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A NOTE TO E. MIERSEMANN'S PAPERS ON HIGHER EIGENVALUES
OF VARIATIONAL INEQUALITIES
Pavol QUITTNER

Abstract: An improvement of E. Miersemann’s result on
higher elgenvalues of variationel inequalities and some examples,
for which the obtained criterion is sharp, are given.
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1. INTRODUCTION

Let H be a real s.eparable Hilvert space and KcH a closed
convex cone with its vertex at zero (see [3]), Let A:H—>H be
a linear, completely continuous, symmetric and positive operator.
Let A, 22,2 )\3 2 ... >0 be the eigenvalues of the operator
A and let the corresponding eigenvectors u1,u2,u3,... form
an orthonormal basis of H.

We are interested in the eigenvalue problem for the varia~-
tional inequality

(1) uek: (Au - Au,v-u) 2 0 for all veKk,

where A 1is a real eigenvalue parameter and we look for non-
trivial solutions u of (1).
We shall denote GK(A) the set of all eigenvalues to (1).
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2. E. MIERSEMANN’S RESULT

Denote En the linear hull of {u1,...,un} ’ I‘n the eigen-
space to A , B ={ueH; Hun 1}, s ={ueH; Il =1},
Sn = Enn S. PFurther let P be an orthogonal projection of H

onto En'
In [1.2,3] the following assertions are proved:

Theorem 1. Let ECB‘ be a closed subdbspace, Hc K. Denote
P the orthogonal projection of H onto H. We consider the

equation
uel: TPau= Au
and assume that there exist at least n positive eigenvalues
~ ~ > ~
7«1 ?.;\2- cos Q)\n. Let
(2) an > An+1 *

Then there exists an eigenvalue A€ GK(A) NCAgye Ap) -

Theorem 2. Let V ={v€E; ; usvek for all u€s_ } be

nonempty and suppose

2
(3) Ap > Apyy + int {Ags P2 2 av,m}.
Then there exists A€ Gx(A) N (A, 1,2,

Remark 1. The assumptions of Theorem 2 are fulfilled, if
e.go u, 4€ K° (= interior of K).

Theorem 3. Let the assumptions.of Theorem 1 or Theorem 2
be fulfilled and let, moreover, Ln¢ K.
Then there exists A€G6y(A)N (A, 4,2,) .
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The idea of the proof is following:
Define N, the class of all compact sets FCc KNS such
that

(a) EienF(Au,u) 2 Apeq * L

(b) P is not contractible within the set R = {u€H; Pu # o}.

Using (2) or (3) it is proved that the class Ny is nonempty
for a suitable <« >0 and then using some topological technique
(see [1]) it is proved that there exists u€XKnS such that

(Au,u) = sup min (Av,v)
FeN veF

which is also a solution of the variational inequality (1) with
corresponding eigenvalue A€ <’1n+1 + y ;\n)
(respe A € (Apyq +<LrAy) )

3. IMPROVEMENT OF E. MIERSEMANN’S RESULT

We shall weaken conditions (2),(3) in Theorems 1,2.
A slight weaker version of Theorem 4 was obtained also by

prof. Miersemann (personal communication).

Lemma. Let Ak:H—>H be linear continuous operators,
Ak-bl in the operator norm (the operator A is supposed to
satisfy the assumptions from Section 1). Let uke KNS ,

;\ke {cqrcp? (where cqsC, are positive constants) and
( AKuE- Akuk,v-uk) 20 for all V€K .

Then there exists a subsequence (we denote it as before)
such that Af—>2, uv—>u ena

(Au - Au,v-u) 2 0 for all vekK .
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Proof. We may suppose LI} , uww—=ueknB .

Then AKX = (Akuk.uk)->(Au,u) » hence

(4) A = (Au,u),

usg 0.

Further 0 £ ( Zkuk- Akuk,v)—" ( Au-Au,v) for all veK, thus

(5) ( Au-Au,v) 2 0

for all vek .

Putting v=u in (5) and using (4) we get
Allul® 2 (Aau,u) =2,

k

thus u€KnS and u —->u.

Theorem 4. Suppose that E;nKns # # and put

c,. = sup
n ueE nkKnS

(Au,u) .

Assume instead of the conditions (2),

(3) in Theorems 1,2 the conditions

(2% i,
(3% 2,
where V*

s

>

n

L]

n

eyt 32fv.{cn vl 2 - (av,v)},

{VGE; 3 u+sveK for all uesz} ,

{ueE~{0} ; nul 2.

An=Cn }

it ~ °n

and V* 1s supposed to be nonempty.

Then there exists
(and 5\<An it Lnd:K ).

Remark 2.
Ve v, hence
It Vg

Obviously c¢

Ae GK(A) N <cn. an)

n= A,,q @nd it can be easily proved

(2) =(2%), (3) =(3").

then

Ii:nxns * 0.
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Proof of Theorem 4.

1. First suppose (2*) or that in (3%) strong inequality
holds. Define N§ the cless of all compact sets FcKnS such
that

(a™) min (Au,u) ¥ c +o
uekF
(b) P is not contractible within the set R = {ue€H; Pu ¢ 0} .

If (2%) holds, then Snﬁne N: for some &« > 0 (En denotes
the linear hull of the first n eigenvectors of the equation
Fau = Au ). If in (3%) strong inequality holds, then the set

F = {i‘—‘ﬁlv’-u- s ues) } belongs to N for a suiteble veV* and

«>0 (cf. [2,3]). Hence in both cases XN} # # for some «>0

and the remaining part of the proof is nearly the same as in [1].

2. If (3") holds and A = o+ infv‘{cnllvllz- (av,m},
ve

then put A = (1+ %)APu + A(I-P)u , use the proved part of

Theorem 4 for A, and then use Lemma.

Theorem 5. Let u €K and let the set V (see Theorem 2)
be nonempty. Choose V€V and put

(6) a = ing 1 c,(8) , where c (s) = “egl:‘px (Au,u)

0Ss< Pu=su,
Uuwu! n

Suppose
O™y A, > 4 + v - (av,v) .

Then there exists Ae Gp(A) N (dy,A,) .
Remark 3. Obviously dnf- e, = c,(0).

Remark 4. The assmption ve€V guarantees that the set
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1
{u€sSnK ; Pu= su is nonempty for all |sl¥
’ o }‘1+lvﬁI

Remark 5. In (6) we could put a = inft sup (Au,u),
z2€ En ugl nkK
=2

2 1
but then we would loose the estimate A S i\n .

I.).

Remark 6., There can be stated an analogous condition (2

Idea of the proof of Theorem 5:
1
There exists &€ <0 ) such that
" Viviit

2
Zn > cn(s) + cn(s)llvll - (Av,v) .
We define N;© the class of all compact sets Fc KNS such that

(a**) min (Au,u) 2 e (s) +«
uel
(b**) P is not contractible within the set R(s) = {ue€H; Punu‘;';,

Then the set P = {'ll%gi su€sS; } belongs to N} fora

suitable o >0 and one can use the technique from [1]
to obtain the desired result.

4. EXAMPLES AND REMARKS

Bxample 1. Let H = n" ‘([xpxzvx’])- [3131. 3212, 2323] ’
2;>3;5>A3>0, K= {uen; (u,v,)ﬁo, (u.wz)ﬁo} , Where
wy= [ M(a~1),-1,a], wy= [M(a~1),8,-1] (a>1, N>0) .
_ Let us fix a>1, Using elementary calculus we get that
the problem (1) has an eigenvalue A # 3\1 if and only 1if
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224 A5,-A
< atl _ 1 1. .72
ME My = Vo) P -3, mhere o(A) = g2

(and it has exactly two eigenvalues different from /'\1 ift

M< H1).
Theorem 5 is available (with n=1) 1if M< M,, using Lemma
we get the positive result also for M = M,.

Theorem 4 is available if M £ M, = Vc(A) iﬁ - % (<uy),

Theorem 3 is available only for M < M3 = \/c(A) - % (< 12).

Unfortunately, using our variational approach we get
(for M< n1) only one of two existing eigenvalues different
from '/\1. We do not get the eigenvector u€ 2KNS, where
the functional (Au,u) attains a local minimum on 2 KNS
(9K denotes the boundary of K).

Example 2. Let H,K;A satisfy the general assumptions from

Section 1. Let u1,...,un€.K°, A,> ;‘n+1 and

4
{u.',....un} NK° =g (&> V=¢). Suppose nk¢K for
k>n., Then the problem (1) has no eigenvalue A with A< Rn.

Proof. Suppose A<A , uek, (Au-Au,v-u) 20 for
n
i
all v€K., Let us write u = z '(i“i +w, where weEn .
i=1

Putting v = utu, we get (2-;\1)0(130 , thus -(1§0
(i=1,.0.on). Suppose 4 <0 for some 1, then
n
-;o(iuie °, wa=u- ?:1“‘1“1 € Kx° » Which gives us
s contradiction. Thus “1 =0 forall {= 1,,eeon, U=w ,
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Putting th+u1+?v', ;l'eE; arbitrary (but small), we get Au=Au.
Since uk¢K for. k>n, we have u=0 .

Remark 7. Let ¢f:H—>R be a weakly continuous functional
of the class 02. f’(O):O and let the second Fréchet derivative
£ be bounded (on bounded sets). Denote A=f7(0) and suppose that
A fulfils the assumptions of Section 1. Then the eigenvalue A
to (1), which we get in Theorems 1-5, is also a bifurcation
point for the vaz;;gtional inequality

(7 uek: (Au = 2Cu), v-u)20 for all vek
(see [1]). The following example shows that a general eigen-

value A to (1) (which is not an eigenvalue of the operator A)

need not be a bifurcation point for (7).

Exemple 3. Let H = R3, let A:H-»H be a symmetric

linear operator with eigenvalues A 1 >A 2> A 3 >0 aeand

corresponding eigenvectors Uqpln,Uge Put

K ={ucH; (u,u,4)o0, (u,u3-u2)§0} s f(u) = -%(Au,u)ﬂlullz(u,u.‘).
+ A

Then u = Uyt is an eigenvector to (1) with A = 9—%—2 N

since ( Au-Au,v-u) = %( Az- 23)(u3-u2,v) 2 0 forall veEK .

Suppose uekK, AS A, eand (Au-2/(u),v-u) 2 0 for all veK.

Putting v = uHly  we get
0% (Au-2’(u),uy) = ( Au-Au-Wuhu,-2ulu,u,),u,) =
= - wui? + (u,u)CA-2,-20u,uy)) & - ui® :

thus u=0. Bence A = %( 32+;\3) is not a bifurcation point
for (7).

Remark 8. BSuppose that the assumptions from Section 1 are
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fulfilled. Then the set G'K(A) is nonempty and closed in

R*= { A€R; .A>0}. It would be interesting to investigate
the general structure of GK(A). Example 2 shows that this set
may consist only of one point (&also for dim H = @ ), Theorems
1-5 agsure the existence of higher eigenvalues to (1). There
can be constructed examples in R, for which the set 6'K(A)

hes infinitely many accumulation points (see Example 5).
Nevertheless, it can be proved that for H-R3 the set GK(A)CR
has Lebesgue measure zero (this is not true for A nonsymmetric).
It is also an open problem (to the author) to find reasenable
assumptions on A and K (for dim K = 00 ) which would guarantee
that the set G'K(A) consists of a sequence of eigenvalues

which converge to zero (cf. the following example).
Exemple 4. Let H be the Hilbert space W,*2(0,%) with

x
the inner product (u,v) = { uw/(x)v/(x) dx , let A:H—»H

s
be defined by (Au,v) = 6fu(x)v(x) dx . Let g {0,%>

be & closed set and put K = {u€H; uB0 on ¥} . Then it cen

be shown that the eigenvalues to (1) form a sequence converging
to zero.

Example 5. Let H = R3 y let AsH—»H bYe a symetric
linear operator with eigenvalues A=2A,> A 3> 0 and corre-
spording eigenvectors Uqslgylisge

Put w-v1-lu +ﬁu, v.=u +;.?:m7
n n n 2 n 3 +Hw W e

K = {ueH; (u,u3-wn) 2 0 for each n-1.2.3....} o
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. (Av_,v.) 2 A.+ A0 14(w_,w_ .))
Then vneK. J\n= n’ n’ _ 1 3 n’ ‘n+1

N 3a,+45),
A 3+ (wyw,g) : 3

A= A

W
+ 'n,

( A%v_-Av_,Vv) =
n "o’ n+1

(2ug-w -w  1,V) 2 0 for all veEK,

hence ane G, K(A) and GK(A) contains & non-zero accumulation
point.

1 1 1
If we put 'n,k'rk 1-E-E u, +\|/g+

Bl

U,
where n>l:2 and k> 1 are natural numbers, r2=1,
1 ",k * "ni,k

2 2
T, = T + and v = + Tz__—lﬁ
k1™ "k 7 giyanyd mk T3 W, Ve x
K = {uEH; (u,u,-w_ )20 for n>k2> 1 } then again v,
'3 'n,k ’ n,k

is an eigenvector to (1) and & g(4) contains infinitely many
\
accumulation points A(k), where

21( % + r§(1- %))-r 21r2 +A

A(k) = lim A%E - 2 42
n-n:o;\ E-!» rlz‘(1- 11-)4-1 /

r“ +1

( r= 1lim rk ).
n-»oco

Similar example can be constructed also for 4,> 22 > 33

(we start with 'nf ¢ V‘l- %,u1 + % u, , where ca(az-;\a)u 21-23).

References

{1] E. MIERSEMANN: Ueber hohere Verzweigungspunkte nichtlinearer
Variationsungleichungen, Math.Nachr.85(1978),195-213.

[2] B. MIERSEMANN: Hohere Eigenwerie von Variationsungleichungen
Beitrage zur Analysis 17(1981), 65-68, ’

[3] E. MIERSEMANN: On higher eigenvalues of variational inua'u&-
1ities, Comment. Math.Univ.Carolinae 24(1983),657-665.

KMA MPF UK, Sokolovakd 83, 18600 Preha 8, Cgzechoslovakia
(Oblatum 15.4. 1985)

- 674 -



		webmaster@dml.cz
	2012-04-28T11:44:13+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




