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A NOTE ON THE MARTINGALE CENTRAL LIMIT THEOREM
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Abstract. The purpose of this paper is to shuw that McLeish s
Central Limit Theorem (see [1)},p. 58) for the martingale differen-
ces is valid without assuming the1r square integrability.
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Theorem. Let (S k =1,...,k neN) be a zero-mean

nk’ nk’ ' 'n?

martingale array with differences Xnk‘ Suppose that

1) E max {1 X, I)k = 1,...,kn}—>0,

2 2 . -
2) hi;.“ Xnk"""""n where m° is an a.s. finite

random variable,
3) the &-fields are nested:

A€ A for k = 1,...,k_, neN,

n+1,k *n?

Then Snk—i’ S (stably), where the r.v. S has the characteris-

n

tic function E exp (- %- t2 712).

Proof: A detailed examination of the proof in [1] (Theorem

3.2, p. 58-63) shows that we have only to prove that
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%y 1

T+ itX ) —> 1 weakly in L° for all real t

| BN |

assuming that & xZ £ ¢ and X .- 0 for j=3+ 1 K
9 254 Nk = nj- J3=9n LA

Fix real t and put M_= max {ixnkll k=1,...,kn},

nk
n

Im 2,2
a) We have ITnkI fA;ED VI + t°x0. 4

J

s T e -
nk = jija(l + 1txnj) and T =T

-~

o IR
& 1t MDexn(g t2 B xT) &Lt Mexp(5 t0)

Consequently (T
(1).

nko K=l kN eN) is uniformly integrable by
b) Fix je&N and f a bounded function which is Ajk -measur-

able. Then we have
hm
ETof = 4T, £ EL T, (e dtX  O/A 13 = E T, f
J 3 J ]
for nZj as Xnk are martingale differences.

It follows from (1) that T, 5 1, hence

E Tnf = E Tnkjf'“> Ef by (a).

c) Let f be an arbitrary measurable bounded function, such

that {f 1 £ D.

00 40O

Denote B = & (mkg‘ .b31 Ank) and observe that

B =6 ("jgz Ankn) as the € -fields are nested. For a fixed j € N

we haye

VE{(T -1ELE/81Y | & ESIT -11|ECE/BI- E[f/Ajkjmr +
+|E{(T.n—1)E[f/Ajij§]

and by (a)
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E4IT_-11 | E[£/B] —E[f/Ajijf} 4 20 exp(y t2O)ItiM, +

+(1vexp(y t70)) EIELS/B) - ELE/A5, 1| .
2 3

Using (b) we get

Limsup |E(T -1)f) & (1+ exp(3 t°C)) EIEC/B] - ECE/A,, ]
m -+ 00 JKy

for all j e N.

As E[f/Ajkj]mE[f/B] a.s. it follows that T —>1 we-

akly in Ll. Q

As a consequence to our Theorem we shall prove the law of
large numbers for a zero-mean martingale with Feller-LindebeTg
type condition.

Carollary: Let (Sn,nG.N) be a zero-mean martingale with

differences Xn for which the following assumptions hold:

E\Xn\ 4 D for all n € N and

13
'rlT"J"E“Xk‘ I(leI z en)}-—> 0 for any ¢ > O.
1 4
Then a Sn —> 0.
. 21 - .- -
Proof: Denote Xok = 5 X Mgk T 5’(Xj,3-l,...,k), kp, = n
and M_ = max {leI' k=1,...,nt. Then (X, ,k=1,...,n) are martin-

gale differences. It is enough to check the other assumptions of

Theorem.

1) For & > 0 we can write
1
Emax £1X V| k=1,...,nY ge+ 2 E{M I(M Z gn)} g
) - .
£z ,‘Z” E4IXI0x) 2 e2mi +¢.
Hence E max iankl| k=1,...,n¥{—> 0.
2) For B, e > 0, we have
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m av m
PO E xzk;e)- PleZ, Xz en?, S 1X1€8n) +

2 m
=, Xt e Xl =B £
& D
gP(Mnk§1lelien weq X & Bn) « 5 £
<P Z He) b
Using (1) we get limsup P( %i x2 z o)$ D
g m-» + co x=1 "nk T B

and consequently kEE X 2y 0.

3) It is evident that the & -fields are nested.

The required result then follows from Theorem. 4
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