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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
26,3 (1885)

ON THE EXISTENCE OF BOUNDED SOLUTIONS OF DIFFERENTIAL
EQUATIONS IN BANACH SPACES
Marian DAWIDOWSKI

Abstract: In this note we shall give sufficient conditi-
ons for the existence of bounded solutions of the differential

equation y~ = £(t,y), y(0) = x_, on the half-line tZ0. Here f

is & function with values in a Banach-space satisfying some ocon-
ditions expressed in terms of an axiomatic measure ofnoncompact-
ness & , The proof of our theorem is suggested by the paper of
Stoléia £7] concerning finite dimensional vector differential e-
a ations,

Key words: Ordinary differential equations in Banach spa-
ces, Tixed point, measure of noncompactness.

Classification: 34G20, 47HO9

Introduction: Let (E, \+! ) be a Banach space. The closu-
re of a subset Aaof E, 1ts convex hull and its closed convex
hull will be denoted, respectively, by A, conv A and conv A, If
A end B are subgets of E and t, s are real numbers, the t-A +
+ g8+B is the set of all t.x + 8.y, where x€A and ye& B, Further
let me denote the family of all nonempty end bounded subsets
of E and ’ﬂ.E - the feamily of all relatively compect and non-
empty subsets of E.

A function @: MWy —>[0,+ c0) is said to be a measure
of noncompactness if it satisfies the following conditions:
1° the femily ®= fA & Wy (A) = 0} 1is nonempty and P c %,
2° w(x}) =0 for all x6E,
3° AcB =p w(A) € u(B),
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4°  w(@d) = wla),
((conv A) = w(4),
6° (q,(t-A) = it - (L) for every t € IR,
7° @A+ 3B) & w(a) + @(B),
8° w(AuB)&max ( @ (A), w(B)).
We put

AAl = sup ShxH: xeAl, K(0,1) =S{xeE: hxl£1},

The following property of the function M 1s true:

Lemma 1. If A € M, then w(A) £ NaW.m(K(0,1)).

Now let J = [0,+ c0 ) and denote by C(J) the set of ell con-
tinuous functions from J to E, The set C(J) will be considered
as a vector space endowed with the topology of uniform conver-
gence on compact subsets of J,

Let us put X(t) = {x(t): xe X}, I, = U {X(8): O£t}
for t€J and Xc C(J)., We have

Lemma 2, If XcC(J) is bounded and elmost equicontinuous
then w (X;) = sup {@ (X(s)): 0Oém£tl for ted,

For properties of w see [11,(21,[31,(4],

The Ascoll theorem we state as follows: XcC(J) is condi-
tionally compact if and only if X is elmost equicontinuous and
X(t) is compact for each te&J,

We shall use the following fixed-point theorem of Sadovskii
type (see £31,(51,061):

Let % be e nonempty closed convex subset of C(J). Let
$: 2i —> [ 0,+ 00 ) be a function with the following proper-
ties: ‘

(1) &(X) = 0= 1s compact,
(2) @& (%onv X) = &(x),
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3) $@Fuixd) = & (X

for every subset X of £ and for each x € ¥ .
Suppose that T is e continuous mapping of £ into itself and
& (T1X]) < $(X) for $(X)> 0. Then T hes & fixed point in ¥.

Main result.

Theorem, Assume that £: JXE—>E is a function satisfying
the following conditions:
1° for each fixed x€ E the mepping t >£(t,x) is measurable;
2° for each fixed t €J the mapping x > £(f,x) is continuous;
3° We(t,x) h& G(t,lx ) for (t,x)€ IXE, where the function
G is nond.creas.ing in the second varieble such that t >
> G(t,u) is locally bounded for eny fixed uedJ and t >
+—>G(t,y(t)) is measurable for every continuous bounded
function y: J—» J3
4° the scalar inequality
g8 Zhx, i+ [Tols,e(a))an
has a bounded solution g existing on Jj
(let us put r, = sup {g(t): t€Jt am z, =ixeE: Ixll¢ rd)
5° there exist functions m, p of J into itself such that
(i) m is measurable and integrable on compact subsets of J
with
M = sup -(j:m(s)asz t¢J} < o,
(i1) p is nondecreasing such that M.p(t)< t for t> 0,
(1i1) for eny t>»0, & > O, XcZ, there exists a closed
subset Qc (0,t] such that mes({0,t1\Q) < & and
@ (2lIx X)) & sup {m(8): se I} p(w (X))
for each closed subset I of Q.
Then the differential equation

vy o= 2(%,y)
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with the initial ocondition y(0) = x, has at least one solution y
defined on J and §y(t)h £ g(t) for teJ.
Proof: Denote by &£ the set of all xe€C(J) such that
Ix(+)) & g(t) on J end .
2
I x(ty) = x(tp) 0 | j;1 G(s,r,)ds| for t,,t,€ .

The set £ 1s nonempty closed convex bounded and almost equicon-

tinuous subset of C(J).
Let us put
& (X) = sup § w (X(t)): t&J} for & subset X ¢ £«
Obviously $(X) <o , <p(x1) ) (xz) for X,C X, and
$Euixh) = §(X) torxe ¥

Since
(donv X)(t) = (conv X)(t) < (conv X)(t)c conv (X(t))

s W((BEF X)(t) £ @ (conv(X(¥))) = w(X(t)),
The inverse inequelity immediately follows from the inclusion
X(t) c (conv X)(t). Hence ¢ (donv X) = @ (X). If d(X) = O then

X(t) is compact for every t&J; therefore Ascoli ‘s theorem proves

thet ¥ is compast in C(J).
To apply our fixed-point theorem we define the mapping T as

follows:
forye ¥ , (T(y))(t) = x, + j;t £(s,y(s))ds.
It i eagy to see that T is continuous end TLX1lc % .

Let X be & subset of ¥ such that & (X)>0. To prove the
theorem it remains to be shown that & (T[X1) < ® (X). To this end,
fix t in J. Let € ¢ (0,1) and d’= d'(€)>0 be & number such that
_&G(s.rojds < 00 for each measurable Ac[0,t] w‘ith mes (A) < d”.
By the Luzin theorem there exists a closed subset B, of Lo,fc] with
mes ([0,41\B;) < J'/2 such that the function m is continuous on
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By Purthermore, by essumption 5°(iii) there exists a closed sub-
set B, of [0,t] such that mes ([0,t]\B,)< d/2 and
@ (2lIxX,1)£ sup {m(s): s6I}+p(u(X;)) for each closed subset
I of 32.
Let us put B = ByNnB,, A = [0,t]1\ B, Hence mes (A) < d° . Since
m is uniformly continuous on B, for any given ¢’ > O there ex-
ists 7 > O such that t',t"eB and |t " - t"l < 7 implies
im(t") - m(t")) < &' . Let t, = 0< ;< eee<t, =t be the parti-
tion of the interval [0,t] with ma.x-{ltj_1 - tdlx 1£34énk< .
Moreover, let I;] = [tj_1,tJ]nB and 8y be a point in Id such that
“‘(j) = gup { m(a): scIJ}.
Putting

fI £(s,X(8))ds = {j; £(s,x(8))ds: xe X%

we get
i\f; £(s,X(8))as | £ fAG(s,ro)ds < g <1,

By the mean-ve.lue theorem, for x€ X we have

f t(a.o(s))ds =1” .f;?!(s x(s))ds €

e S mes (I,) Touv (42(s,x(8)): scly})

C§g4m“ (Id) Sonv (LI xxt]),

hence faf(s,x(a))ds c. 34 mes (I ) &onv (£l1 xxt]). Thus
M (TLXA(E)) £ @ ({x 3 + [, 2(s, X(s))ds + [3 2(s,X(s))ds) &
£ w{x}) + I\_&I(B.X(S))ds b« @ (K(0,1)) +

+ *%':4 mes (14) - @ (fII3x X)) € e. @ (K(0,1)) +

+ % mes (I)n(a,)p( ¢ (X)) & &-@(K(0,1) +

+ p( P RING s: L. [ n(sy) - n(e)las + ﬁ f n(s)ds) £
€ &Ko, 1)) + p( @) (et + f*m(s)a.>

and therefore
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@ (TIX1(t)) £ € - w(K(0,1)) + M.p( © (X))

Since with respect to Lemma 2

@ (Xy) = mup 4w (X(s)): 0484t £ & (X)

we obtain

@ (PLXI(P)) £ e-m (K(0,1)) + Mep( P (X))3

as ¢ > 0 is arbitrary, this implies

@ (PLXI($)) £ M-p( & (X)),

Hence & (T(X1) £ M.p( & (X)) < & (X), and consequently T has a
fixed point in & . The proof is complete.
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