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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
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SIMPLE ESTIMATORS OF THE PARAMETERS OF GENERALIZED
TUKEY'S 2 -FAMILY
Marie HUSKOVA

Abgtract: Tukey (1960) introduced a one-parameter family of
symmefrfc distributionswhich appeared useful in the representation

of data when the underlying model is unknown.
Ramberg and Schmeiser (1972, 1974) extended this family to & four-
-parameter family containing distributions both symmetric and skew-

ed (to the left or to the right).
In the present paper simple estimators of the unknown parame~

ters based on order statistics are developed and their asymptotic
properties are investigated.

Ke* wordg: generalized A-family, robust estimators, order
statistics

Classification: 62G05, 62E20, 62G30

1. Introduction. Tukey (1960) introduced the family of dis-
tributions {P(.,%);%cR{} defined by their quantile function

€1.1) FlUyN = (P=(1-0*)/2  ue(0,1),

where A € R, is a parameter. This family is known as (Tukey’s)
ﬁ-tamilx and is useful in the representation of data when the
underlying model is unknown. It contains distributions ranging
from light-tailed ones (A>0) to heavy tailed ones (A<0); A= 0
corresponds to the logistic distribution, A = 1 or = 2 corresponds
to the uniform distribution, A = 0,135 corresponds to the
standard normal distribution.

Ramberg and Schmeiser (1974) considered a genmeralized
- T27-



Tukey’s A-family to a four-parameter femily {F(.; 2,2, .4 2
. . S Rl TRk
z,leal,(az,a3,a4)¢/l} with A=fa;>0,i= .3,4}0{;#0,1:2’3,4}‘,{12>1’
A<-1,2 <0} vir <1 »A5>1,2 <0} u{;2=o,a3'1 4>0}u{13=03 A0}, derines
through the guantile function F'l(.;3%:32,23,34) as follows:

- 2 A
(1-2) F 1(“; 7«1,\2,13,'34) = m,] +(u ‘(1-'.1) 3) A4, u€(0,1)

where ﬁ1e R, is the location parameter,lm4| is the seale para-
meter, 12 s A3 are the shape parameters. This family con-
tains the origirnal Tukey’s A-family and, moreover, distributions
skewed to the right and to the left.

The concept that the distribution is defined by its quantile
is convenient in Monte-Carlo simulation studies (if U is a random
variable with the uniform (0,1)-distribution and F is a distribu-
tion function then F~'(U) has the distribution function F).

Moreover, it can be useful in nonparametric statistics, e.g.
in constructionadaptive R- or IL-estimators.

One should remark that generally the distribution function
F(.;)1,12,13,24) corresponding to F'1(.;11.12,%3,ﬁ4) defined by
(2.1) is not expressible in a "simple closed form".

Tukey’s QA-family was studied by several authors, e. g.
Joiner and Rosenblatt (1971), Ramberg and Schmeiser (1972, 1974).

The properties of generalized Tukey’s A -family were treated
e. g. by Ramberg and Schmeiser (1974). It wassghown how to determi-
ne the perameters of the digtribution using the first four moments
and how to fit the resulting distribution. For selected values of
skewness and curtosis with expectation 0 and urit dispersion the
tables of m1,...,m4 are given.

The problem of estimation of the location parameter A1 was
widely studied. Filiben (1969) proposed to use the trimmed mean
end the Winsorized mean where censoring proportion was suitably
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chosen. Chen and Rhodin (1580) developed a robust estimator of %
expressible as a linear combination of a finite number (£ 5) of
order statistics with coefficients suitably chosen.

Jones (1979) considering Tukey’s A-family proposed an esti-
mator of N based on the ordered sample and utilized it to deve-
lope the adaptive rank test for the symmetry problem.

The aim of this paper is to develop simple estimators of
"\1,...,').4 based on the ordered sample, to investigaie their pro-

perties and to discuss the possibility of applications.

2. Estimators of the unknown parameters. Let X1,...,Xn be
a random sample from the distribution function {F(.,‘;\1,'Aa,x3,'k4),'
A\ €R,, (7«2,23,24) el }  with the quantile function
F'1(u,'A1,'AZ,'A3,'A4), u€(0,1), given by (1.2) and let 2,6 ... &%
be the corresponding ordered sample.

We shall focus on the problem of estimation of '12. The esti-
mators of %3 can be developed quite analogously. These estimators
will be utilized to construct estimators of '/\1 and ‘A4.

Jones (1979) towards construction of an adaptive rank statis-
tic proposed to estimate the parameter A of Tukey’s A-family de-
fined by (1.1) with A< 1 by the statistics:

Z, =2
a 1 M “2M
(2.1) %—mlogm—,

where M is suitably chosen and showed its consistency.

A slight generalization leads to the estimator A‘Az(l;a,b,s)
of %, in the family {P(.;%,%,%,%,); % €Rry, (A,%4,3,) <A,
A4<0 9 A<}

A 1 Z —ZL'
(2.2) A(M;a,b,8) = log —
log 3 [asM] ™ [baM]
- 729 -




where
a,b,8>0, 8 £# 1, U is a positive integer fulfilling
max(a,b,as,bs) <n/2), a £ b,

(2.3)
and [A] denotes the largest integer not exceeding A.

Similarly, the parameter %3 in the family iF(.;Z1,7«2.13,A4);
A\ €Ry, 1\341, (15,4 ,ﬁ“cl}can be estimated by

1 Zp- a1 ~%n- oM
g1l z;—-z—-l—.
?g B0 T, [asM] ™ “n- [baM]

According to Theorem 4.3 88 n+e , Mwe , M/n-se

"

(2.4) A3(M;a,b,8)

where a,b,s,M fulfil (2.3).

(2.5) "\AZ(M;a,b,s) L OP(max(M'Va,(M/n)“'mZ)’

which means that this is a consistent estimator of '4\2 if 121-1.
The highest order of comsistency (in the considered class of esti-

mators) is reached for

2(1-%)
(2.6) M=M, =0 >2%);
)
the corresponding rate of consistency is
(2.7) n -2k

Another class of simple estimators of kz of the family
{1'("*1'*2-"3-'“4)57‘1531’ 1= 1,35 %42, % >0} can be defined
as follows:

Z -2 +2Z -2
(2.8) &él:a,b,c,d,s) =log ¥ mz bl oM mm‘—gflgf—sq
[aaM)™ 2 (beM1*Z [oaM] =2 [a5M]

where
é,b,c,d,s> 0; 8 # 1, a=b4c=d = 03 c # b,d; a £ b,d,
(2.9) M is a positive integer fulfilling
max(a,b,c,d,as,bs,cs,ds)M <n/2.
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According to Theorem 4.4
3 1/2 2= \~1/2 1-%
(2.10) A,(M;a,b,c,d,8) = M,+Op(max(¥™ /<, (Wn) =" 2,8/ “(W/n) ))

as n-+e , M—=>e~ , m/n —» 0, hence it is a consistent estimator of

‘}.2 if ’)‘2‘ 0.
The choice
2§ g.%
(2.11) M =M = O(max(n *~2%, n/3y)

P
leads the highest order consistency (in the considered class of
estimators) which is

-1
= 2_12)/3’ n—(?—iz)( 5—2\2)

(2.12) Op(min(n ).

Table 1 below presents choices of M and the highest rate of

consistency for some particular value of 12

Table 1
12 M corr. rate of conv. l'; icorr. rate of conv.
Y ‘ 2
0 n2/3 n-1/3 n4/5 n'2/5
1 - - n?/3 al/3

If 2, is unknown we cannot find optimal choice of "2 and

M:Z. But we can proceed as follows:

1. choose M satisfying (2.3) and compute iz(l;a,b,s) (which is
consisgtent);
2. compute l.)? according to (2.6) with 3, replaced by
iz(l(;a.bls);
3. compute ‘a(liz(l;a,b,s)‘a’b”)‘
- 731 -



None of the introduced classes of estimators attains the
highest possible consistency (n~ -1/2 if the Pisher information is
finite). This rate is reached e. g. by the class of estimators
(32,7\3) defined implicitly as fh’e solution of the equations:

¥4 -7 3
(2.13) [ain] [bin] "( 1'31) -bi +( 1-b )

5] i=1,2,
z[cin]-z fa,n) <:i -(1-ci) di 24(1- -d)
where 1>a4,b;,cy,dy >0, (ag,b;) # (cy,d4),(d5,c4), 1 = 1,2,
(a1,b1,c1,d1) # (az,bz.cz,dz),(cz.da.az,bz), a; £ by, cy £ 4y
To find the estimators means in fact to solve transcendent equa-
tions which can sometimes bring computational problems.

Now, we turn to the problem of simple estimators of the scale

parameter ')«4. By Lemma 4.2 one has

Zfar)~2[ -1/2
2.1 -1—-——%—%-—-—13 = ( ) »os
(2.14) 8 2=(1-a) 2=b 24(1-b) My + Opln e

where a # b€(0,1), and for A,>0, 'A3>0

ey

(2.15) =+ OP(m&x(M,(M) 2,1 &)

n
as n—~~ , M/n -0, N/n —~0 (M and N can be as fixed as tend to

infinity). Hence we can introduce the following estimator of ')\4:

-2
2.16) ( b) = 'QT—E*S&I‘L’?
¢ o -(1-a) “+(1-b) ﬁz

where a £ b €(0,1), 7‘2. \3 are some of the estimators of A, and
'AB, respectively, introduced above. If %2 >0 and \3 > 0 simpler

estimator of 14 can be proposed:
R Z
(2.17) Rpu,m - W

At last, the parameter A4 can be estimated by (for motivation see

Lemma 401)3
- 732 -



N . A A, 4 A
(2.18)  A(a,b) = HIpgm+Lpya) - &y (a 2-(1-8) 24b 24(1-b) )

A A A
where a £ b€(0,1), A, N, 7‘4 are some of the estimators of the
respective parameters introduced above. If we succeed to find &, b

€(0,1) such that

A A A i
(2.19) 82-(18)2 452 (1) 2 =0
then

AL 1
(2.20) %(a,%) = ?(Z(é.n]+ Zn“m]).
If 12> o, 7«3> 0 then

I
(2.21) ALY = Mz + %y
can be used as an estimator %1. N

Al1 considered estimators of Ay, Ay N 7\4 are very simple,
eagy to compute (except, may be, 7\2, &3). In practice one should
choose M and N small with respect to n; around 0,01n to O,1n accord-
ing to how large is n.

As for the asymptotic properties of these estimators, they
are consistent of order n“, « >0 but in case of finite Fisher’s
information are not asymptotically optimal (i. e. asymptotically
unbiased with the asymptotic variance attaining the Cramér-Rao
lower bound). To obtain such optimal estimators the developed esti-
mators as (52,%3) as (&2,&3) can serve as preliminary estimators.

The estimators (‘7\\2.%) (or (&2,&3)) can be also utilized to con-
struct various adaptive rank statistics along the line done by Jcnes.

In case of A,, A3 >1/2 the estimtors "‘M(H,N) and x4(l,l!) are
quite satisfactory for they attain the highest order of convergence,
i e n~®0(2:23) 3¢ min(a,,ny) €1 and 0™ if 45,2, 31,and coin-
cide, with the estimators considered by Akahira and Takeuchi (1981).

- 733 -
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3. Estimators in case 7\2 3 A. When 2, = % =2 the

corresponding density is symmetric around )1. One can use the es-
timators suggested above or utilizing the symmetry property and
apply the following ones:

(3.1) Aat,e,0,0) = H(A,(M5a,0,8)4 % (Msa,,8)), Ae1,

where a,b,s,M satisfy (2.3), ﬁz and fk} are done by (2.2) and (2.4),
respectively, or 2 ~
(3.2) A(Mja,b,c,d,8) = 3(A,(Msa,b,c,d,8)+h(M;a,b,¢,d,8)), A<2,

where a,b,c,d,s,M satisfy (2.9) and ), is defined by (2.8). At last,
putting &, = 1-b,, ¢, = 1-d, in (2.13) one can define the estimator
”'(a.vc,) of 2 as the solution of the equation:

2[51111'3"‘2[(1—3.1 In] a: - (1-5,1)“

Z[c1n]'z[(1-c1)n] i} c?- (1-c1)7‘

where a, £ 51‘(0,1).

(3.3)

Similarly, the parameters A, ‘A1 can be estimated by

A Z -2 1-a
(3.4) N(a) =
2(ah-(1-a)?r)
and
(3.5) A'M(B) = (Zgany*2(1-0)m) /2

respectively, where a€(0,1). If A>0 then one can also use

A = (2 -zp/2

or

A = (zy_05)/2,
where M<n/2,
We cquld observe that the estimators of the unknown parame-
ters are simpler when we have the situation ‘Az = %3 =%, i. e.

when the distribution in symmetric around the location parameter
- 734 -




'M. Hence it could be of interest to have a test for testing

problem:
H: %2 = %3 =N against A: 0\2 # A\

By Theorem 4.6 one has

Z -2
(3.6) OéTn = 'z—%%:z-@—-
N 'n- [aM]

A=
op((M/m) 2 3
= 1+0P(1) if ')\2 = 7\3 =2

as n—ve , M—e , M/n —»0, which means that the values of T,
close to 1 indicate the validity of H and the values either
close to 0 or large values indicate that H fails to be true.
According to the results in Section 4 under H \M(T,-1) has
asymptotically normal distribution with the parameters
(0,222 V1a-v(a""(a?-b*)"2) and (0,2va"'fa-b|~") if A 41 and
A >1, respectively (notice (4.12)).
If we establish the test on the asymptotic distribution of
Tn we reject the hypothesis H on the level o« if

o) [N 201 5 37 1-w2) A B b " (21a-bl e~ o) /2

where @"1 is the quantile function of the standard normal distri-
bution and
» A
A= e, + Aaaa,))/2.

« Propertieg o e _proposge timato If 216 cov ey
is the ordered sample from the distribution F(x;A;,A,, *3.7\4) defined
by its quantile function (1.2) then

A L)
(4.1) Z; = A+ "‘4(“1 -(1-0;) 7), 141sn,

(1o 0. 2y = Fl(u;%,0 LN 141&n), where U;,...,U, 1s the

29“30
- 735 -



ordered sample (of size n) from the uniform (0,1)-distribution.

It is known that

(4.2) B, = i, cov(U,Uy) = (_1_$_n_-.g:lL 1ei< jgn,

n+1)%(n+2)

(4.3) U = gy o+ op((AB=i)) 12,
n

Further, the random vector (1[1,...,1[!1) hag the same distri-~-
bution as the vector
(UpgVy oo o EeVag q pa 1o Uy Y (U Y)Wy jygqoeees

Uyt (U= U Wg_ g1, ot 1o 2o g+ (=YY oo e e s Byt (1=8)Y ) oy 1 )

where 04M <N <n+1, 1(0 =0, %, , =0, the vectors N1’M_1,...V —1,M-1)

Wy Ned-12 e oo Vpoyoq Nopreq) 808 (Y o yeees¥yy noy) eTe given
(ZM, ZN) the independent ordered samples of size M-1, N-M-1, n-M,

respectively, from the uniform (0, 1)-distribution.

In the following we shall omit the second indiceé® in Vi M-11
»
WJ,N—M-P Yk,n-M’ whenever it causes no confusion.

Combining suitably these results one directly obtains:

Lemma 4.1, &) For a6(0,1), n+w

-1 Aq=1
= aaz--(1-84),‘3+(I.!mm-!:x)('kza12 +M(1-8) 3 )s0pa™)

22

Z -2

(4.4) —Lemd 1
4 2

=a?41-a 4+ OP(n-Vz).

b) For n*e , M—>ew , M/n -0

(4.5) 2,
N

P 2
=1 Ay Uy + Uy o+ 0p((¥/n) <)

A
= =1 + Op(max((Wn) 2,W/n))  if %,3 0

i

W2 + 05(1) 12 2,20 .
- 136 -



c) For n—>w " M—> o ’ M/n — 0

-
(4.6) ‘nh

e ™ e 1 A D)+ o)

’A4 n- F
=1 + OP(ma.x(M/n,(Wn) 3 'A3z0
A
= - (=U "2 + 0g(1) 2340

Lemma 4.2. @) For A>a, b>0, N—»e , Mvee , M/n >0

%2

A A f A
4.7 (Z&,M]-Z[bM])/'AII» = U[-i'M]{A 2{& 2"b +

1

b
+ Upag, g2 @ 2 A - (g, a1 0220

-1
2 A}
1-Ny 1=
+ s Utmﬁ (a=b)/A + Op(max(M™",(Wn) % /2y,
b) For A>e,b,c,d>0, a-b+c-d = 0, n—>e , M—>e , ¥/n—0

(4.8) (Z[am-Z[bM]+Z[cm-Z[dm)/m4 =

M A A N,
2 2 2
- U[“ﬂik &a 2p 240 2-a 2+

8y, % by 2
+ AV, tan-1008 - = A% Vo, and-17X

gy 2! 4)4"2"
+ A% e, pamg-17E)© = A%V gy, tan1-172

2-9 _ 2-2, _
+ 'A3(7\3-1) Um%(-az+b2-cz-d2)/2 + Op(max(M Yw/n) %M 1/2)?-

Proof. Clearly,

A LER.Y A3 _
(4:9) (2012 1)) /Ny = Yoy Vg -V g+ -Vpow)

2 2 A
- VRV VERg) - Vg g >+ U’ ) -

Applying the Taylor expansion together with (4.3) and (4.3) implies
the assertion a).

b) It can be proved quite analogously noticing:
that a-b+c-d = O together with (4.3)eamd (4.4) implies
- 137 -



-1/2
Viamd = Veoud * Vpew3 - Viau] = Op(M 2)  agire .
Q.E.D.

Now, we are in a position to state the main theorems on pro-
perties of the estimators of ,‘2 (those of 7‘3 are quite analogous
thus they are omitted).

Theorem 4.3. If (2.3), 1241 holds then

2 2
(4.10) (log 5'1)(a2(ld;a,b,a)~12) = (a 2-p -1, an,

1 -1 b ﬁz“l
i(v[alﬂ, ma]-v‘%)a 2 - OV fon, [awl-1~T0® -

A-1 Ap=1
- b 2 -1
- Vegu], td-1-100 ° 87 +Vpa, (-1 - # }

+

1= 1-2 2=-A
(Wn)  %f, + oplmax(w/n) 2w V27 (m)” 2)
a8 n—>e , M—> e , M/n - 0, where 32 is defined by (2.2) and

(4.11) i = %3<1-smz><a-b)(a“2-b“2)",

then

(4.12) L0V 2 (50,5, 00 A=, W) (308 =)™ w0, 1)
g N e , M—>e , N/n —0, where ’

’:2 = (log a°1)_21§i(3212-1+b2m2-1) l1-s'1l-(1+s-1)min(a.,b) +

+ s'1min(a,bs)+min(b,as)} (aﬁ2-bm2)'2.

Proof. Applying the Taylor expansion (of the function
n(x,¥) = log 1;-) and Lemma 4.2 we easily obtain the first part of
assertion.

As for the latter, according the proved part theorem it suffices

to show that
- 738 -




- L R
ﬁf = (log s 2 g2y 2)-2 Azﬁg .
2

2,-1 Ao-1
var{(Veg- P e’ - Uy -P o2 -

A-1 _ Y
= Viagu) ra? ol (Vipeu)- Byv? s 1}'

The assertion can be concluded from this relation and (4.2).
Q.E.D.
Going carefully through the proof of Lemma 4.2 and Theorem
4.3 we find that
A
(4.12 2, (M;a,b,8) = A, + op(1) A e

1+ op(1) 251

88 N—%oe y Mo , M/n - 0.

Theorem 4.4. If (2.9), 12‘2, % # 1 is fulfilled then

W A N, A
(4.1 (og 5~ (Ay(M58,b,0,d,8)-%) = (a'2b 240 2-a 2"
A,-1 A=
2 by, "2
.{Mz((vcm’[m]_,-%)a =(Viou1, h1-172)° +

l -1 52-1
+ Upan, tag-19e 2 ~(Veau, Can)-1—9)2 -

- ao-1 b
- Mo (T an, pag-1-388 © ~(Vipau], Dad-1— 1P

Wl dy At
+ Vo, w-1-2e ° Vg, pan--104 - )

- 2=
+ (M/m)2 P2 12 + OP(ma.x(ll"1,(ll/n) 2 ll"1/2))

-1

88 Nde » Mo , M/n —» 0, where 12 is defined by (2.8) and

Ay A, Ay, A
12 = 270 1e2-b240%-a?) (-14s O)(a 2ob Pee 2.4"2)-1

then
R 2-9 -1y=
L0200 (50, b,0,d,8)-A-(Wn)  2p(log 871 ‘>/6;2) ~¥(0,1)
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as n-v» e , where 6;2 is the variance of the linear combinations
of order statistics from the right hand-side of (4.13) which under
the additional sgsumption s> 1 and

for every pair («,M), «,} € {a,b,c,d} <M implies

Sx <f3
can be expressed as follows:

1. 2A,=1 2%,-1 2%,-1 22,-1 A% A, A, A
U,;i = 22 '1-5 1'(& 2 +b 2 +¢ 2 +d 2 ).(a 2p 2+c 2-d 2)'2.
The proof is quite analogous to this of Theorem 4.4 (but more

tedious computations are needed) hence is omitted. Q.E.D.

Corollary 4.5. a) For a,b € (0,1)

(4.14) A,a,b) = 00" 2) 4 o (A -%) + 0,(Aa-2)
. 4% P + Opld=%H 3773
and

A
(4.15) hed) = 0xa™2) 4 0,3,-%) + 0p(hy-n),

A
where 54(a.b)’and 'L‘(a,b) are defined by (2.16) end (2.18),
respectively.

b) It llz> o, 13>0 end n e , M/n -0, N/n —»0 then
%
(4.16) A, (M,F) = %{2—(1-Un_M)m3-U;2+)3(Un_M-1-UN)+0P((M/n)z)

. a A
= 1 + Op(max((¥/n) 2, (§/n) 2, MW/n, §/n))
and
) d00m = e %302 ) 2
(417) A (M, F) = {20 =(1=U 1) 24Uy S+ ag(Up_y=14Up) +05((M/0) <)

= % + Op(max((M/n) °, (N/n) , W/n, ¥/n)),

where 34(1,1!) and %(I,H) are defined by (2.17) and (2.21),

respectively.
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Theorem 4.6. Under H
Q(W(Tn-a))—- N(0,6‘2) as M—>e® , Nvew , M/n —0, N/n—0

where T, is defined by (3.6) and
2 .22
2 _ 2% bv°"la-bl

ab(aP-b?) AT
- —'5-&|§-13 ; iz Ay 1.

Proof. By Lemma 4.2 and the Taylor expansgion one cgn

easily arrive at
U
1, = (gL o 2
n -n—EAMJ);{ +a‘-’b
A~1 by, A-1
i("[am, pad-108 T = Ol (a1 -
A-1 byA=1
-(W[aM],[AM]-l-%)a + (Wrbm’[w]_1—x)b } +
A
e (0l =0 ™Y+ Optmax(u™!, () A2}

Clearly,

U
A0 _ g, o M 1/2,
T:U—Laii + Upln

n-
Hence for A <1

LY\ A-1
Tn =1 -P'E-T(a - (V[w]’[m]_1 - Y[w]' [AM])a -
- Vo, (a1 - Y[bM]'[AM])b"'1)+oP(mx(r1,(M/nﬂ-ﬂrvz))

The result for % <1 follows directly recalling (4.2) and that the
vectors iVi’[m]_.‘. i=1,.00, W]-T} and * Yj. [an]® J=1y00e, [AM]&
are given U[AM] and Un- m] independent.

As for A0, by (4.5), (4.6), (4.16) and (4.17) ‘one has

. U[ ul- U[”l]+ OP(ma.x((Wn)z.(ll,n)a))
% Uy fa U [ Op(mex(WmZ, v

-4 - ~



which ,using the Taylor expansion ,can be rewritten as follows

1
T = 1 - a5 B 1 Upu Ve g Ve fag*
+ Optmax((Wm2, W2} + opar’).

Hence Tn is agymptotically equivalent t6 the linear combination
of order statistics and regarding (4.2) the assertion follows
also for A 3 1.

Q.E.D.
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