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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

26 4 (1985) 

A NOTE ON SPATIAL REPRESENTATION OF GRAPHS 
Jaros.av NESETftIL, Robin THOMAS 

Abstract: The purpose of this remark is to provide a so-
lution of two problems of Sachs L1] on representatiqn of graphs 
in E~. One of them uses a recent solution of Wagner s conjectu­
re by Seymour and Robertson, 

Key words: Topological graphs, well quasi ordering. 

Classification: 05C10 

Let G » (Y9£) be a graph (loops and multiple edges are al­

lowed)* By a (spatial) representation of G (in E^) we mean a 

rule which- assigns to each vertex of G a point in E* in such a 

way that the existing incidencies are preserved and no new in­

tersections are created. Clearly every circuit in G corresponds 

to a closed curve homeomorphic to a circle. 

Let us reoall some notions introduced in £13. Given a re­

presentation of G9 we say that two disjoint circuits in G are 

concatenated if they cannot be embedded in disjoint topologi­

cal closed balls. Otherwise the cycles are called disoatenated. 

The degree of concatenation of two disjoint circuits of G is 

the minimal number of permeations which are necessary to disca­

tenate them* Here the permeation of two arcs of the same cycle 

is counted with multiplicity 2. 

The degree of concatenation of a representation of a graph 
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i s the sura of the degrees of concatenation over a l l unordered 

pairs of d i s jo in t cyc les . F ina l ly , the degree of concatenation 

of a graph G i s the minimal degree of concatenation of a repre­

sentation of G. G i s d iscatenable i f i t s degree of concatenati­

on i s zero. 

In t i l Sachs considered the following problem: 

Let 2) be the c lass of a l l d iscatenable graphs. Can the 

c lass 9) be characterized by a f i n i t e s e t of forbidden sub­

graphs ? 

Exp l i c i t ly : Do there ex i s t graphs A . | f . . . f A k such that G e 3C 

i f f G does not contain a subgraph homeomorphic to a graph A i # 

l ^ i ^ k ? 

(Clearly 9) i s c losed under homeomorphism.) I t i s proved in tU 

that Kg <fc 3) f K- , # 3) and i n fact conjectured that the ans­

wer i s negative. In t h i s note we observe that the above problem 

has a pos i t i ve so lut ion even in a stronger sense. 

Given an integer k r O denote by 9 ) k the c la s s of a l l graphs 

with degree of concatenation ^ k. We use the following lemma. 

Lemma, ( i ) Let G 6 &>k and l e t H be a subgraph of G. Then 

H * 2 > k . 

( i i ) Let G e S> ecE(G ) . Put H « G.e ( i . e . the resu l t ing 

graph af ter the contraction of the edge e ) . Then E e 3),» 

( i n ) K5k+6 * a k . 

Proof, ( i ) and ( i i ) are obvious and follow from the physi­

cal meaning of de le t ion and contraction of an edge, ( i i i ) f o l ­

lows by induction from 11]* i t i s K̂  4 «& « 9JQf and c lear ly 

(using ( i ) ) K5 t k .1 ) + f f * V l iMPl±eB K5*+6 * 3 k -

Corollary* For each non-negative integer k the c l a s s St k 

closed on minors* 
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(A graph H is a minor of the graph G if there exists a subgraph 

G' of G which can be contracted onto H.) 

The following outstanding result (known as Wagner s conjec­

ture) was recently proved by P. Seymour and N. Robertson. 

Theorem (Seymour, Robertson E2j): Every class % of fi­

nite graphs which is closed on minors can be determined by a 

finite set of forbidden minors. 

Explicitly: Suppose that a class % of graphs has the follow­

ing property: 

If G c X and H is a minor of G then H 6 K , Then there ex­

ists a finite set A-jt...fAn of graphs such that the following 

two statements are equivalent: 

1) G & % 

2) no A^ is a minor of G. 

Using th i s theorem and the above corollary we have the 

following: 

Corollary I: Given a nonnegative integer k there e x i s t s 
k k 

a set Aij f . . . i^O}.-) of graphs with the following property: 

G «- £>-£ i f f no A* i s a minor of G. 

This seems to be not d irect ly re lated to the above problem 

df Kuratowski-type. However, i t i s wel l known and easy to prove 

that a c la s s of graphs c losed on minors (and thus closed on 

homeoraorphisms) can be characterized by a f i n i t e se t of forbid­

den minors i f f i t can be characterized by a f i n i t e s e t of sub­

graphs. Thus we have 

Corollary I I : Given a non-negative integer k there e x i s t s 

* wi 

657 

a set B^,...fB^/kx of graphs with the following property: 



G 6 iB^ i : f£ n o B i i s horaeomorphic to a subgraph of G. 

Presently, no bound can be deduced from the Seymour-Robert­

son argument (which i s based on the theory of well-quasiorder-

ings ) . This may be a very d i f f i c u l t problem. 

Sachs mentions another problem which may be solved as f o l ­

lows: 

Corollary I I I . Given a non-negative integer k there e x i s t s 

an integer K(k) such that 

X(G)<-K(k) 

for every graph G & SD-̂ . 

Proof. According to the above lemma K--k4>g £ 95 k . I t i s 

wel l known that i f the chromatic number of a graph G i s at l eas t 

2 5 k + 6 then K5k+£ i s a minor of G. This proves K(k)-£ 2 5 k + 6 . In 

fact by a resu l t of Mader [3.] there i s a polynomial re la t ion be­

tween k and K(k). 

The problem of the maximal chromatic number of a graph which 

belongs to the c la s s ©jj, i s re lated to Hadwiger conjecture. Par­

t i c u l a r l y , %(G)*5 for every discatenable graph i f Kg i s a mi­

nor of every graph which f a i l s to be 5-colourable. 

(Hote that Kc i s discatenable; using a result of Jacobsen (43 

we know that \ (G) * 6 for every discatenable graph G only . ) 
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