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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROUNAE 

26,4 (1985) 

ARCHIMEDEAN AND GEODETICAL BIEQUIVALENCES 
Jaroslav GURIČAN and Pavol ZLATOS 

Abstract; This paper contributes to the topological problema­
tics in the AST. The central role in it is due to the concept of a 
biequivalence introduced in [Gr-Z 1] . A metrization theorem for 
biequivalences is established. Two properties of bie qui valences 
bearing upon the connectedness of galaxies named in the title are 
formulated and characterized. The notions of a path and a motion of 
point appear as powerful tools in formulations and proofs of the 
results. 

Key words; Biequivalence, path, motion, compact, connected, 
metric, galaxy, Archimedean, direct, geodetical. 

Classification; Primary 54JO5 
Secondary 54D05t 54B35 

This paper is a direct continuation of [G-Z 1] contributing to 

the topological problematics in the AST. The central role in it is 

played by the concept of a biequivalence introduced in [G-Z 1] . 

The article joins results of two areas of "biequivalence problema­

tics" originally occurring rather independent. 

The first part is devoted to the characterization of biequiva­

lences ( S f A > such that for each mean bound R and each pair 

x i y there is a finite R-path from x to y (Archimedean bie­

quivalences ). The formulation and the proof of the result itself 

are proceeded by • Motion dealing with paths and Motions. 

The second part of our work was iniciated by the unexpectedly 

easy (using the results of CM 2] ) proof of the metrization theorem 
for arbitrary biequivalences. From this theorem some results, analo-
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gous to those from the classical topology, on embediings of a bi-

equivalence with a set domain u into the linear space RNU en­

dowed with the componentwise biequivalence easily follow. If one 

would like to generalize these results to arbitrary biequivalences, 

he will find unavoidable to extend suitably the field of rational 

numbers. That s why we sketch the construction of hyperreal numbers 

in the AST. 

Keeping the fact that every biequivalence is induced by some 

metric, in mind, there arise several questions under what conditions 

such a metric abundant in some further useful properties can be 

found. One particular problem of this type is solved in the papsr. 

Namely, biequivalences which can be induced by a metric H such that 

each pair of accessible points can be joined by a direct motion 

with respect to H are characterized (geodetical biequivalences). 

Both the notions of Archimedean and geodetical biequivalences 

illustrate the "restriction principle to galaxies" mentioned in 

[0-Z 1} • Yia the concept of a motion of point they bear upon some 

questions concerning the connectedness of galaxies of a biequivalen­

ce, as well* 

The reader is assumed to be acquainted with [V] and [G-Z 1] . 

Most of the notions and results from these two sources will be used 

even without any explicit referring to them. 

1. Paths, motions and connectedness 

Z denotes the set-theoretically definable class of all inte­

gers and PZ stands for finite integers. Variables «t,/3,f,A,i*9v,... 

(k,m,n) are used sometimes for arbitrary (finite) integers, not 

just natural numbers. The interval of integers between ft*,? is de­

noted by [*•*] •{ JlcZf f * %&>} . In particular [p9y] « 0 
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i f £t>Y , [ ^ t ^ l - ^ l and ^ m [ 0 , ^ - 1 ] for each ^*N. 

In the whole paper <-sf«-U) denotes the usual biequivalence 

on the class RN of a l l rational numbers (see [G-Z 1] Example 3 ) . 

For any set u (^t*1*1) denotes the biequivalence on 

RNU B If; dom(f) « u 4 rng(f)£RN] arising from ^*f«I->) com­

ponentwise ( [G-Z 1] Example 5 ) . For rational numbers a,b we put 

a *£ b s a£ b v a « b and a <• b s.e.^b£a^b. The formula­

tion of the basic properties of the relations & and -<• is l e f t 

to the reader. 

Let us record a result for the future. 

Lemma. Let R be a ^-relation and u c dom(R) be a set. 

Then there is a set function f c R such that dom(f) « u. 

Proof. If R is set-theoretically definable, the statement 

can be easily proved by induction. Let {.fLf n t- IKj be a de­

creasing sequence of set-theoretically definable relations whose 

intersection is R. For each n there is a function f £ R^ with 

domain u. Then the result follows by the axiom of prolongation. 

Let R be an arbitrary relation. A (set) function p such 

that dom(p) = [^ »^] is a nonvoid interval of integers is called 

an R-path provided for each e<, £ [*[,, "5* - 1] holds 

^p(OfP(«t+1)} c R* -Ehen the set rng(p) is called the trace of 

p. If x m p(^) and p(J*) » y then p is called an R-path from 

x to y. In most cases the domains of the paths considered will 

be of form tO-v*} • $* + 1 where $*€ N; in such a case p will 

be called an R-path in the time 9. Thus <xfy> € R iff there 

is an R-path from x to y in. the time 3* • 

If £ is a Sr-equivalence then any (t)-path is called a 

motion of point in *. If { y n C !»} is a generating aequen-
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oe of • then obviously p is a motion of point in « iff p 

i s an IL-path for each n. We will frequently say "a motion" in­

stead of "• motion of point in t ", mainly in the oase when the 

^-equivalence • will be clear from the context. 

From the results in tv] i t follows directly: 

Theorem 1. Let « be a ^-equivalence and u be a se t . The 

.following conditions are equivalent: 

(1) for each nonempty proper subset v of u there are two 

points x € v , y c u - v such that x 4 y; 

(2) there is a motion p such that u «* rng(p); 

(3) for a l l x,y € u there is a motion p from x to y 

such that rng(p) c u. 

According to Theorem 1 we addopt the following definition: 

A class X is connected in the ^-equivalence = i f for a l l 

x, y 6 X there is a motion p from x to y such that rag(p)cx. 

Theorem 2« Let - be a ^-equivalence and X be a class. If 

X is connected then Fig(X) is also connected. If X is a 

a--class and Fig(X) is connected then X is connected, as well. 

Proof* Let X be connected and a£x, b«y where xfy € X. 

I f p is a motion from x to y in the time -J1 such that 

rng(p) £ X, then <^« p y j(a,-1> f {b9v*+1>} is a motion 

from a to b and rng(q) £ Fig(X). Now, le t X be a X--class 

with connected figure and x,y € X. There is a motion p from 

x to y in the time xt such that rng(p) c Fig(X). Put 

R - \(x,6) , <J9*>) u l<«,*> | 0 « < h u n 9-pU)}. 

Than R is a ^-relat ion and [Of\Tj * dom(R). The choice func­

tion f 6 R with domain [ 0 , 9 ] existing by the virtue of the 

is a motion from x to y and rng(f) € X. 
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Each motion p in the ^-equivalence 4 induces two -^-equi­

valences on i t s domain. The f i r s t one seems to be prima facie more 

naturals <*t 4 fi> »p(«t) 4 p (/i). 

Theorem 3* I»et p be a motion in =. The ^-equivalence 4 
(p) 

is compact iff rng(p) is compact in «. 

Proof. Clearly, 4 is a ^-equivalence. Let 4 be compact 

and u & mg(p) be infinite. If for all *f /5€p "u » v 

p(a) j6 p(p) implied p(«) jfc p(/3)f v would be an infinite set 

of pairwise discernible elements contradicting the compactness of 

4. Thus there are <*f/2>£v such that p(a) 4 p(£) and p(<x) 4 p(/$). 

Now, assume that rng(p) is compact in 4 and v & dom(p) is in­

finite. If p"v is finite then there are at least two elements 

<*,/-»£v such that even p(ot) • p(/3). If p"v is infinite then 

there are two <* , /Scv such that p(<*) 4 p(p). 

The second Sf-equivalence induced by the motion p in 4 on 

its domain is even of more importance: 

* 4 (bm(V^$£[min{* ,/*], max{* f &)] ) P( T) 4 P(S). 

The motion p is called compact if the $*-equivalence 4 is com-
f 

pact. Obviously, 4 i s finer than 4 thus the compactness of 4 

implies the compactness of 4 . 

Let us recal l from IV] that a motion p osc i l la tes between 

points x and y (sets u and v) i f x jl y (Pig(u) OPig(v) • 0) 

and there are sequencee [<*ni n € Ml} f [(b j n € Iff} of e l e ­

ments of dom(p) such that for each n holds «* < fi < <* -

and v(«n) 4 x, p(An) 4 y (p(*n) £ U f p(£n) € v ) . 

We omit the proof of the following slight generalization of 

the result from [ V I * 

Theorem 4. The following conditions are equivalent for any 
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aotlon p In the it-equivalence « : 

(1) p i s compact i' 

(2) the t race of p i s conroact in t and for each po int 

x p~ "Mon(x) i s compact in • { 
V 

(3) p has a compact trace and there are no points x and y 

(sets u and v) such that p oscilates between x and 

y (u and v). 

Remark. Given a .^-equivalence t and any set-theoretically 

definable function P the relation a S b m P(a) 4 P(b) is 

still a fr-equivalence on its domain. Theorem 3 remains valid with­

out the assumption that P is a motion, as well. Similarly, if 

P is a set-theoretically definable function and ^ is a set-theo­

retical lattice ordering of dom(P), the definitions of the X -equi­

valence t on dom(P) and of the oscillation extend directly. 

A careful analysis of the proofs in [V] shows that Theorem 4 

still holds for such an P. 

Thus particularly Theorems 3 and 4 apply to arbitrary set 

functions defined on intervals of integers (\T-paths). Given such 

a function p and a $*-equivalence « we put for <*,/&£ dom(p) 

ot Z A » **£ v *? *' and 

t f 

2. Archimedean biequivalencea 

Por each upper bound R of the ^-equivalence t the least 

equivalence 

[R] « Ul^i n € m) 

containing R raises to a biequivalence *( t9 [Rj) . This con-
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struction was already used in the proof of Theorem 10 in [G-Z 1] . 

Similarly, for each mean bound R of the biequivalence {tf4--») 

one obtains a biequivalence (tf [R]) which is tighter than 

( S f A ) . A biequivalence is called Archimedean if for each its 

mean bound R holds [R] « (+£*)• 

Theorem 5. Let ( tf4i») be a biequivalence. The following 

conditions are equivalent: 

(1) i t,4-U) is Archimedean; 

(2) for each mean bound R of (tf«t*) and all xfy such 

that x 4-> y there is a finite R-path from x to y; 

(3) for all x,y such that x A y and each infinite natural 

number TP there is a motion p from x to y such that 

V % *f 

(4) *-+ is the least f-equivalence with respect to inclusion 

containing t ; 

(5) <t» is a minimal fr-equivalence with respect to inclusion 

containing t # 

Proof. (1)m (2) and (1) *» (4) *»(5) >*(1) are trivial. 

(2) «* (3): Let x A y» vc N-PN and [fy n € PZ} bo a bi# 

generating sequence of (*,£*)• For each n ^ 0 there is a fi­

nite R^-path p n from x to y. By the prolongation axiom there 

is a motion p from x to y such that p J v . 

(3) =•(2): Let R be a mean bound of {t»«£*) and x A y . 

Then the set-theoretically definable class {y € Nj (x,y) € R*} 

contains all infinite natural numbers. Hence it contains also a fi­

nite n. 

None of conditions (4) and (5) ensures that for an Archimedean 

biequivalence < &9%--+) there does not exist any biequivalence 
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strictly tighter than < tf*-+) . The reader will easily find 

examples of biequivalences on RN which are strictly tighter than 

the compatible Archimedean biequivalence («f4-+) . 

Condition (3) suggests that the Archimedean property is a kind 

of compactness' concerning connectedness of galaxies of a biequiva­

lence. 

Theorem 6. Let ( »,•--+) be a biequivalence such that for any 

accessible xfy there is a motion with compact trace from x to 

y. Then ( *.,#-+) is Archimedean and has connected galaxies. 

Proof. We will prove that ( = ,«--+) satisfies condition (2) of 

Theorem 5* Let R be a mean bound of («,«-+) f x «--+ yf and p be 

a motion with compact trace from x to y in the time t • We put 

G(0) m x and G(*+1) « p(j*) where (*>* max {,£-.* 9; (G(*)fP(f ))* R} 

if G(et) ft yf and Gw («t+1 } « 0 if G(p) * y for some /*>£<*. Then 

G is a set-theoretically definable function and its domain is a 

section in the linearly ordered class ^ N f £ ) . For any <* f /S£dom(G) 

«l<. $ implies G(otr) fi G(p) (with perhaps one exception /$s-ot.+ 1 

and G((b) » y ) . Since rng(G) £ rng(p) and the latter is compact, 

the former has to be a finite set. As G is one-one, it is a finite 

set function and a finite R-path from x to y. Essentially the 

same argument works to establish that for any motion p with compact 

trace and for all * f fb € dom(p) holds p(«0 +£* p({&). Thus <»,*-+) 

has connected galaxies. 

Corollary. Every compatible biequivalence with connected gala­

xies is Archimedean. 

As a byproduct of the proof of Theorem 6 one obtains: 

Theorem 7. Let (&9+-+) he a biequivalence and X be a pseu-

i in «. 
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x & y. 

Notice that both the notions of pseudocompactness and connect­

edness are defined purely in terms of the ^-equivalence •• Thus 

Theorem 7 applies to any ^-equivalence («->) 2 (•)• 

Example 1. Put A - { ̂ x,y> € RN2; x2y2 « 1} . Then the bi-

equivalence ^= rA,«-* fA> is compatible, Archimedean and its do­

main A is connected. However, Gal( O f1> ) is not connected. Mo­

reover, there is no motion with compact trace from {-1f1> to 

<i,i> . 

Example 2. For every set u the biequivalence (iut«i*
u> on 

RNU is Archimedean with connected galaxies and for any pair 

f ^^ g there is even a compact motion from f to g (it can be 

defined for any vcN-FN by p(ot)(x) = (<*/"*)f(x) + (1-«/^)g(-0 

for « t £ v + 1 , x € u ) « Nevertheless, for infinite u < »u,*-">>u> 

is not compatible. 

Example 3* Let ©c be an infinite natural number. Put 

\ « {<*»y> * RN2; lx - y| < otn) for each n € PZ. Then the 

biequivalence with the bigenerating sequence {^Li n ^ PZ } has 

connected galaxies, connected domain and is neither compatible nor 

Archimedean. 

v+1 

Example 4 . Let V € N-.FN. Let us endow RN with the 

structure of a l inear space over RN in the obvious way defining 

the vedtor addition and the multiplication by scalars componentwise. 

Put 
A - t f € H l l t + 1

f f ( t ) - 1 A mg(f) c. ^-1,1}} f 

B * [ t f + (1-t)g; t € RN tr 0 * t < 1 * f fg € A 

i, \%^% f U ) / g U ) } & l } f 
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T - K « f f > € RN*+1 x RN*+1; g(v) * 1 4 

( V U V ) gt t ) g(<») « f(X)} . 

Then the set-theoretic al ly definable class X m B uTwA consists of 

the edges of the v-dimensional hypercube with vertices coordinates 

i l situated in the hyperplane f(v) » 1 in AN** and of parts 

of arcs of the hyperbolas running through the vertices of the cube 

to the common assymptote f(0) « . . . • f (i*-1) = 0 . Then the biequi-

valence ( ** fX,*--*^ f x ) i s Archimedean with connected galaxies 

and connected domain. However, there is no motion with compact tra­

ce from \1} * ( * • 1) to ( ( - 1 } x v) u {Ot v » in X. 

Example 5. In th i s Example [a f b] « (x € RN; a 4 x ^ b} 

always denotes the interval of rationals botween afb € RN. Put 

I 0 - [0 , 1 ] * { 0 ] and I d « [0 , 1 ] x { l / * J for < * £ N - { o } f 

{°J * [ 1 / U + 1 ) t V<*] 'OP even otcN - { o } 

(1 } * f 1/(*+1) f 1 / * ] for odd o t C N - i j o } 

Finally A « IQ u ( J f l ^ u J* | *<-N - { o } } i s a set - theoret ical ly 

definable c lass . Then * fA i s a compact jt-equivalence (the biequi-
9 9 

valence ( « fAfA ) is compatible) with connected domain A (its 

single galaxy). Thus each motion in • fA has a compact trace and, 
9 9 

in particular, <» fAfA ) is an Archimedean biequivalence. 

Nevertheless, there is no compact motion from (0,0) to ^0f1) 

in m fA since every such a motion has to oscillate between the 

points ^0 t0) and ^1 f0) • 
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3. The metrization theorem and 

embeddings of biequivalences 

For the rest of the article Sdy denotes a fixed revealment 

of the codable class Sdy of all set-theoretically definable class­

es (see [S-V 2] ). Everything one needs to know is that Sdy is 

a fully revealed codable class (i.e. there is a code (KfS) of 

Sdy such that the class K x ( o ) u S x (l) is fully revealed) 

satisfying the following conditions? 

(1) Sdy & Sdy and each class X € Sdy is fully revealed; 

(2) for each set u and each X € Sdy u n X • is a set; 

(3) for each normal formula ?(*oiX0) of the language FLy 

and each X € Sd* holds \ x; <p (xfX)} € Sdy; 

(4) if X 6 Sd!t and X n N / . ^ then there is the least ele­

ment of X n N in the natural ordering of N; 

(5) if X € Sd£, 0 € X and (Vxfy)(x £ X •* x u [ j) £ X) 

then X m v (induction); 

(6) if X € Sd* and (Vx)(xcX =*> x £ X) then X m V ( £ -in­

duction); 

(7) if \X^; n € FN} is a sequence of classes from Sd£ 

then there is an R € Sd£ such that Rw { n] • ^ for 

each n € FN (prolongation)* 

According to (1) - (7)f Sd* should be understood as a "well beha­

ved" system of "well behaved" classes conveniently extending Sdy 

admitting "well behaved" prolongations of countable sequences of 

its members. 

On the base of Sdy such notions as *£"-class9 "e-dasa, 

*3h- and *<r-equivalence, * generating sequence of a *lf- or of 

a * ̂ equivalence, *bigenerating sequence, et cetera, can be de-
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fined in the obvious way. (E.g. X is a *fr-class if there is a 

sequence {X^} n € JN} of classes from Sd*- such that 

X » f) { \ i n € FN} f or a *bigenerating sequence is a sequence 

^R^l n € PZ } of reflexive and symetric relations from Sd*. 

such that fbr each n holds ^ © R^ £ R ^ . ) The reader should 

think over that any result concerning the "star-free" notions from 

[V] , [G-Z 1] or from this article remains true under an appro­

priate "starification". Finally, notice that the restriction of a 

"biequivalence to a set is always a biequivalence. 

For the sake of transparency we shall deal also with *biequi-

valences with domains different from V. A triple ^ X,*,«£•) whe­

re («,•--*> is a ""biequivalence and 0 ft X € Sd*, is its domain 

will be called a *biequivalence space. 

Let {iL^i n 6 PZ } be a *bigenerating sequence (of some *bi-

equivalence ( -a,*-*) ) . The sequence {R^j V €[0*^] \ where 

-r, t £ N-FN is called a prolongation of the *bigenerating sequen­

ce {R^j n € PZ} in Sd*, if the class S • [) | R-, * $vj| V6[<r,r]J 

belongs to Sdyf for each "iscte-.t'] R> € Sd„ is a reflexive 

and symetric relation and H / H ^ £ ^+1* S"{ nj « 1^ holds for 

each n € PZf and R r • Idf Rt • V^. 

The following theorem is a direct consequence of the prolonga­

tion condition (7): 

.Theorem 8. Every * bigenerating sequence has a prolongation 

in Sd* . 

Let X be a nonempty class, H be a function with domain A 

and rng(H) £ RN. Then H is called a metric on X if for all 

xfyf2 c X holds H(xfy) > 0f H(xfy) « H(yfx)f 

H(xfy) + H(yfz) » H(xfa) and H(xfy) « 0 • x - y. The weakening 
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of the last condition to mere H(xfx) • 0 leads to the notion of 

pseudometric. When also metrics taking values in other ordered 

fields than RN will be considered, we will refer to the notion 

just defined as to a rational metric. 

If H is a metric on X then the pair ( X,H> is called a 

(rational) metric space. Given a metric space *{xfH> we put for 

x,y* X 

x =« y m H(xfy) « 0 and 

x 4fl*k y «i H(xfy) £+ 0. 

The next theorem shows that the AST succeeded in a natural way 

completely to exclude the pathologies of nonmetrizable spaces from 

our study and to recure the balance between the topology and "mea­

suring of distances* both on the discernibility and accessibility 

horizons. From this point of view the indiscernibility anfi accessi­

bility equivalences occur as mere certain invariants of metric spa­

ces. 

Theorem 9. If (xfH> € Sdy is metric space (i.e. H € Sdy 

is a metric on X) then < «H,4l*|..> is a *biequivalence with do­

main X. Conversely, for every #bie qui valence space ^Xf «,*--•> 

there is a metric H • Sdy on X such that ^ «,*--#> « (^,4^) . 

Proof. The first assertion is trivial. The converse follows 

directly from the existence of a #bigenerating sequence for 

X«f4-**> (see [G—Z 1} ) and from the 5T- and/or •*-valuation 

lemma ( [M 2] ). All one has to do is to take a suitable prolonga­

tion of an appropriate # bigenerating sequence of («f4--->> in Sdy. 

We omit the precious proof which is, in fact, implicitly contained 

in [M 2] . The reader will be made amends in the next section where 

for a more specific class of (*)biequivalences a metric subject to 
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some additional properties will be constructed using ideas similar 

to the dropped ones. 

The #biequivalence ^ *-tit<-*ki) will be called the *biequi-

valence induced by the metric H € Sc£ (of course, ^ «g 94^) 

can be induced by many different metrics). Obviously, every metric 

H € Sdy. induces a biequivalence on its domain, though the converse 

is not true: there are biequivalences which cannot be induced by 

any set-theoretically definable metric. 

The reader can easily verify that for any set u the biequi­

valence ^iuf*I»
u^ is induced by the set-theore tic ally definable 

metric 

B(ffg) * max {|f(t) - g(t)|| t £ u} . 

A function B: X—*x' is called an isometry of the metric 

space (XfH> into the metric space ^Xf'H'> if for all xfy € X 

holds H(xfy) - H
#(B(x)fE(y)). 

The following result is fairly expected in the light of the 

classical topology: 

Theorem 10. Let (ufh> bo a metric space (u and h are 

sets). Then the function e: u—->RNU given by e(x)(t) • h(xft) 

for xft fc u is an isometry of (ufh> into ^HNu
fD> f and for 

each x c u the function e(x) € RN*1 satisfies 

t ^ z .+ e(x)(t) * e(x)(z)f 

t « \ 2 4 e(x)(t) ^ e(x)(z) 

for all t fz € u. 

.Proof. The fact that e is an isometry follows from the com­

putation 

D(e(x)fe(y)) . max (|h(xft) - h(yft)| > t € u } 
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4h(x f y) . | e ( x ) ( y ) - e(y)(y)( 

£D(e(x) f e(y) ) 

The r e s t of the Theorem follows from the inequali ty 

| e ( x ) ( t ) - e(x)(z)( £ e ( t f z ) . 

Thus in pa r t i cu la r according to the r e s u l t s from [G-Z 1] 

each function e(x) i s uniformly continuous from «. to « . 

Let ( x f «,«--•> f (x' f« f*-V> be two *biequivalence spaces. 

A one-one map E: X—*x' i s cal led an embedding of ^Xf«f-j£*> 

into <x'f«f4--*> i f f for a l l xfy € X holds 

x » y «x E(x) « E(y) and 

x A y sst E ( x ) * - ^ E ( y ) . 

An embedding of a ^-equivalence space <Xf«> into another 

•^-equivalence space <x'f«> can be treated as an embedding of 

the *biequivalence space <Xf«fX^> into the *biequivalence spa­

ce ^x'f»fX
# y . Obviously, every isometry of the metric space 

(x fH) * Sdy into the metric space ^x' fH
#>€ Sd-. is an embedd­

ing of the #biequivalence space ^Xf«jjf4--^> into the *biequi-

valence space ( x'9m^',+*+£*) • 

Then Theorems 9 and 10 have the following consequence: 

Theorem 11. For every biequivalence space {u f «,«£*> there is 

an embedding e of <uf«f4-*> into ^HHttf«
tt
f4-*

tt^ such that all 

the functions e(x) € RNU (x £ u) are uniformly continuous from 

* to ». 

Let « be the It-equivalence on RN * u given by 

<afx> « <bfy> ^ a « b & x £ y* We also put for f € RNU 

H*l - Hlf(t)|/Card(u>. 
ten. 

The function e from Theorem 10 can be also regarded as an 
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embedding of the fr-equivalence space /̂ uf«s> into various 

t>r-equivalence spaces with domain RNU u3ing the results from 

[G-Z 1] . 

Theorem 12. Let ( u,= ) be a S'-e qui valence space. Then there 

is a one-one set-function e: u —*RNU such that for all xfy € u 

the following conditions are equivalent: 

(D x i y ; (2) e(x) = u e(y)5 (3) Fig*(e(x)) . Fig*(e(y)). 

If u € N and ot t (b m ot-/u » fl/u holds for all <* f (b £ u then 

the conditions (1) - (3) are equivalent to 

(4) le(x) - e(y)|| * 0. 

If one would like to generalize the above embedding results 

to arbitrary *biequivalences (however, to deal with biequivalences 

with domain V is quite sufficient), he will find unavoidable to 

extend the ordered field of all rational numbers in such a way that 

every nonempty subclass of RN belonging to Sd„ which has an upper 

bound in RN had the supreraum in the extension. 

A nonempty proper subclass C of RN is called a cut of 

<RN f^> if it is a section of <RNf £> without the greatest 

element. 

Then the fully revealed codable class HR of all cuts in RN 

belonging to Sdy can be given the structure of an ordered field 

in the obvious way. It will be called the field of all hyperreal 

numbers. Using an appropriate coding of HRf of the equality rela­

tion on HR and of the operations and order relation on HR, one 

can work with it as if it were a class from the extended universe. 

RN can be naturally embedded as an ordered subfield into HR. Like­

wise KR can be endowed with a pair of relatione <& ,<£•> behaving 

as a biequivalence with domain HR prolonging the biequivalence 
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from HN denoted by the same symbol in such a way that 

HR = Pig(RN). A hyperreal number will be called set-theoretically 

definable if it is determined by a set-theoretically definable cut. 

The set-theoretically definable hyperreals contain all rationals 

and form an ordered subfield of the hyperreals. Bach nonempty sub­

class of RN with an upper bound belonging to 3d., has the supre-

mum in that field. The reason why the field of all set-theoretically 

definable hyperreal numbers is an unsatisfactory extension of RN 

is that one cannot apply the prolongation technics in it. HR can 

be also obtained as a revealment of the field of all set*-theoreti­

cally definable cuts in RN. 

Each nonempty class X € Sdy, X £ RN, with an upper (lower) 

bound in RN has the supremum sup X (infimum inf X) in HR. The or­

dered field HR is determined by its properties with respect to 

Sd«. uniquely up to an isomorphism. Also the hyperreal numbers con­

structed on the base of another revealment of S<L.f say Sdy, are 

isomorphic to "our" HR via the automorphism of the universe mapp­

ing Sdy onto Sdy (see [S-V 2] ). 

Let us denote just for a moment 

RN* » {P € Sd*j dom(P) • X I rng(P) £ RN A 

(3«iHH)(Vx4.X) l*(x)|<« } 

the codable class of all bounded rational functions with domain X 
# X # 

belonging to Sdy (clearly RN f 0 iff X 6 S d y ) . Then for each 

X £ Sdy 9 RN can be converted into a metric, space endowed with 

a hyperreal metric D(P,G) « sup { |P(x) - Hx)\ | x € X } 
Y 

Notice that for X being a set RN and B coincide with the 

original ones. 

The generalization of Theorems 1 0 - 1 2 to arbitrary *biequiva«-
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lences using the hyperreal numbers is quite straight forward f now. 

It is left to the reader. 

Prom the matter just indicated it should follow that the hy­

perreal numbers will play rather an auxiliary role of a technically 

convenient extension of the rationals in our study. Prom this poinl 

of view the irrational numbers in HRf and the more, the not set-

-theoretically definable ones, seem much more curious and odder 

than the infiniteaimally small and infinitely large rationals. 

4. Geodetical biequivalences 

Let < «f*tf> be a biequivalence (with domain V). We already 

know that there is a metric H 6 Sd* on V inducing <;=,*--->> • 

Using the metric H a ternary relation wt lies between x and y" 

can be defined by the equality H(xft) + H(tfy) • H(xfy). Similar­

ly 9 one can define the ternary relation "t lies nearly between x 

and y" by H(x,t) + H(tfy) » H(xfy). According to some results in 

[0] concerning classical metric spaces one can show that the bi­

equivalence («,4--->) can be induced by a metric H € Sc£ such 

that for all xfyft holds t lies between x and y iff t « x 

or t » y, and t lies nearly between x and y iff t = x or 

t i y . The reader will probably agree that such a metric is rather 

a "bad" one. According to a "good" metric H at least for any 

accessible pair x,y there should be a connected set u contain­

ing both x and y such that each t € u lies between (or at 

least nearly between) x and y. This section is devoted to the 

precis at ion of the notion of a "good" metric and to the characteri­

sation of biequivalences which can be induced by such metrics. 

Let H € Sd£ be a rational metric on V and p be a path 

li.e. • V2«*p«th) with domain C*'**] * The rational number 
- 692 -



V p ) =- 5lH(p(*)fp(«t+1)) 

is called the length of the path p with respect to the metric H. 

Then p is called a direct (nearly direct) path with respect to H 

if Lj-tp) • H(p(%),p(f)) (Lj-tp) « H(p(ti)fp(*))). When the metric 

H is clear from the context the attribute "with respect to H,f can 

be omitted from the notions just introduced. The length of the 

path p will be denoted L(p) in such a case. 

In the following three theorems H € Sd„ denotes a fixed 

metric on V and <-s,*-->> is the *biequivalence induced by it. 

Theorem 13. Let p be a path in the time $ • 

(1) p is a direct path iff for all «* .6/5 ̂  holds 

H(p(<*)tp(/*)) - L(pM> ,/*])$ 

(2) p is a nearly direct path iff for all **/*&# holds 

H(p(c)fp(p)) « L(pf*|>f 0 ] ). 

Proof. We wil l prove only the second claim which i s a b i t l e s s 

t r i v i a l . Let p be nearly direct . Then H(p(«c)fp(/3)) £ 

L ( p f L * t £ l ) for a l l **p&?. Assume that H(p(«t)fp((&)) <• 

L(p I \M f /*!) for some *f/&. Then 

L(p) » L(pf [O f *] ) + L(pfL*t/fcl) + L(pK/& t<n ) 

•>H(p(0) fp(*)) + H(p(*)tp(|*)) • H(p((i)tp(*)) 

W(l>(0)M9))' 

Thus p were not nearly direct, the remaining implication is tri­

vial. 

Corollary. If p is a (nearly) direct path from x to y 

then each t € rng(p) lies {nearly) between x and y. 

Theorem 14. Let p be a path in the time v* and «Cf/5« 4^+1. 
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(1) If p i s a d i r ec t path then 

cL&fb m H(p(0) ,pU)) 4 H(p(0),p(p>)) 

c i « i 3 « H(p(0) ,pU)) * H(p(0),p(/3)). 

(2) I f p i s a nearly d i rec t path then 

i I A S H(p(0) ,pU)) k H(p(0),p(/3)) 
p 

*£ (b a . H(p(0) ,pU)) * H(p(0),p(/3)). 
P 

Proof. We will prove only (2) again. Let p be nearly direct 

and ot Z, fa . Then either <ii/5 and by the preceeding Theorem 
P 

H(p(0),p(<*)) C H(p(0),p(*)) + H(p(*),p(/*)) 

- L ( p M O , * ] ) + L(pf[o», /hi) 

m L(pf[0,/*]) = H(p(0),p(/S)), 

or dL>(b9 p(«t) £ p((5) and 

H(p(0),p(*)) i L(p f [0,*]) * L(pf[0,/*]) + L(pf [#,*]) 

i H(p(0)fp(/f)) + H(p(£)fp(*)) 

i H(p(0),p(/*)). 

Now assume that H(p(0),p(*)) & H(p(0)fp((i)). If «£ 4 ft> f there is 

nothing to b« provod. So lot * > A . flion •• already provod also 

H(p(0),p(p)) % H(p(0)fp(*)). If there were a f€[/S»^] such that 

P(f*) P p(f)t the following computation would yield a contradiction: 

H(p(0)fp(fc)) A H(p(0) fp(*)) - L(p f [0 f *1 ) 

- L(PM;of/!>]) • HvHfif rl> + --(pfMf,*!) 
^H(p(0) f p(p) ) + H(p(<l)fp(jr)) + H(p(f) fp(*)) 

•>H(p(0) fp(fr)). 

She second equivalence in (2) is a direct consequence of the first 

one. 
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Corollary. Let p be a nearly direct path. Then 

(1) the equivalences = and X on dom(p) coincide; 

(2) p is a compact path (i.e. • is compact) iff p has a 

compact trace iff L(p) *-»» 0. 

Theorem 15. Let p be a nearly direct path. Then rng(p) is 

a connected set iff p is a motion. 

Proof. Obviously, the trace of a motion is a connected set. 

Assume that p is a nearly direct path in the time 9* which is not 

a motion. Then there is an ot -C & such that p(«.) j* p(<*%+1). Then 

for all /3 tf &9 /5-s <* and <* < f imply /J £ j . By the pre­

vious results p(/j) £ p(jr)» Thus rng(p) is not connected. 

Theorems 1 3 — 1 5 and their Corollaries justify the following 

definition: 

A metric H € Sdy is called (nearly) geodetical if for all 

x.y such that x 4--W, y there is a (nearly) direct motion (with 

respect to H) from x to y. A biequivalence <»,«--*> is called 

(nearly) geodetical if it can be induced by a (nearly) geodetical 

metric. 

An immediate consequence of this definition and of the proceed­

ing results is the following: 

Theorem 16. Let «̂f*--v> be a nearly geodetical biequivalence. 

Then for every pair x 4r*y there is a compact motion from x to 

y. In particular <-sf<-»»> is Archimedean and has connected galaxies. 

Theorem 17> Let <«,4-U> be a biequivalence. The following 

conditions are equivalent: 

(1) <&,&> is geodetical; 

(2) <if«±t> is nearly geodetical; 
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(3) there is a *bigenerating sequence {B^} n € FZ } 

of (»f4-»> such that for each n hold 

(4) there is a *bigenerating sequence {snf
 n € FZ } 

of < «,«--•> such that for each n holds Pn°
 s
n -

 s
n+i » 

(5) for some d £ FN, d > 2, there is a *bigenerating sequen­

ce ^S n; n € FZ} such that for each n holds S ^ s S ^ . 

Proof. (1) *» (2) and (4) **• (5) are trivial. 

(2) «• (3): Let H 4 Sd-, be a nearly geodetical metric inducing 

<S fA>. We put Rn m ^<xfy> ; H(xfy) £ 2
n} . Obviously, 

aRnJ n € FZ ] is a *bigenerating sequence of (£,«--*>. Let 

(xfy> € R j and p be a nearly direct motion from x to y 

in the time ff . Let «£ 4 9 be the greatest natural number such 

that ^x,p(ot)> € .SL, and (hC t^tV*! be the greatest natural 

number such that lp(*)tP(/£)} € R^. It is routine to check that 

p((j) • y since p is a nearly direct motion. Thus 

Rn+1 ^ \ o R n a ^ m NoWf assume that ^xfy> € («) • Rn. Let p 

be a nearly direct motion from x to y in the time 9 and 

«t & 9 be the greatest natural number such,that ^x,p(*)> € Rn. 

The reader can easily verify that p(*) S y. Thus («)• l^S l^ 0 (»). 

The remaining inclusion follows by a symetric argument. 

(3) s* (4): One can easily verily that 

(Vn € FZ)(Yk C M ) R^ H + k S ^ ° <*>• 

Therefore 

(Vmfn€ FZ)(m i. n * R ^ £ ^ c R^"**1 ). 

Hence there i s a prolongation {Rvi *-*̂  tfl'-1»* ,+*]} °* t l i e 

*bigenerating sequence \Rn; n € FZ) in Sdy such that for 

each ye [ cr i t ] holds 
- 696 -



2 * - r 2v""r+1 

R* S R* « 4 • 
2 n ~ r c i 

Finally, we put Sn « Rf for each n fe FZ. Then \Sn; n £ FZ J 
i s a *bigenerating sequence of <-£,«--•> and for each n holds 

S © S « S «• n n n+1 * 

(5) *s> (1): Let \S ; n € FZ} be a *bigenerating sequence of 

<£ f A> such that (Vn) S* « Sn+1 where d £ FN - {0,1} f and 

\ 8~ i "V € tr-1 f f+1] J be a prolongation of th i s sequence in 

Sdy such that for each •? £ [ r ft--l] holds S* « S^+1 . 
- t - r 

Then for each <9wL+l?'] holds s£ « S y . Then the f\inction 

H(xfy) *- d r m i n ( { ^ | <xfy> £ s£ } v ( d r - r + 1 ) ) 

obviously belongs to Sd„ and is a metric on V. Let us show that 

the *biequivalence induced by H is indeed {«,«£»>> . For all 

xfy the following conditions are equivalent: 

x i y| (Vn) <xfy> £ S n . S* ? (Vn) H(xfy) * d
nj H(x,y) « 0. 

Similarly, changing "Vn" to "3n"f one obtains 

(Vxfy)(x A y - H(xfy) •-+ 0). 

It remains to prove that H is geodetical. But from the con­

struction of H it follows even more. Namely, for every pair 

(xfy> £ 3t there is a direct S^-path from x to y. 
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