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A CONSTRUCTIVE PROOF OF THE TYCHONOFF'S THEOREM
FOR LOCALES
Igor KRIZ

Abstract: A choice- and replacement-free proof of the
'!ychonoi! s theorem is given for compact locales.
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Classification: 54D30, 54H99

The Tychonoff ‘s theorem ([121) stating that a product of
compact spaces is compact is well known to be equivalent to
the axiom of choice (see [10]). A surprising result was obtain-
ed by P.T. Johnstone in [8]: if we consider compact locales
(i.e., spaces represented as lattices of "open sets" - with
points disregarded and, indeed, often not present in any form),
the analogon of the Tychonoff ‘s theorem can be proved without
the axiom of choice. This is particularly interesting in con-
nection with the faoct that compact locales are always spatial,
i.e. open-gets lattices of classical topological spaces ([2]);
thus, the use of AC is localized in the formation of points,
not in the preservation of the compactness property).

The proof in [8] contains e non-constructive element, ne-
mely the axiom of replacement., P.T. Johnstone formulated the
problem whether one can get rid of this, too (for the special
cage of the locally compact locales he presented a positive
answer himself). In this article, this problem is solved in
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the affirmative in full generality. The procedure is based on
e new description of the product of locales, considerably more
constructive as compared with the usually used ones ([51,[8]).

1, Locales. The basic theory of locales has been develo-
ped by Bénabou (11, Dowker and Strauss (3, 4, 5], Isbell [6]
and Simmons [11], There are nonsiderable differences in the
terminology; we follow that of Johnstone [8). A frame im a
complete lattice A in which the infinite distribution law
aA(VS8) = V{ans|sess

holds for all a€ A, S< A. We shall denote the maximal resp, mi-
nimal olonont‘ot A by 1 resp. O, A frame homomorphism A-—>B

is a map preserving finite meets and arbitrary joins (i.e.,

in particular, the elements O, 1). Thuas, we have & category Frm

of fremes. If X is a topological space, the lattice .1(X) of
its open sets is & frame, If £:X—> Y is a continuous map,
then £~1; 0(Y) &> (X) is a frame homomorphism. Thus S is
a contravariant functor from the category Top of topological
spaces to Frm,

Pollowing Isbell [6] and Johnstone L8] we shall write Loc
for the opposite category !moP, and call its objects locales.
This dual terminology enables us to meke Sl :Top —> Lo¢ @& co-
variant functor and, in consequence, to generalize familiar
concepts from topology to Loc (see [71,[8]).

2. Products of locales. Products in the category Loc
(sums in Frm) were defined by Dowker-Strauss [5] and Johnstone
(8], Their description is elegzant, but rather non-constructive.
It does not give any explicit formula for the join operation
in the sum }Y: Iy of tremes X, Johnstone {7) suggests to
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construoct the sum of Xy (JeJ) as a free frame over the cartesi-
an product *DD IJ of the sets 13, factorized through a congru-
ence generated by certain relations. (In the case of an infini-
te J, it is of an advantage to exclude from é'\;T3 Xy those
("j)jeJ in which we have aj<1 for infinitely many j.) This
shows an analogy between frames and commutative rings (see [9]),
However, frames, being ¢0 ~ary algebras, turn out to be in this
respect much more complex.In fact, the congruence generated by
the obvious relations is rather obscure.

In this sgction we give a quite explicit description of the
congruence generated by the relations [7], which enables us to
describe the structure of »5\5/3 Xj, explicit formulas for finite
meets and arbitrary joins included.

Let J be a set. We call a J-connector a system (M, :R;, R’;)
(3ed), My,M;), where M,,M,<S M, :Rgczux M, R';c ux2¥ for Jegd
such that the following condition holds:

Let K& M, Whenever
(e K) &N R] x) & (NGK) =>

“(1) N
=>xek] & [(x By M &(xeK) = NSK]
(¢) Jor
(LS E) &L(F &) 2) & (xeR) =
(2)

= Fek) & [(x &y M&(NeK) =» x K]

holds, it is K = M,

Now let Xa (jcJ) bve a system of frames. Denote by B the carte-
sian product %_\;\'3 Xye There is & natural ordering "< " of B,
making %133 Xy & Prm-product of Xy (see [51). Let B°c B be the
subset of all x '.;,TJ;) aieB such that we heve a.i<1 for at most
finitely many JeJ. It is easy to see that B  is a sublattice
of B, preserving finite meets end non-empty Joins, but it is

not & locale: There is no minimal element in B, Denote by Z
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the lattice of all subsets of B’ ordered by inclu-iori.
We call my,m,€Z strongly equivelent (m, ~a m,), 1f there exists
en me Z and a J-connector (m, ﬁl;, R;’,m.' smy) (in the sequel cal-
led simply the connector) such that it holds -
> (x R; m orm’ 5?,; x) => (ai -q-\{m'ag) &

&(al; = a]; for k+j, ye ) & (m"%¢).
We will call a kernel of me Z the set

s(m) ={xem|(VjeJ) ":i>°§'

We set u~vv=,, s(u) ~e 8(v). The element u is called standard,

if u = s(u).

2.1, Observation: "~ " is an equivalence relation, con-
taining " ~Jg ",

Proof: It suffices to show that un, v = s(u)~, s(v).
Let (m, .‘R,g, .’Rg,u,v) be a connector. Denoting by :-R';, 3—2; the
restriotions of ﬁ‘; (.R,‘S) to s(m)x 25(™, 28(8)  y(n), respec-
tively, we obtain a connmector (s(m), '3, ﬁg.l(u).s(v)).

Denote by [ml the class of m¢Z in (2/~ ).

2.2, Purther obgervations: 1. Assume x,y,z€Z, XSy, X~ Z,
Then there exisis & te 2 such that z £t, y~t. Thus, we cen de-
fine a canonicel ordering on (Z/~s ). by the formula [x]é\'.y]‘—_—‘df
(Jzez)(znvylkxcz),

Proof: Let (m,R’S,(R;,a(x),s(z)) be & connector., Putting

t = (y\x)U 2, we obtain an obvious connector (my s(t), .‘R;, :R*.
s(y),s(t)). O
2, If u&v&wand uvw, then unv. Hence, " £ " is a par-
tial ordering.
Proof: It suffices to show that v~w, But if (m, &7, %Y,
- 622 -



s(u),s(w)) 1z & comnector, then (m, (R.’;,R%.u(v),u(w)) is a oon~
nector, as well, O

3, Let u,véZ, usv, Then (Vycv)(Axeu)(x <4 y)=pu~v,

Proofs Por ucZ put 4(u) ={xeB | (Iyew) x < yi, Binoe
evidently (Yyev)(3Ixcu/(x~ y)kusvy = d(u) = 4(v), it mt-
fices to show that u~ gy d(u) for ue?Z, Let 273, .ﬂ% be maximal
relstions on 28W x a(u), a(wx 28", setiatying (3).(The con-
dition (3) 1s obviouely preserved by the union of relations,)
Prom the fact that for x€B’ thers are only finitely many J§ with
aj<1, we easily obisin thet (d4(u), 0?3, ,u a(u)) is » connec~
tor. O

4. Por any u € Z we have l:lt\‘/1 LR IAVARS W

Proof: The union t(cC) of all slements of & given class
o € (Z/~) belongs Y0 o¢ , since a union of connectors (in
the obvious meaning) is & comnector. Moreover, the mapping
t:(Z/~)—> 7 preserves ordering and for arbitrary z€7Z,
o e {(Z/~) it bolds zSt(x)=mLz]1&oc , Thus, "L 1 " is »
left adjoint 40 t e tiwt it preserves joins, [

5. Demote by Ay, the mest operation in B’. Por u,ve’

let UAY = {x /\B,yl Xeu,y€ v}, Then [uX v] depends only on
(ﬁ]g {'lo

Eroof: Assume that (n(l), 3,; (1) R" (1) (1) (D)y are
connectors, i = 1,2, Put 313 = {(xAy,m K(y%)eB * 231
\(xa; M 1&761(2)) or (233 () m&yemﬁ))} . J »
- “‘7‘(7%1'\7)623; B l(m 33(1)&76 n?)) or (mat?)x &
gyeat'))}, It 1s sasy to see that (al')x m(z).a;,,g;,umx

Ku(z). 1(1)7( vi®)) (5 a connector, 0}

6, 7The operetion * A " in (Z/~ ) defined by [ulA (vl =«
- £23 -



= LuR v] is the ordinary meet (= infimum in £ ) in (2/~ ).
Proof: By 2, 4, (2/~ ) is a complete lattice. Denote by
" A(z/~ )" the true meet in (2/~ ). By 3, we have

(+) (Vxeuw)(Iyev)(x3 y)=>Lulély],

and hence trivially [ul A(y/ ) Lv1Z[lulAlv], Moreover,
{ul Nz/n) [vl<(ul,{v]), by definition. Thus, by 1, there ex-
ist s~u, t~v such that for some representative uv of the
class [ul Nzl ) [v] it holds uvE s, uv<t, By 5, (+), we ha-
ve now [u) A(Z/N)[v] £[8At) = [ulalvl,

7. Given a system szxj —> C of join-preserving mappings,
there exists a unique Join-preserving mapping f:(2/~) — C
such that it holds that

) £(14%32) =, /\) £y(ad) for any zeB".

Proof: By 4, the mapping f is uniquely determined by the
formula £([{m}) -x\e/m £(f[{x3?]), and it obviously preserves
Joina, Our only task is to show that £ is correctly defined.
Let (m, ag, R';,u,v) be & connector, We will show that, by our
definition, £([ul) = £([v]). (This will be enough, since the
definition obviously gives f£(lul) = £([s(u)l).) In fact, since
the set K = {xe M| £([{x3))< £([ul)} trivially satisfies the
condition (1), it is'I( = m, Thus, £({v])< £([m]) < £([ul). Ana-
logously, f£([ul)<£ £([vl). O

2.3, Theorem: The set (Z/~ ) ordered by " £ " ig a fra-

me with joins and meets given by the formulas
Y1 bugd = L) v

[ulalvl = [ix Ayy\ xeu,ye v3l

If we define LytXy —> (z2/~) by (,1(3) = [4{ fn‘J(a)}] , where

(5)

- 624 -



‘ 3 - k =
.-gd(a)eB and afcj(a) a, a,rd(a) 1 for k=%J, then L,j are
frame homomorphisms and (Z/~ ) is the sum of xj with injections
l.,d.
Proof: By 2.2.2, 2.2.4, 2.2.6, (Z2/~) is & complete lattice
with joins and meets given by (5). However, (5) trivially implies

the distributive law so that (Z/~ ) is & frame. The mappings

Uy ere freme homomorphisms by (5)s (Note that namely the beha-
viour of the zero element forces us to set u~v =s(u)~, 8(v).)
Given homomorphisms IJ:XJ——% C, there exists (by 2.2.7) & unigue
join~preserving mapping f:(2/~) —> C satisfying (4). This map-
ping obviously preserves finite meets., [1

2.4, QObservation: For arbitrary standard x,y¢B  we have
[4x3] ¢ [{y3)l = x<3y.

Proof: Consider the mapping ngj —> B’ defined by Theorem
2.3+ Obviously 't’;, preserve joins, and thus, by 2.2.7, there ex-
ists a unique Join-preserving 7 : éYJ xd — B’ satisfying (4).
Since B is the product of xj and B® 1s a sublattice of B, we ha-
ve a canonical join- and finite meet-preserving mep L iB"—>

—->’}>/3 xJ induced by bjxxj —')QY‘.) Ij. By (4), the diagram

L4 Id 4
B —— B
o &
365
commutes. Thus, C 1s injective and hence {x} ~s{y} = X=ay
(for standard x, y). Now [{x3¥)1 < [{y3) = [4x3IAliyt] =

= [{x31=[{xAyi] =[l{xil = xAy s x=x<3y. O

2,5. Remark: This result is proved in [5] and it can be re-
formulated to say that \‘j preserve arbitrary (even infinite)
meets. This property could be called the openneas of L 3 This

- 625



is motivaied by the following

Fact: Let X, Y be topologioal !1-¢pnon. Then & continu=-
ous £1X — ¥ is open iff = Q@) -0 preserves arbit-
rery (even infinite) meets.

Proof: If f£:X—> Y is open, then the imege mapping t,x
1 (X) — 0 (Y) is evidently left adjoint to £~', Thus, £
preserves meets. On the other hand, if ¢!
has & left adjoint £, ., Por U & D.(X), V¥V € O.(Y) we have

preserves meets, it

L0 = L RDeu ¥ € pfypy’ ® 21(0) (for, since Y i Ty, we
-1
bave x e, ey’ = 1 (Y\{x}3U=1x€2,(U)). On the other

-1 - -1
=2
hand, £772,(U) = ¢ (‘_/&nun -4_/(})211: (V)2 U, sad hence

2,(0)2 £,(U). Thus, £, = f,. m]

3. The Tychonoff’s theorem. A frame (locale) is said to
be compact, if for any SG A with VS = 1 there exists & fini-

te PC S with VI =1, In this section we give a choice~ and
replacenent-free proof of the theorem that the product of ocom=
paot locales is compact.

Let A be a frame. A set SC A is called a coverimg of A, if
it holds V' 8 = 1, For coverings s, t of a frame A we set s4t,
12 it holds (Vxes)(3yet) x4y. (This is the ordinary con-
cept of refinement,) Let now & be & covering of A and let tSA
such that V ¢t Za, We will use the notation s Ag tm{ixen)
Iz4ajuizay| xcsdyetl, Obviously, s A t is & covering of
A and sA t 48, Analogously, (Vxcaa t)((x48)=> (Iyct)
(x£y)).

Now let 13 (J<J) be a system of frames. Consider & sys-
tem sy of coverings such that 8y = 1 except for, at most, fi-
nitely many J. Then the system
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ST # = Atz e G 1y 1 (vien alengi

is a covering of 1\(3 Xj.
In the last seotion we remarked that ijxj - ;;YJ Ij

preserve arbitrary meets. Thus, they have left adjoints p:,:
: %\(J xa——> Xj (which, of course, are pot frame homomorphisms).
We can easily check that

(6 pj([u]) - V-iai\zeu’r.

3.1, Lemma: Let {u,v} be a covering of \/ Ay Then
jed01%

Pou) = 1 or py(v) = 1,

Broof: There should exist a connector (m, &;. :R.g(i €10,13),
Wu¥, 11}) for some standard representatives T, Vv of the classes
u, v. Consider a system xieB', 1€l such that x, differ at most
at one coordinate. Then the statement (Vic1I) [(a:ié po(w)) or

(a;ie Py (v))] implies the statement (‘g,“i.é p(w) or
(51\/“&‘ p1(v)). Thus, by (3), the set K = {xem \(n; &py(u)) or
(‘; €p4(v))} matisfies (1), and hence K = m. In particular,
1£p,(u) or 1£p,(v). O

3+2, QObservation: Any element of a finite lattice is a

Join of join-irreducible elements.
Pgpof: An obvious induction., O

3¢3. Lemma: Consider a finite covering ¢ = {[ix,;31 | 1¢n,
x 6B} of the freme 5\ Xy, Then there exist finite coverings
t
&4 of the fremes X, such that %T;T.J By<t,

Proof: will be done for J « {0,1}, This, by induction,
obviously implies the case of J finitey; the case of J infinite
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is executed by the finiteness of t. Let, hence, J = {0,1}.

Let AJ (J = 0,1) be sets of all possible elements of xa obtain-
ed from sg (14n) by join and meet~operations in 13' Obvioua~
ly AJ are finite lattices. Write 8y for the set of all Join-
irreducible elements in Aj. By 3.2, '3 is a covering of IJ.

We will show that 8, X s,.ét. Suppose the ocontrary. Then there
exists & ye B’ such that agesj for }J - 0,1 end x, ¥y for any
14 n, From the join-irreducibility of a; it follows that

py(tixy ) .giqngm z o tor 3 = 0,1,

By 2.4 and by the properties of y, however,

a 3 =
je\ﬁ),'\}[{xi‘&*‘ 31=1,
contradicting 3.1. O

3.4. Lemma: Consider compact frames x:‘ (JeJ). Let
(m, R;,.R,‘J' (JeJd) kx, 4{1%) be a connector. Then for any finite
m’c m guch that m'~, 1 and for eny x€m~ there exists e fini-
tem"'c (m"\{x})Uk such that "'~ 1.

Proof: Let k be the set of all xem, satisfying the sta-
tement of Lemma 3.4, We will show that k satisfies the condi-
tion (1), and hence k = m.

The inclusion kSk is obvious.

&) Let y .'R;u&xeu, ye.f. Then, of course, x-<$ y so that if
1~y mn’s x, 1t 1s 1~y (m"\{x3}) uiy}. Thus, xek.

) Let uﬁ,;x&usi. Assume 1~ m >x, Put N" = {L{3¥]|ye
¢ wi. Then M’ 1s a covering of 5\(3 Xj. By 3.3, there exists

a oovering%TeTJ saéu'. We take the covering s, A.:{&.;'I yeu?

of the frame X, , By compactness, it possesses a finite suboo-
vering S, . Putting 'iJ -8y for J % 2¢ , we obviously obtain

J;I‘] ij.{-(u'\[{x'&])u {C{¥y3)| yeul. The left hand set is
- 628 -



finite. Thus, there exists a finite subset tCu with (m\ x) U
vt~ 1. From tcX we easily obtain xeck (by induction on
card t). O

3.5. Theorem: In the Zermelo set theory (without the axi-
oms of choice and replacement) Tychonoff ‘s theorem holds for

locales; i.e., the product of compact locales is compact.
Proof: Let IJ (j €J) be & system of ocompact frames and
let S be a covering of QYJ Ij. Put k = s( xLejS t(x)), where s
is the kernel and t is defined in 2.,2.4. It will be k~. 1.
By Lemma 3.4 (with m” = {1%, x = 1), there exists a finite sub-
set k'S k with k'~ 1. Since k* is finite, however, there ex-
ists a finite PSS such that (Vxck)( 3w € F)(zcn(t(x))).
Thus, of course, VF =1, O
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