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A NOTE ON SPATIAL REPRESENTATION OF GRAPHS
Jaroslav NESETRIL, Robin THOMAS

Abstract: The purpose of thig remark is to provide a so-
lution of two problems of Sachs [1] on representatiqn of graphs
in E3. One of them uses & recent solution of Wagner s conjectu-

re by Seymour and Robertson.
Key words: Topological graphs, well quasi ordering.
Classification: 05C10

Let G = (V,E) be a graph (loops and multiple edges are al-
lowed)., By & (spatial) representation of G (in E3) we mean a
rule which' assigns to each vertex of G a point in E3 in such a
way that the existing incidencies are preserved and no new in-
tersections are created. Clearly every cirocuit im G corresponds
to a closed curve homeomorphic to a circle.

Let us recall some notions introduced in [1), Given & re-
presentation of G, we say that two disjoint circuits in G are .
concatenated if they cannot be embedded in disjoint topologi-
cal closed balls. Otherwise the cycles are called discatenated.
The degree of concatenation of two disjoint circuits of G is
the minimal number of permeations which are necessary to disca=
tenate them. Here the permeation of two arcs of the same cycle
is ocounted with multiplicity 2,

The degree of concatenation of a representation of a graph
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is the sum of the degrees of concatenation over all unordered
pairs of disjoint cycles. Finally, the degree of concatenation
of a graph G is the minimal degree of concatenation of a repre-
sentation of G. G is discatenable if its degree of concatenati-
on is zero.

In (1) Sachs considered the following problem: »

Let @ ©bve the class of all discatenable graphs. Can the
class @ be characterized by a finite set of forbidden sub-
graphs ?

Explicitly: Do there exist graphs Aq,...,A, such that G € X
iff G does no. contain a subgraph homeomorphic to & graph Ai'
1£1<k ?

(Clearly & 1is closed under homeomorphism.) It is proved in [1]
that K¢ ¢ 2 , x4’4 ¢ 9 and in fact conjectured that the ans-
wer 18 negative. In this note we observe that the above problem
has a positive solution even in a stronger sense.

Given an integer k>~ O denote by 3)1: the class of all graphs

with degree of concatenation =< k. We use the following lemme,

Lemma., (i) Let G e @k and let H be a subgraph of G. Then
He @k-

(i1) Let G e ﬁ)k, ecE(G). Put H = G.e (i.,e. the resulting
graph after the contraction of the edge e). Then H € 9,.

(111) Kgpe ¢ 2,.

Proof. (i) and (ii) are obvious and follow from the physi-
cal meaning of deletion and contraction of an edge. (iii) fol-
lows by induction from L11; it is Kg ¢ D = &, and clearly
(using (1)) Kgyy 4), ¢ & Dyoq 10PHLe8 Kspg & Dy

Corollary:s For each non-negative integer k the class Sbk

closed on minors.
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(A graph H is a minor of the graph G if there exists a subgraph
G” of G which can be contracted onto H.)
The following outstanding result (known as Wagner s conjec~

ture) was recently proved by P, Seymour and N, Robertson.

Theorem (Seymour, Robertson [2]): Every class J of fi-
nite grephs which is closed on minors can be determined by a
finite set of forbidden minors.

Explicitly: Suppose that a class ¥ of graphs has the follow-
ing property:

If G ¢ X and H is & minor of G then H € X . Then there ex-
ists a finite sget A1,...,An of graphs such that the following
two statements are equivalent:

1) Ge X

2) no Ay is & minor of G.

Using this theorem and the above corollary we have the
following:

Corollary I: Given a nonnegative integer k there exists
a set Alf,...,kg(k) of graphs with the following property:

G e ﬁ)k iff no A§ is a minor of G.

This seems to be not directly related to the above problem
6f Kuratowski-~type. However, it is well known and easy to prove
that a cleass of graphs closed on minors (and thus closed on
homeomorphisms) can be characterized by a finite set of forbid-
den minors iff it can be characterized by a finite set of sub-

graphs, Thus we have

Corollary II: Given a non-negative integer k there exisgts
a get Blf,....Bg(R) of graphs with the following property:
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G ¢ &k iff no BE is homeomorphic to a subgraph of G.

Presently, no bound can be deduced from the Seymour-Robert-
son argument (which is based on the theory of well-quasiorder-
ings). This may be a very difficult problem.

Sachs mentions another problem which may be solved as fol-

lows:

Corollary III., Given a non-negative integer k there exists
an integer K(k) such that
% (6) € K(k)
for every graph G e @k.

Proof. According to the above lemma Ky .o ¢ D ke It is
well known that if the chromatic number of a graph G is at least
29%*6 then K;, ¢ 1s & minor of G. This proves K(k)<29%*6, 1n
fact by & result of Mader [3] there is a polynomial relation be-
tween k and K(k).

The problem of the maximal chromatic number of a graph which
belongs to the class @k is related to Hadwiger conjecture. Par-
ticularly, 7% (G)&5 for every discatenable graph if Kg is a mi-
nor of every greph which fails to be 5-colourable.

(Note that KS is discatenable; using & result of Jacobsen [4]
we know that 1 (d)‘ 6 for every discatenable graph G only.)
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