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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

26,4 (1985)

COUNTABLE HAUSDORFF SPACES WITH COUNTABLE WEIGHT
Véra TRNKOVA

Abstract: We show that every countable commutative semigroup
admits & productive representation in the class of countable Haus-
dorff spaces with countable weight. As a consequence, we obtain a
countable Hausdorff space X with countable weight, homecmorphic
to Xx Xx X but not to X=X,

Key words: Countable Hauadorff space.
Classification: 54B10, 54G15

I. Preliminaries and the Main Theorem. Let (S,+) be a commu-

tative semigroup, X be a category with finite products, ¢ a class
of its objects. A collection
{X(s)|sesS}

of objects of € 1is called a productive representation of (S,+)
in € it

(1) for every sy,s,¢S, X(8))xX(s,) is isomorphic to
X(sy+s,),

(11) 1f =% s,, then X(s;) is not isomorphic to I(az).
The field of problems which commutative semigroups have producti-
ve representations in which categories generalizes some problems
investigated e.g. by S. Ulam [17], A. Tarski [10],[{11), ¥, Hanf
{31, B. Jonsson [4],{5], A.L.S. Corner {21, J, Ketonen (6], R.S.
Pierce [9] and others. Por example, if the represented semigroup

(S,+) is a cyclic group o= £0,1% of order 2 (i,e. 141 = 0) and
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{x(0),X(1)} 1is its productive representation, then X=X(1)=
= X(14141) 1s isomorphic to X°= Xx Xx X but not isomorphic to
X2 Xx X2X(141) = X(0).

In [15], a survey of results concerning productive repre-
sentations of commutative semigroups in classes of topological
spaces was presented and six open problems concerning this topic
were formulated. Let us mention that some of them have been al-
ready solved, namely Problem 1 in [ 7], Problem 2 in [16]and Pro-
blem 4 in (8], Here, we solve Problem 5 aboud productive repre-
sentations in the class of countable spaces with countable weight.
Problems 3 and 6 of {15]remain open.

Let us recall here the situation concerning classes of coun-
table topologicel spaces. If a countable metrizable space X is
homeomorphic to x3 , then it is homeomorphic to 12, by [13]. On
the other hand,

every countable commutative semigroup has & productive re-

presentation in the class of all countable paracompact spaces.
This is proved in [14]. The construction in [14] uses an infinite
collection of pairwise incomparable ultrafilters (in the Rudin-
Keisler order) on a countable set and the constructed represent-
ing spaces are far from having countable weight. The result con-
cerning countable spaces with counteble weight is much weaker.
By(15], every countable commutative semigroup has a productive
representation in the class of all countable Ty-spaces with coun-
table weight.

In this assertion, !1-Ipaeu cannot be replaced by TB-spacea
because a !3--paco with countable weight is metrizable and, as
mentioned above, the group S, has no productive representation
in the class of countable metrizeble spaces. Problem 5 of [15]
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is to fill up the gap between T,-spaces and TB-spa.ces. The aim
of the present paper is to prove the following

Main Theorem. Every countable commutative semigroup has a
productive representation in the class of all countable Tz-spa-

ces with countable weight.

Let us sketch the contents of the next parts of the paper,
In II, we introduce the notion of irregularity degree of a topo-
logical space and investigate its basic properties. By meens of
this new topological inveriant we prove in III aml IV the above
Mein Theorem. In III, we construct the representing spaces, in
IV we prove that they really form a productive representation in
the class of all Countable Hausdorff Spaces with Countable Weight
(let us use the name CHSCW for this claes). In the pert IV, we
present some strengthenings and generelizations of the Main The~

orem.

II. The irregularity degree id.

II.1. The inductive definition of the irregularity degree
of a topological space P (similer in its form to the definition
of ind - the small inductive dimension) is as follows (X denotes
the closure of A).

id g = -1
If x6 P then

1dp x£ n = for every neighbourhood Uotxin?

there exists a neighbourhood ¥ of x in P suwch that
1d(P\U)<n - 1

id P<n = for every x€P, 14;, x4ng

1dp x = n = 1dp x£n end non (1dp x4n - 1)4

id P » n = id P<n and non (1d P<£n - 1),
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Since in our constructions in III and IV we are interested only
in spaces with finite irregularity degree, we simply put
id P = o0 = for no natural number n, id P<£ n.

Observation. 1id P£0<&=>P is regular.

The proofs of the following lemmas are straightforward in-
ductions; the cases n = 0 and n = co are usually trivial, so we

shall indicate in each case the induction step.

II.2, Lemma, If QcP, then 1d Q<1id P.
Proof. Use the inequality

Vo QN (UnQ) e PR\

II.3. Lemma, If P = Pqu P, and Py, P, are closed, then
1d P = mex §1d P,,id P,}.

Proof. It suffices to show thet idp x<mex i1d Py,1d P}
for each x €P. For xe Py P3-1 it follows readily that idp x =
- 1drix 8o we take x ¢ Pyn P,. Now, use the fact that if Vi is e
P,-neighbourhood of x for i=1,2, then V= %ju U, 1s & P-neigh-
bourhood of x and if U is eny other neighbourhood then

P, - P
BN U e (TN (Un B U (T2\ (UnBy)).

IT.4. Lemma, Let x be & point of P such that
1d1,x-id1’-n<oo.
Then for every neighbourhood U of x
14 % = n.
2roof. Straightforward,
II.5. Proposition, Let P = P1x PZ* $. Then
14 P = 14 P, + 12 P,.
Broof. Pirst observe that if U;, U ;s P, are open for i=1,2
end Vs ‘U’1 ® 'U’z, U= u1x’u.2. then
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~P P, —P P
Tats (TN U< TR0 o (T (T2 0,00,
Then <& follows in a straightforward way and = follows, fixing
x4€ Py with Ml’ixi = id P; for i=1,2 and then, using II.4, show-

ing that idp(x, »Xp) Z 14 Py+ 14 P,

II,6. Exeample, Let m>1 be a natural number. Let us define
a space Z as follows: Let {Dil 1=0,...,m} be & pairwise disjoint
system of countable dense subsets of the interval (0,1) of the
real numbers, let B be the set of all rational numbers in the in-
terval {(~1,0> . Put

Z,=Bu LQ" o Die

Let ¥, be the Euclidean metric on 2, & (-1,1) , denote K:,e -
=i{xez | ¥ (x,2)< ©1 . The topology of Z, is defined such that

if zeD;, then its local base is {Kz.e’r\ (59;”3” e >0l

if ze€ B\ {0%, then its local base is {Kz,e le> 0%

the locel base of 0 is {(-¢ ,0> v ((0,&e)nDy) | e > 0L

Observation. zm is an element of the class CHSCW and
a) 1if 2¢ Dy, then 1d; = = i3
m

b) 2e€B\4{0%t iff z has a clopen (= closed-and-open) neigh-
bourhood, which is a regular space;
c) 1d; O = m; moreover, O is the unique point z of 2 with
n

the following property:
id £ >0 and any neighbourhood of z contains & clopen (in Zm)

subset. which is a regular space.

III. The besic constructions.
III.1. Mirst, let us describe a method which has been used

several times for congstructions of productive representations.
We start from a collection X = iX\ke ©?% of spaces, where
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denotes the set of all nonnegative integers. For every f e w® ,
we put
£(k)
x(t) -;T;wak ’

1.0 each XI(¥) 15 the product of £(k) copies of X (if £(k) = O,
then xi(“) is a one-point space) and X(f) is the product of all
(), k¢ @ . Then, clearly,
X(£)» X(g) is homeomorphic to X(f+g).
Denote by Ul the semigroup of all countable infinite subsets A
of w¥\ {0} (where © 41s the function which maps the whole c
to 0) with the operation + defined by
A+Ba={t+gltecA,geBt.
Por every A € UL denote by X(A) the coproduct (= a disjoint uni-
on as clopen subsets) of %  copies of each X(f) with fe A. Then,
cleurly,
X(A)x X(B) is homeomorphic to X(A+B) for all A,Bs W .
If the starting collection X ={X, |k e w} 1s constructed suwh
that the following implication is fulfilled,
X(A) is homeomorphic to X(B) => A = B,
then {X(A)IA s W3} is a productive representation of U . And,
by [12], every countable commutative semigroup can be embedded
into W.

III.2, In the present paper, we have to modify the above
method because the spaces X(f) are ususlly uncountable. The idea
1s to choose suitable subspaces, say Y(f) ‘s, such that still

Y(2) xY(g) is homeomorphic to Y(f£+g).

In our eonstruction, however, the topology on the subset of the

product is also modified a 1little, Thus, let us suppose that the

starting collection % = X |k € w} of elements of CHSCV has

bDeen already construoted (this will be done in III.3) and let us
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suppose that a semigroup S & W 18 given such that its support

s
is countable (every countable subsemigroup of U hes countable

S oA
SUPP S =a

support, of course)., Let us describe the spaces X(f) =
'u?w x{“‘) in a way more suitable for handling with coordinates.
Por every f ¢ w “\ {0} , denote
L(L) = $(k, )k e @ , J=l,eee,2(k)}
and for every £ = (k,3j) € L(2) put L= k. Then, clearly,

(1) = %

For every f,g€ supp S, we choose a bijection

(g, g2 B(2) U L(g) —> L(t+e),
where L(£) U L(g) denotes the disjoint union of L(f) and L(g).
Let us define a map

Pf,g :X(2) = X(g) —> X(f£+g)

by

Pf's(xoy) =2,
where for every £ e L(f+g), the {-th coordinate Zp of 7 1is pre-
cisely the £’'-th coordinate of either x or y, with £ = ‘“;1.&1)'
depending on the fact whether £’ is either in L(f) or in L(g).
Thus Pe,g only permutes coordinates (so it is a homeomorphism
of X(£)x X(g) onto X(f£+g)).

If f,gcsupp S, J° is & finite decomposition of L(f) and &’
is a finite decomposition of L(g) then &(u.,,s(mz €d or
2 €d’% 18 a finite decomposition of L(f£+g); denote it by
(“t,g(‘f O d’)e Conversely, if d is a finite decomposition of
L(2+g), then {L(f) n (u;:s(z)lz € d'% and 1L(g) n (u-;ls(Z)!z ed'}
form finite decompositions of L(f) and L(g8)3 let us denote them
by (7,g,1(d) ana w3y ()

Por every fesupp S, we define a countable gset D(f) of
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finite decompositions of the set L(f) as follows (simultaneously
for all fe supp S, by induction):
Do ()= {4L(EN KIu{ik)| ke Ki| K is a finite subset cf L(£)},
Dpy1 (D)= D (Dulesl, ((Mlgesupy s and e I (£+e)3 v
vdwgly o(9) | gcaupp 5 and I e D(t+e) § U
Vig, n(6 06" g nasupp S, gh = 1, FeD (g),d'eD (),
-, 0 9.0,

Now, let us suppose that the starting collection x-{xk(kew}
has been constructed such that each xk is an element of CHSCW and,
moreover,

4) there is a distinguished infinite subset H in each of
them (the same set for all the X, ‘s ) end

b) for each k € w , a continuous metric G’k is given on X,
such that diam xk- 1, all the metrics Gk, k € w , coincide.on
H (i.e. Gk(s,b)- 6, (a,b) for all k,k'e w0 , a,beH) and deter-
mine the topology of H.

Then we have two topologies on each X(f), namely the product
topology p and the topology of uniform convergence of the collec-
tion of the metric spaces {(xk. € )lk e wl.

For every fe supp S put

H(f) = $xeX(f)) there exists d'c D(2) such that x is constant
on each Z € d and, for each Z € & , the value x, of x at Le 2
is in H%Y,

¥(£) = {x GX(f) | there exists y<cH(L) such that x, = y, for all
Ae L(£)\ K, where K is finitel.

The topology investigated on Y(f) is the infimum of the topo-
loglies p and m, i.e. & local base of a point x c¥(f) is ‘fomd by
all the sets

)N (V "LTIK'"\)’
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where K= L(f) is finite such that x,6H for all Le LIONEK, Uy
is a neighbourhood of x, in X, for each keK and YV is a neigh-

bourhood of {x, | £ e L{(L)\ K} in the space L(f‘)\K (X.. . 6'.. ),

where T-T denotes the product of metric spaces endowed with the

metric
6(a,b) = l}p 6y (’ubz)‘

Proposition. Por each fe supp S, Y(f) is an element of
CHSCW. Moreover, for every f,ge supp S,
Y(2) < Y(g) is homeomorphic to Y(f+g).
Proof. BEvery Y(f) with fe supp S is in CHSCW, evidenily.
The bijection @, . maps Y(£) < ¥(g) precisely onto Y(f+g), this
follows from the definition of D (f), D(g), D(f+g); since it

only permutes coordinates, it is a homeomorphism,

I11.3, We finish this part with the construction of the
starting collection X = -kalk € w?of elements of CHSCW, the
systen of continuous metrics {6, |k e wi, 6y on X, , and the
distinguished subset H of all the Ik'l. The proof that this col-
lection really leads to a productive representation of a givem
semigroup S & W (with countable support) will be given in the
next part IV,

Let M = {M |k ¢ wt be & pairwise disjoint system of infi-
nite subsets of « \ {0,1}, Let us express each M, as an incres-
sing sequence, 1i.e. M '{‘k,ili e @t , where

1< ‘k,o‘ -k'1<lk'2<...
Let Z,, By %, D: be as in II.6, We define the space X, by means

of the system &z_k 1\1 € w} of spaces. We multiply them by one-
1

point spaces to make them disjoint, then we form their (disjoint)
union and add one point more. Thus,
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o, -1
I ={odu U 127x 2oy 4

Let us denote
m

r

& 2t xS D)

By =\ (12 50 D)
(-2}

¢ = .U 1271 (B\10})

H-{O'}U G

Clearly, Hc X, for all k & < . We define the topology of X, as
k k

follows:
each {Z'i}x ka . is & clopen subspace of X, (homeomorphic
]
to ka . as in II.6, under (2'1,x)rwv->x). a local base of O’ in
’ 00
18d8atu U, 127 <z 13 ¢ i
T v * Py g

Now, we define the continuous metric G’k on X,.

& (x,y)= %-(2'14»2'3) whenever 1+ ]J, xe£2'1}xzmk'i,

g273ix 2
ye b 3 mk'J;

6 (x,0)= %- +2”1 whenever xe42 % <z s

'

i -1 N o~ ~
6, (x,y)= w277 (x,¥) whenever X,5¢2 and
k 3 mk,i mk’i

x = (271 3), y = 271,%), where 7, 1s as in IL.6.

Then diam xk- 1 and, since each v is a continuous metric on

Te,1
z"k .’ e'k is really a continuous metric om X,. Moreover, since
»
every v, determines the topology on B (see II.6), o‘k really de-
termines the topology on H and all the metrics 6k' ke w, co-

incide on H, Finally, let us denote

Pe,g ™ (271,00 e {271 nz 1; I,iew.

"%,
¥We conclude: let a semigroup S S U with countable support
sapp S be given, let X ={X |kew} be the collection of spaces

Just constructed; for each f¢ supp S, let Y(f) be the space
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constructed by means of X as in III.2 and, for every A&S, let
Y(A) be a coproduct of $, copies of each Y(f) with fe A, Then

o) Y(A) is an element of CHSCW and

#) 1if A,BeS, then Y(A)x< Y(B) is homeomorphic to Y(A+B).
In the next part IV, we prove the following implication.

if A,Be S and Y(A) is homeomorphic to a clopen sub-

(x) -{ space of Y(B), then ASB,
This will complete the proof of the Main Theorem because e-
very countable commutative semigroup is isomorphic to a subse-

migroup of W , by L12],

IV, The recognizing of A from Y(A). In this part, we show

that the set A€ S of sequences can be recognized from the topolo-
gical structure of the space Y(A), We present the definitions
1 - 4 below and prove that F(Y(A)) = A,

IV.1. Definition 1. Let P be a topological space. We say
that x< P is essential in P iff :ldP x>1 and any neighbourhood
of x contains a clopen subset of P, which is a regular space. We
say that x is distinguished if it is essential in P and there ex-
ists its neighbourhood V such that if y ¢ V' is essential in
P, then “’P Y= idp x.

Definition 2, Let P be a topological space. For every x&P,
we define

q(x) =fim e | every neighbourhood of x contains a distin-
guished point y with 1dp y = m},

Definition 3. Let M "'hk,o"k.”'"} be as in III.3,
Let P be a topological space. For every x€ P and every k ¢ «
define o (k) & W and g, (k) 6 WU {w? vy

3G o (k) 127 for every m@ w and every neighbourhood U
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of x there exists z € U such that card q(z) = j and q(z) <
SI\{O,T,....M},

8,(k) = sup o (k).

emarl. For every topological space P and every x€ P, we
have defined a function g.: @ —> wu{w}. Let us write
&< &

122 g (k)< g, (k) for 81l k € w and g *g,.

Definition 4. Let P be a topological space., Put

V(P) ={xeP | there exists a neighbourhood U of x such
that g < g, for every y & UN{ x3t,

P(P) = {g lxeV(P)}.

Remark., As mentioned above, we are going to prove that for
every A¢ S,
P(Y(A)) = AL
(More precisely, «w is never a value of g, for any xe V(Y(a)),
hence 8y can be regarded as a function @ —> @ and in this
sense F(Y(A)) = A.)
This will imply (%) in III.3, as we show below.

IV.2, Pirst, we discuss essential and distinguished points.

Observations, a) If Z is as in II.6, then O is 1ts uni-
que essential point, hence it is its distinguished point.

b) Since each copy of Y(f£) with fcA is a clopen subspace
of Y(A), x6 Y(f) is essential in Y(f) and 1dy(s) X = n iff x is
essential in Y(A) and 1d.!“) x = n, Hence x is distinguished in
Y(2) 1£f 1t 1s dletinguished in Y(A) (more precisely, x < (Y(f))y,

where (Y(f))j is a copy of Y(£) in Y(A) '32161'0 (Y(f))j. 1l de=-

$§ A
noting the coproduct).

Lot L(f) end 2 be as in IIL2, let X, B, G, Py, De o8
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in III.3.

Lemma A. Let x€ Y(f) be such that sll ite coordinates X, o
Le L(f), are in G, Then x is not essential in Y(f).

Proof. If x, € G for £e L(f), then id x = O hence x is not

£
essential,

Lemma B, Let x be in Y(f) and there exists te L(f) such that
the t-th coordinate x, of x 1s in E: . Then x is not essential in
¥(1).

Proof, Let us suppose X3 6 E; e Since E"t' is open in X:E N

YA By <, XD

is a neighbourhood of x in Y(f) which does not contein a clopen
regular subspace because E; does not contain a clopen regular sub-

space,

Lemma C. Let KcL(f) be non-empty and finite, let the coor-
dinates of & point x& Y(f) fulfill the following:
x, 18 in G for all £ e L(2)\K,
Xy = Bry(g) for all Le K (for a suitable 1i(£)e @ ).
Then x is essential in Y(f) and
1oy(e) * =, T "L10)°
Proof. Every neighbourhood of x in Y(f) contains a neighbour-
hood of the form
Y()n (V xLT;TK ’NZ).

£
Ll ¢)\K(G)£ (where TT 1is a8

in III,2), Consequently every neighbourhood of x in Y(f) contains

where U, is a neighbourhood of Xy = Pg,4(z) 10 X7 emd VY 18 a
subspace of the metrizable space

a clopen reguler subspace (by II,6) and 1dyg) x 'LE:K my 123~
(by II.5).

Proposition. Let x be im Y(f). Then x is dis pguished in
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Y(£) iff precisely one coordinate of x is equal to Pr,1 and all
the others are in G.

Proof. a) Let x be in ¥(f), x, 6 G for ell fe L(f)\ {t%, x, =
= pf,i’ Put

Ug =G fgr all £ e L(£)N\ {t3}
Uy =42 }xzmi’ .

Then U= Y(£) n“'['(f.‘) Uy 1s & neighbourhood of x in Y(f).By Lemmas
A-C, ye U 1s essential 1ff yeY(f), y,€ G for all £e& L(£)N {3
and Y= pf,i’ Then 1id y = mi,i’ id x, hence x is a distinguished
point of Y(Z£).

b) Conversely, let x be & distinguished point of ¥Y(f). Since
x is essential, none of its coordinates are in some Ek' by Lemme B,
Hence all its coordinetes are in H = {or} VG, except, possibly, fi-
nitely many which are equal to some pk’i's. First,we prove that no
coordinate of x can be equal to o, Thus, let us suppose that there
exists te L(f) such that xy= 0" .Then every neighbourhood of x con-
tains infinitely many essential points z with id z &ll distinct.In
fact,we can choose Zy= pf,i with sufficiently large i and,since no
coordinate of x is in Ek end G is dense in each Ik\ Ek’ we can
find z, in G arbitrarily close to x; for all £e L(LIN{t§ such
thet z = {z; |£ € L(£)} is in ¥Y(f) and sufficiently close to x.
Then z is an essential point of Y(f) with id z = mg 4+ And x 18
an accumulation point of all such z's with all larger i’s, 80 X
cannot be a distinguished point of ¥(f). Thus, if x is & distin-
guished point of Y(f), then there exists KcL(f) finite such that

xp, € G for all Le L(f)\K,

x

£
By Lemma A, K is non-empty. Let us suppose that card K>1, Then

= Pz,1(¢) for all £€ K (and suitable i(£)e o ).

idx = L%K my 3(2) but every its neighbourhood contains en es-
sential point y with id y = m?,i(t) for te K., In fact, if
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Y =x for all £ € (L(Z)\ K)uv 4t} and . is in G and suffici-
ently close to x, for all Z& K\{t}, then really y is an essen-
tial point with id y = BE 1(t)? it card K> 1, then id y#1id x,

which is a contradiction. Consequently card K = 1,

IV.3. Now, we investigate the invariant q(x) from Definition
24

Observation. If Q is a clopen subspace of P and x&Q, then

qp(x) = qQ(x), evidently. Hence for every fe A and x€¥(?),
Gy (a) () = ag(qg)(x).

Lemma, Let x be in Y(f), m be in <> . Then me q(x) 1ff no
coordinate of x is in any Ek and at least one coordinate of x is

equal to Pk,i with mk,i' me

Proof, If a coordinate of xe Y(f) belongs to some B,, then
x has a neighbourhood containing no essential point so that q(x)=
= @, Hence if q(x)+#, no coordinate of x is in any E . If no co-
ordinate of x is equal to Py,1 wi th By ,1™ W then x has a neigh-
bourhood containing no distinguished point y with id y = m, this
follows from IV.2 Propositiony hence m4 q(x). Conversely, let us
suppose that at least one coordinate of x is equal to Px,1 with
By ,i™ M say the t-th one, and no coordinate xy of x is in El .
S8ince G is demse in each X; N Ej; , we can find a distinguished
point y sufficiently close to y such that

T = g = P,p0

y, ¢ @ for all £e L(£)\ 44},
hence id y = m. Thus, ms q(x).

IV.4. Let us investigate the invarients from Definition 3.

Dhgexyetion. If Q is a clopen mubspace of P and x€Q, then
the definition of nx(k) and gx(k) with respect to P and with
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respect to Q coincide,

Lemma. Let x be in Y(f). If some coordinate x, of x is in
Ey , then cy(k) = {0} for all k € w ., Otherwise, g (k) is the
number of all the coordinates x, of x, for which simultaneously

anandxjao’.

Proof. If a coordinate x, of x is in Ey , then x has &
neighbourhood U containing no essential point so that q(z) =
= @ for every 2 ¢ Yl , hence card q(z) = O; consequently cx(k) =
= {0¥for allk e w.

Let us suppose that no coordinate x, of x is in EZ . Let
k € w be given; we denote by K< L(f) the set of all £e L(f)
such that £ = k and x, = ¢ (hence card K£I1(:)).

8) We prove that card K£g (k). Let a neighbourhood U ot
x and m € @ be given, We can find 2 € U with q(z) s M £0,000
+seym} and card q(z) = card K as follows: we choose distinct num-
bers By 1(L)* £e X, in M\ {04000, ,m} such that Px,1(2) is suf-
ficiently close to o and put

2 = Py,1(4) for all £ e K

zg € G sufficisently close to x, for all £e L(£)\K
(since G is dense in X; \ By , this is possible) and such that
z =iz, { £ e L(£)} 18 in Y(£). Then q(z) '{'k.i(l) | £ € Ki, by
IV.3 Lemma. Since card q(z) = card K, oard K¢ o,(k), so that
card K< g (¥).

b) To prove ihe converse inequality let us denote

Uy = Xz whenever either Z4 k or x, =0,

521U 5 whenever Z = k and x,6 {2~1U)
kS A e 1ETS
> Z. .
Z,1)
Choose "7”‘{"‘1,,1({)‘ Uy + X33 end put
QL- Y(f) n T u, .

LeLe) £
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Clearly, U is a neighbourhood of x and card q(z) £card K for

every z € U with q(z)c M \10,...,m}. Consequently, g (k) =<
< card K.

IV.5. Now, we investigate the invarianta V(P), F(P) from
Definition 4.

Observation. If Q is a clopen subspace of P, then
v(Q) = QN V(P) and F(Q)< F(P).

Proposition. Por every A&S and f¢ A,

v(¥(f)) consists precisely of the point with all coordinmates
equal to & , P(¥(£)) = {2} and F(Y(A)) = A,

Proof. This follows easily from IV.4 Lemme.

Corollary. If A,B&S and Y(A) is homeomorphic to & clopen
subspace of Y(B), then

A = P(Y(A)) s P(Y(B)) = B,
Thug, we have proved (x) in III.3.

V. Some strengthenings of the Main Theorem.

V.le The following stirengthening can be seen immediately

from the proof of the Main Theorem: If S is a commutative semi-
group (not necessarily countable) such that there exists an em-
bedding

@:8 —> WV
with blgstg() countable, then S has a productive representetion
in the class CHSCW., This has e.g. the following consequences:

a) The additive group (R,+) of all real numbers has & pro-
ductive representation in CHSCW, (In fact, there exists an em-
bedding ¢f:(Q,+) —> W of the additive group of all retional
numbers with g(q) ng(q”) = @ whenever q+q°, by [12]. Then
y:(R,+) — W  defined by
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y(r) = %g& g (q)
ot

is an embe;iding of (R,+) into W mdm:JR 4 (r) 1s countable.)
b) There is an X6 CASCW which has 2'° non-homeomorphic

square roots. (In fact, put S = exp @ and s+s = @ for all
8,8 € S. Put S, = 4seslcara 841%. Then there is an embedding
g:5,—U with g(s)n @(s”) = ¢ whenever s+s’, by [12].
Then y:S8 — WU » defined by

y(d) = g

v (8s) "m,“a)/: ¢ (n) for seS, s+d,

is an embedding with »%Js y(8) countable., If {X(s)|s€St is a
productive representation of (S,+) in CHSCW, then the space X =

)
= X(#) has 2 ° non-homeomorphic square roots.)

Ve2, Let us describe another strengthening of the Main
Theorem: Let a space P in CHSCW and & subsemigroup S of W with
countable support be given, Then there exists a productive re-
presentation §Z(A)IAeS% of S in CHSCW such that P is a retract
of each representing space Z(A). In fact, put

T = PxE,
where E ¢ CHSCW is a space such that the points x with id x>0
are dense in it., Define ¥ = {X Ik & @3 as in III,3 and, for
every fG supp S and A€ S, define Y(f) and Y(A) by means of &
as in III.2, Finally, for every A< S, put
2(a) = LL ™ Y(A),

Clearly, P is a retract of Z(A). Since each Y(A) is homeomorph-
ic to a coproduct of %, coples of itself, we see that
%Z(A) x Z(B) is homeomorphic to Z(A + B).
And we can recognigze the set A¢ S from the structure of Z(A)
as in IV, In fact, no 0y Y(A) with n> 0 contains essential
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points (becsuse of the factor E) so that only T°x Y(A) (which is
homeomorphic to Y(A) because 7 45 a one-point space) influences
the invariants Cxs Byy that

V(Z(A)) = Y(Y(A)) and P(Z2(A)) = P(Y(A)).

Consequently, if Z(A) is homeomorphic to a clopen subspace of
Z(B), then AcSB,

Corllary, Every space P in CHSCW is a retract of a space
*
in CHSCW having 2 ° non-homeomorphic square roots or >f a space
I ¢ CHSCW homeomorphic to X° hut mot to X2,

Ve3s The next strengthening of the Main Theorem is as fol-
lows: Given a semigroup S ¢ U with countable support and & spa-
ce P in CHSCW, there are 2$° non-homeomorphic productive repre-
sentations of S in CHSCW such that each representing space has P
as its retract. (We say that {Z(A)lAc St and €2 (A)|A€S? are
non-homeomorphic ropresentationé if none of the spaces Z(A), A€S,
is homeomorphic to any of the spaces Z (B), B€S.) In fact, the
construction of the productive representation presented in III
depends on a given pairwise disjoint system M = -ilk\k ew} of
infinite subsets of @ . If we choose N = {M |k € w} such that

()N (L, 1) 18 finite

then none of the spaces Z(A), Ac S, of the productive represen-
tation constructed by means of M is homeomorphic to any of the
spaces Z°(B), BES, of the representation constructed by means of
%’ (this can be seen using the method of IV, ) .

Ve4e Let us mention the following generalization of the
Main Theorem: In [1), J, Adédmek eand V. Koubek investigate & sum-
productive representation of an ordered commmtative semigroup
(8,+,4) in a category X with finite products and finite copro-
ducts (=sums). It is a collection {X(s)l se 8% of objects ot I
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such that

(1) X(8y)x X(s,) is isomorphic to X(s;+s,) for all s,,s,c S;

(1) X(sy) is a summand of X(s,) 1ff 8,<s,.

For X = CHSCW, being & summand is precisely being homeomor-
phic to a clopen subspace.

(Any commutative semigroup (S,+) can be ordered 'by the discrete
order (i.e. any two distinct elements are incomparable.) Then a
sum-productive representation {X(s),s¢ S% in CHSCW fulfils (i)
and

if sy<% s, then neither X(s1) is homeomorphic to a clopen
subspace of x(az) nor 1(52) is homeomorphic to a clopen subspace
of X(s4).)

The semigroup U ¢ exp w® 1s an ordered semigroup, it is
ordered by inclusion., If S c W has countable support, we have
constructed its productive representation {Y(A) A¢ S} such that
(%) of III.3 is fulfilled. This means that {Y(A)lAc S} is a sum-
productive representation of S, where S inherits its order from
W . And, by [1]1, every countable ordered commutative semigroup
(8,+, £) can be embedded in U sguch that 8,48, 111 ¢(8s) &
€ @(s,) (where ¢ 1s the embedding). Comsequently,

every countable ordered commutative semigroup has a sum-pro-
ductive representation in CHSCW.

Moreover, also some uncountable ordered commutative semi-
groups have a sum-productive representation in CHSCW - the exis-
tence of an embedding onto an ordered subsemigroup of U with a
countable support is a sufficient condition. One cen see e.g.
that the embedding ¥i(R,+) —» W from V.1 a) preserves the or-
der so that {Y(y(r))IrcR} is a sum~productive representation
of the additive group of all real numbers with their matural or-
der in CHSCW, The strengthenings described in V.2 and V.3 can be
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dons: also for sum-productive representations o cordered commuta-

tive nemigroups.
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