
€°(<0,1>) - norm, there exists a subsequence of {e(,"‘h7x (denoted
again by {oc*}) and en element ofe U, such that
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(3.27) ec"h = «* in <0,17.

From Lemma 3.3 it follows the existence of subsequences
{y;s( w”hj)l c *(y;(cc’;l)k . {zgj(yga)} c {25(y})? and of elements
y*e K(«<*), z*€ V(«£*) such that

v —~y*

(3.28) J in B (G,(cc*)) for any m,
“ﬁj(yﬁd) —2*(y¥)

M, Moacg ) 19 N e
(3.29) J ,
“Zid i 1'n(d’khj)"" () z*(y")h ’n(‘x)

and moreover y*(«*), z*(y¥) are solutions of (P (ac*)),(A (™)),
respectively. By the definition of (IP), we have

1 2
(3.30) (e =B (o V4B, (£, ) =
Z Ry aday,) RV M .
-3z (v, M2 Y, € U3,
-3 hj hj 1,n(a,hj) hJ ad
Let « € ’lL‘d be given, Then (see [3]) one can find «, € ’ZLgd

satisfying
Ly 3 in 0,17 .

Let yp(acy), 2,(yy) be solutions of (PlCy))pe (A(cxy))y, res-
pectively, with properties analogous to (3.28) and (3.29). Using
(3.29) and similar results for {z), (¥, )} and passing to the 1i-
mit with hy —> 0" in (3.30) we obtain

3l gk = B2 B() = 3 LW

Y Gu‘d,
f.e. «fe U, is a solution of ( P).
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4. Numericel realization of ( IP)y. Let h, xp € ’.’.L:‘d be fi-

xed. The state inequality (P (x))y, expressed in the matrix
form can be written as follows:
(4.1) £ind x(c¢)e K such that L(x(cc)) < L(x) VxeK,
with
L(x) = 1/2(x, € o )x) - ( F,x)
Ka-[xeRn\xiZO Viell,
where €() is a stiffness matrix, depending on design parame-
ters
[ O 3 ng
F(t) eos linear term;
I ... set of indices, corresponding to constraint compo-
nents of the nodal displacement field x.
Analogously, the matrix form of (A (&h))h is the following:
find z(ec) = z(x(cc )) € R® such that
C(t) z = C x(x) - F .
Finally, the matrix form of ( [P), can be stated as follows:

(4.2)

£ind o™ e U such that
e(x*) 4 €e(x) VYV« e U,
where U = {6 R, (c) < qy Vi=t,...,8 1,,,(6) = 0,
e(x) = Hz(x), C(x)s(x)),

(4.3)

1, i=1,...,8+1 are linear forms of o,

dis R1 are given real numbers.
The last equality constraint corresponds to the constant const-
raint volume. Our aim will be to determine the gradient of & .

It is known that the mapping o —> x(<) is not Fréchet
differentiable and the same holds for the mapping o« —> & (<),
in general. In our case, however, we prove that the function €
is, dué to its special choice, Préchet differentiable.

Let o, & ¢ RY be given and let us denote

- 185 -



e {c)& = 1im  Elrtec) o B(0) |
t >0

It has been proved that such 1limit exists as well as

()& = L, x("“"“i = X(€) (gee [41,15)).
-
Now

(44)  £(x) = $(€(x) 2(c0),2(x)) = = £( €() 2(oc),a(e))+

+ (C(x) x(¢),y2(cc)) = (F(o0),z(c6)),
when (4.2) has been taken into account. Let us denote
. ~ . n
€ (L) = ((Vyegq(oe) » L)y ey
Fl)X = (( Fyla) - XY _4

Elements of € (x)&X are given by derivatives of elements of

C at the point o end the direction & (snalogously

F(X)IZ)s

Starting from (4.4) and using the previous notation, we can write:
e ()X = =(2 ()& ,C(06)2(c0)) =

1/2(¢ ()& 2(6 ) 2(e0 ) + (€ (06)Sx(ec),2(ex)) +

(€(t)x (0)& ,2(%)) + ( C(k)x(o),2 () X) =

(F(x )& 42(x)) = (F(k),2 (x)X) =

-(2°(e) &, C(o)z(oc)- €k )x(oc) + F(cx)) +

1/2( € ()X 2(ec),2(xc)) + ( € ()X x(cc),2(c0)) +

(€(x)x (e0)X ,2(c0)) = (F(x )KL ,2(eC)) =

= =1/2( € ()& 2(x),2(x)) + (€ ()X x(0),2(cc)) +

+ (2 ()L, €(x)z(x)) = ( F(x),2(x)),

making use of (4.2).

+

+

+

Now we derive another equivalent form of the term
(x ()&, €(x)2(x)), where x (oc)X will not appear explisit-
ly. To this end we present an equivalent formulation of (4.1},
using Lagrange multipliers. It is known that x(oc¢) is a solution
of (4.1) if and only if 3IA Z O, such that
- 786 =



(4.5)
°1;(°")xj(°c) = 3’1(06) + 7\-1(4.) Viel
and

7\3 are multipliers, associated with the constraint x(oc )e K.
From (4.2),(4.,5) and (4.6) we see that

(x ()&, €(x)2(c0)) = (x ()X 5 €(t)x(oc)=F(ox))=
- 5§Ixii(uc)ocij Ay -
We prove that the last sum is equal to zero. Indeed:

= ox] ()&y Ay m C () &Ry Asy
ye1 ™, 1,7 ?ezjoxij"(’ %17y

where IOSI and such that jel &= 9\370. Let ]Lg be Lagrange
multipliers associated with the design parameters oc+t3'c, t>0,
i.e. ﬁ; satisfy the same relations (4.5),(4.6), only with o
replaced by &+t . AB A; are continuous functions of t, then
if

jeI  also 7\§>o

°
and the ocorresponding constraint is active, i.e. x, (c+tk) = 0
J

so that x{j(oﬂ)é"c = 0.
Summing up all our considerations we see that

g ()X = =1/2(C °(0)x2(cc),5(cc)) +

+ (C ()& x(ot),2()) = (F/ () X,2(C))
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