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MINIMAL ULTRAFILTERS AND MAXIMAL ENDOMORPHIC
UNIVERSES
A. TZOUVARAS

Abstract: We prove that there is an ultrafilter on Sd, which
is minimal in the Rudin-Keisler ordering of ultrafilters. U¥ing
such an ultrafilter we construct maximal endomorphic universes
with standard extensions. Moreover, for such a universe A, the
equivalence x is the equality.

Key words: Alternative set theory, ultrafilter, Rudin-Keisler
ordering, endomorphic universe, standard extension.
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The existence of an endomorphic universe with a standard exten-
sion was established in [S-V]. Specifically, it was proved that if
MM is a non-trivial ultrafilter on de which contains all super-
sets of a countable class and d is an element such that o, #¥,d
are coherent, then there is an endomorphism F such that F, 21, d
are coherent, F"V d = V and F"V has a standard extension.

We are going to strengthen this result by showing the exis-
tence of an ultrafilter M , such that if F,2, d are coherent
and F "V[d] = Vv, then F"V[a) = V for every a ¢ F"V.

Since Alal is the smallest endomorphic universe which contains
Au{a}y and VA =V, it is evident that F"V is maximal in the usual
sense, i.e. it is not included in any proper strictly greater en-
domorphic universe.

In the first section we show that maximal endomorphic universes
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exist, while in the second one we get results about the relation

T, when A is maximal.

§ 1. Minimal Ultrafiletrs. The following definition is a ver-

sion suitable for our needs of the well-known classical definition

(see e.g. [B1 p.17, where our minimal ultrafilters are called the-

re "Ramsey").

1.1. Definition. An ultrafilter %% on de is called minimal
if for every set-definable function F on V, there is a class X e
such that Ft X is either constant or one-to-one.

Since we are going to deal with ultrafilters containing sets,

the next rather trivial result is in order.

1.2. Lemma. If M contains a set, then WL is minial , iff
for every set-function f such that dom(f) € 9 , there is a ue

such that £ Pu is either constant or one-to-one.

Proof. Suppose WL is minimal and dom(f)e M . Extend f
to F on V by setting F(x) = 0 for x ¢ dom(f). Then FP X is either
constant or one-to-one for some X & Wi

case for f P XNdom(f).

and obviously this is the

Conversely, if F is a set-definable function on V and usa %,
then FP u is & set-function, hence there is a v € 31 such that

FPunv is either constant or one-to-one.

1.3. Theorem. Let X be a countable class. Then there is a

minimal non-trivial ultrafilter 9 on de such that for every u,

XEu—>ue T,

Proof. Let (uy ), cnbe an enumeration of all usX and let

(f‘)ﬁn be an enumeration of all set functions. We are going to

construct a sequence of classes (M ) ¢ n such that:
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(i) For each « € 2, %% is an, at most countable, sub-
class of de.

(ii) oo<f5—->’&'2‘l°‘6mﬂ

(i1i) M¢ is closed under finite intersections and
(%2 e M) (ZNX is infinite).

(iv) u e W, for every o« € Q -

(v) For each < € 2 , if dom(f )N ZNX is infinite for all
ZeU{Mp; Bex N0 ) then there is a u & W, such that eit-

her fecr u is one-to-one or rng(f“’f‘ u) is finite.

Suppose (mw)“g_ has been constructed. Since U{m¢;&eﬂ§
contains no finite set, there is a non trivial ultrafilter 2 ex-
tending UM ;<€ 3 . To see that L is minimal, after
Lemma 2, take any function f with dom(f) € @ . It is easy to see
that dom(£)N ZNX is infinite for every Z 6 L . If £= f'., ,then,
by the clause (v), there is some u smﬂ such that either f(’l‘ u
is one-to-one or rng(fp f* u) is finite. In the latter case there
is an xe rng(fpr u) such that f(;I"-ix} e Pt and f3 1is constant
on fr;l"{x}‘

Construction of ( M ) .p. Assume that ‘m(, , forflecni
have been defined. Let m; be the closure of U{® ;@e&ﬂ.ﬂ.?U(u‘}
under finite intersections. Note that
(3Z e U{WL; B e N T )(dom(£,)NZNX is finite &>

(37 € M) )(don(£)NZNX is finite),
thus we distinguish the following cases:

1) For some Z & W/

C 2
‘m:
E .

dom(£,)N ZN X is finite. Put, then, W =

2) For all Z e 'D'L; , dom(£,JNZNX is infinite but for some
Z,6 M, ., tng(L)MZ NX) is finite.
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Since dom(f, )N Zoﬂ X is countable we can find a set

s : 2 4
v2 dom(fd)n Z,N X such that cng(f, [ v) is finite. For every Zem‘
vAZnX2dom(£f)NZINZ NX,

hence, if we put m‘ = closure of m;‘U{v} under finite inter-
sections, then %, has all properties (i) - (v).
3) Suppose, finally, that for all Z € W, , both dom(f,)NZNX
and rng(f‘r ZN X) are infinite. Take an enumeration (Zn)neFN
of m;‘ and chhose a countable class Y ={yu,y1,...} such that
Yn€ X(\ZOI'\ ...(\Zn for every ne FN, and f" M Y is one-to-one. The
choice is always possible. Indeed, assume {yo,...,yn} have been
chosen. Then, as Z N...NZ € ™M, and f, is infinite on

Xnz n ...f\Zml, we can find a y_ € anDn...nzml such that

fac(yml):ik-f‘,(’(yi) for every i&n. Now, let v be a prolongation of
Y such that f“ P v is one-to-one. It is clear that ZNY is infini-

te for every Ze W  and
vNZNX2vnNznNy = 2Ny.

Thus, putting again @ = closure of MM, U {v} under finite in-

tersections, MW _ satisfies (i) - (v) and the proof is complete.

3

1.4. Lemma. Let U be a non trivial ultrafilter containing
a set, let F be an e}'\domorphism and let F,9 , d be coherent.
Then, M 1is minimal iff for every ae Ald] - A, ALd] = Alal, where
A = F"V.

Proof. Assume that %t is minimal and a € A[d]l - A. There
is some f€ A such that de dom(f) and f(d) = a. Let f = F(g).
Clearly, g is a function and F(dom(g)) = dom(f). As de dom(£f) and
F, ™ , d are coherent, it follows that dom(g) € 2 . By minima-
lity, there is a u € M such that gl u is either constant or
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one-to-one. Clearly, g Pu is constant iff £ PF(u) is and glu is
one-to-one iff £ FPF(u) is. The former case is impossible because
a & A. Hence f M F(u) is one-to-one and it follows from [5-V],
5th theorem of § 1 that A[dl = Alal.

The converse is shown similarly.

1.5. Corollary. There is an endomorphic universe with stan-

dard extension, A, such that A[al = V for every a ¢ A.

Proof. Take %L minimal, non trivial, containing the super-
sets of some countable class and d such that o, %L , d are coher-
ent. By the last but two theorem of [S—V], there is an endomorph-
ism F such that F"V[{dl = V. Then A = F"V has a standard extension
and, by 1.4, Alal = ALd] = V for all a & A.

§ 2. The eqguivalence % - We come, now, to examine the sta-

tus of the relation % when A is an endomorphic universe with
standard extensicn.

Let us recall that x XY iff for every set-formula
q(x,xl,...,xn) of FL and any parameters Y1r---2Yp€ A,q(x,yl,..

¥ > @ ly,y e,y

Let MonA(x) denote the equivalence class of x w.r.t. -

Given a (proper) endomorphic universe A, let us put Da =
=4{ue A;aeul for every a & A.

Da is a non trivial filter on A and it is easily seen that
no, = MonA(a) and 0, = Dy«>a g b.

In fact, Da is a kind of "ultrafilter" since the following
holds:
2.1. Lemma. For every ueA,

usUa<—>(chDaKunv$ﬂL
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Proof. " —» " is trivial. Conversely, let u & Da' Take v €
e D.. Then aev - u, v - ueA and (v-u)nu = @.

a
Let f be a function in A. We say that Db is the image of Da
by £, if ae dom(f) and f"u;aeuSdom(f)) generates Db' We write,

" -
then, f Da = Db'
The next lemma is a classical combinatorial result (see, e.g.
[B] Th.3.3, or [C-N], p. 207) so we omit the proof.
2.2. Lemma. Let X be a countable class and let F:X—> X be a
function such that F(x)# x for every xe X. Then there is a partiti-

on of X into two classes Xo’ X1 such that

FUX ;N x; =8, i =0,1.

2.3. Lemma. Let A be an endomorphic universe (with standard

extension) and let a ¢ A. Then for every function fe&A,
f Da = Dao—->f(a) = a.

Proof. If f(a) = a it is clear, by 2.1, that £"D_ = D_.
Conversely, suppose f“Da = Da' It suffices to show that

ixedom(f); f(x) = x}e D,, or, equivalently, that the set
u ={xedom(f); f(x)*xiQDa.

Assume the contrary . There is a countable X such that ae€ Ex(X).
Since a€ Ex(X)Nu = Ex(XNu) we can suppose that X€ u. Moreover, we
can suppose that f"i(s X.

(Otherwise, put up = uVf"u and extend f to f1 on u, by defining
for xeu; - u:fl(x) =y iff f(y) = x and y is the least in the u-
sual linear ordering of V. Then, fleA, fl(x)-tx 'Vxeul, u, € Da

and f;Da = Da‘ ‘Put

- " Zn
Xl = XUleUf1 XV ... '
X, is countable, X;Su,, £"X;£X, and aeEx(Xl).)
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By the preceding lemma, there is a partition of X into Xo' X1
such that £"X;NX; =@, i = 0,1. But if a eEx(Xi), it follows from

£"D, = D, that ae Ex(£"X;). Indeed, let f"X<v. Then,

Xi € f'l"f"xis f'l"(v), hence £71"(v)e D, or equivalently, v ef"Da=
= Da, whence ae v. But this is a contradiction.

It is well known that if X is at most countable,then e is an
indiscernibility equivalence and Monx(x) = 4x¥ iff xe.DefX , while

for every class C,
x € Def, — MonC(x) = ix%.

That the arrow in the last implication cannot be reversed,

is seen by the next counterexample.

2.4, Corollary. If A is an endomorphic universe-with standard
extension and Ald]l = V, for some d € A, then MonA(d) = {dt.

Proof. Let d'e Mon,(d) and d'4d. Since Aldl = V, there is

an fe A such that dedom(f) and f(d) = d". Obviously, £"Dy = Dge=

= Dd and this contradicts the preceding lemma.

2.5. Corollary. If A is a maximal endomorphic universe with

standard extension then
xxy X = y.

Proof. This is an immediate consequence of 1.5 and 2.4.
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