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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
26,3 (1885)

EXTENSION OF DIFFERENTIABLE FUNCTIONS
V. AVERSA, M. LACZKOVICH and D. PREISS "

Abstract. Let Hc R™ be closed and let F:H —> RD be ai-
fferentiable with respect to H, It is shown that

(1) P’ 1s Baire 2 on H;

(i11) P’ is not necessarily Baire 1;

(1i1) P can be extended to R™ as an everywhere differen-
tiable function if and only if F’ is Baire 1 on H.

Key words: Differentiable functions of several variables
extensions. ’

Classification: 26B05

1. Introduction. Let H be a perfect subset of R and let
f:H —> R be differentiable with respect to H. It is easy to
see that £  is Baire 1 on H and it is also well-known that f
can be extended to /R as an everywhere differentiable function
(see e.g. [31,04]1). In this paper we are going to investigate
the analogous problems in the n dimensional Euclidean space RZ,

Let £ (MRT) denote the 1linear space of all linear forms
on R endowed with the usual norm. Let H be a subset of R"
and F:H —> R, F is said to be differentiable at ae H if there
1s L(a) ¢ £ (R") such that

1) Part of this work was done while the seocond and third aut-
hor visited the University of Naples and was completed whi-
le they participated in the Special Yeap in Real Analysi s
at the University of California, Santa Barbara.
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x-}:m P(x) - F(a{;_(ﬂsz, x-2) o.
x€H

The linear form L(e) is called the derivative of F at a;
if it is determined uniquely, it is also denoted by F'(a). The
function F is said to be differentiable on H, if it is differen-
tiable at every peint of H.

Let H c R™ be closed and let F:H —> R be differemntiable
on H, Obviously, if its derivative is not determined uniquely,
it need not be in the first class. For example, it suffices to
congider the segment H = [0,1] as & subspace of IRZ, the functi-
on F = 0 and its derivative (L(x),(u, "’2)) = 0 if x€A and
(L(x), (uy ,u2)) =u, if x¢A, where A is, say, & nonmeasurable
subset of H,

A natural conjecture seems to 'be that the derivative of P
is in the first class provided that it is determined uniquely.
We prove that this is not the case (Theorem 5). However, if P’
is determined uniquely, it is of Baire class 2 (Theorem 4(i)).
Also, if the tangent space of H is sufficiently rich, then F is
in the first class (Theorem 4(ii)).

Since the derivative of an everywhere differentiable func-
tion is Baire 1, a function F:H —»IR, differentiable on the clo-
sed set H can be extended to an everywhere differentiable func-
tion only if its derivative is Baire 1 on H. We show that this
condition is sufficient as well (Theorem 7). For the proof we
will need a generalization of the following theorem of L.E. Sny-
der [5]. If £ is Baire 1 on the compact metric space X then the-
re is & function g: (X x RY) —> R such that £ is the 1limit of g
along the Stolz cones {(x,y); y>dist(x,a)} (a€X)., We prove
that the assertion remains valid if we replace X x R* and

~ 598 -



X x40} by an arbitrary metric space and & nowhere dense closed
subset, respectively (Theorem 6).

2, Baire class of derivatives. Let H be a subset of [R"
and let x € R™. A vector u € R is called a tangent vector to H
at x if

1lim inf dist(x + ru, H)/r = 0,
r->0+

The set of all tangent vectors to H at x is denoted by Tan(H,x).

Lemma 1., Let L(a) be a derivative of the function £f1H — R

at a€H, Then A & £( R®) is a derivative of P at a if and only
it

Tan(H,a)C Ker(A - L(a)).

Proof. Let B = A - L(a) and suppose first that A is a de-~

rivative of P at a, Then B is a derivative of O at a and hence

(1) 1im $Byx - 8) _ o
x->8 X - 8
x&H

Whenever ue€ Tan(H,a) , we can find & sequence r, of positive num-

bers converging to zero and a sequence xncﬂ sach that
limlx, - (a + ru)l/r = O,
n—w *n n n
Then

(B,x, - &)l I(Byxy - &)l |x, - al
I(B = 1i a2 = 11 . =0
(B,w)i nl—-)mao - n ‘_":D X, - &l T,

gince Ix,_,1 -alg \xn - (a+rwl +irulér,(1 +lul) for n
large enough. Therefore (B,u) = O for every uc Tan(H,x) end hen-
ce Tan(H,x)C Ker B.

Fow let Ten(H,x)c Ker By first we prove (1). Suppose indi-

rectly that there are ¢ > 0 and a gequence xncﬁ\{al, X,—> e
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such that

I(B,x, - a)l
T—_I—-xn —— ; e .

-a

There is a subsequence ixnk} such that rx:fk_—;-r converges to
a unit veotor u. It is easy to check that ue Tan(H,x) and
(B,u>#%0, a contradiction. Therefore (1) holds true and hence
B is a derivative of 0 and A = L(a) + B is a derivative of F at

Corollary 2. Whenever a&H c R®, the following statements
are equivalent.

(1) For every function F:H —> R differentiable at a, the
derivative is determined uniquely.

(1i) Ten(H,a) spans R",

Proposition 3. Let H be a subset of R® and let, for each
xeH, 8y(x) = sup faet(u',...,u®; u',...,u? are unit vectors
from Ten(H,x)}{. Then

(1) for every a>0 the set E, = {x€H; ag(a)zafis a Gy
subset of H, and

(i1) whenever P:H —> R is differentisble on H and & >0,
then F* as & map from B, to u( R™) is of Baire class 1 relati-
ve to E,.

Proof. Let F be & function differentiable on H and let M
be a closed subset of ( R®), We intend to prove that the set
B = {xGE‘; P(x)cM}is e Gy subset of H. This clearly implies
the second statement of the proposition and, since one mey choo-
se P = 0 and M = {0}, aleo its first stetement.

For each x¢ B and each k = 1,2,,.., we £ind numbers
o(x) e (0,275), t;(x).... iR(x) € (0,0, (x)) and unit veotors
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up(x) o0, u(x) € B2 such that |P(y)-F(x)- <P (x),y-x)| <
<27k Ny-x! whenever yeH and 0 < ly-x < o (x),
x+ti(x)u§(x) €H for each i = 1,,..,n, and
dot(u;(x) sese up(x))>e - 27k,

Next we use the continuity of P on H to find
8, (x) €(0,27% min(t}(x),...,5(x))) such that
IF(x + i @ul@) - By - <P, @ui@)>| € 275l
for each 1 = 1,,..,n end each y€H with Iy-xll<d.k(x).

Whenever y€ H n‘bo‘ Uty e R™; ly-xl < 4, (x)}, we find

a sequence x, € B such that hx -y l < 4, (x,). There is a subse-
quence k1< k2< ese such that

ul - 1im “ljc.j(xk ) exists for each i = 1,...,n. To simplify the
J

oo
notation, we put zy = xkj, t:;' = tid(zj), u;' = utj(zj). V; =
i1
= tjuy, and dy = dkj(zj).

i

From za + vdeH and from

}}’mw(tj)d Mz + v% -y) - t?!'ui\\ % }j::noo[(t%)-1 Moyl +
+ Iu;‘-uill] <1im 27J = 0
we infer that ule Tan(H,y) for each i = 1,...,n, Since clearly
det(u',...,u") za, yEE,. '

Whenever € > 0 and J is sufficiently large, we have
ll'(zJ + vg‘) - F(y) -<F’(y).(zj + v‘;‘ -y lse llzJ + v% -yle
£ e (8] +a)é2e &)

Hence
\<r’(zd).vj> - <r'(y),v§>|e 1B (z, + vg‘) - P(y) -<r’(zd),v§>l
+2 et;' + I(F'(y),zd-y)l < (273 + 2 e)ts‘ + ili"(.v)\lcl3

(3 +2¢ + 273 tr'(y)l)t} for each 1 = 1,...,n,

Consequently, glinooK’ '(zg);ui) -<P (y) .u%)l = 0 for
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each 1 = 1,..0,n, Which, together with 1im dot(u‘,...,u?),()
oS 3

imply that P (y) = lim r’(sj). Since P'(zj)cu for each ] =
= 1,2,000s P°(y) € M and therefore y<B. Thus

n,
BOH r\k‘r‘\.1 }:B{” R \\y—xll<dk(x)‘§.

and, eince the converse inclusion is obvious, B is a Gd‘ subset
of H,

Theorem 4. Let H be a subset of R® such that Ten(H,x)
spans R® for every xeH,

(1) If MH~> R is differentisble on H, then ¥ as & map
from H to ®( R™) 15 of Baire class 2 relative to H,

(11) If H cen be covered by countebly many relatively
olosed subsets Hy mich that inf {ap(x)s erk'S > 0 for each k,
then the derivative of every funotion differemntiable on H is
of the first class on H,

Proof. Both statements follow immediately from Proposi-
tion 3.

Theorem 5. There exist a compect set H C % and & functi-
on MH~> R such that F is differentiable on H, F’(x) is uni-
quely determined at every point of H and P’ is not Baire 1.

Proof. Let C denote the Cantor termary set in (0,11 and
let Jun.bnl be the components of 10,1C\C. We denote T, =
= $8000eibyy Bypeenybyly T e G0 anac’ s O\,

For every fixed n we oconstruct & amet snc ¢’ with 'Sn\ Sn C
¢ T,v 10,1} and such thet for every $€C\T, there is en acS,
with 1t ~ ul< ataté(s,m)).

Let J“J' (!d[ (J » 1,000,n+1) denote the components of

Jo,1L \;Q’ tai,bil. Por every J = 1,.,,,n0+1 we choose sn incre-



asing sequence -(xé”;‘;__m such that l]rim x](!j)-' ‘ap%m ﬁ(,”' fy and
-0 ~

o< 2] ~ x{Ve mia(x{? - wpt, (py - D tor every k.
We select & point seC’n fxl(:“ .x,(‘f_% 1 whenever this intersection
is nonempty and we denote by 3,, the set of these points., It is
eagy to cheock that 8, satisfies our requirements.

We denote

87 =, {00a) € By 1x - sldy g aimt?le, T}
and
H = {(x,y)3 a,6x6b , Oy #(b, = a )min(x - a,,b = x)i
(h - 1.2.0.-)0
Finally, we define
Ha ,,}',54 (B,u 8X) L (0= 101)

and

01t (x,y)eH \MC;" H,
T(!.y) .‘{

v it (e O, By

mz4

It is easy to see that H is & compact subset of m’-. We show that
Tan(H,x) spans ®2 for every xcH, This is obvious for
xeHN(Cx{03)s If x = (£,0)€ (0x{03) and 12 tg®, then z is &
vertex of H  and the assertion is elso clear, If t&C’ then, ob~
viously, (1,0)e€ Tan(H,x), We prove that (0,1) € Tan(H,x). Let

T, = dista(t,'ln) and choose an s €8, with 18 - tl< rﬁ. Since
(8,5, ¢ H 1f 1 1s sufficiently large,

1 1 1
n-};i: det(x + gr (0,1),H)/x, &nlinwl(t.grn) - ('n'B'rn)l /rn

=« lim \'c-ln|/rnﬁ11n r

nl o-
n-» n -y o

Hence (0,1) belongs to Tan(H,x).
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-4
We claim that P (x,y) = 0 for (x,y)€ B\ Y, H end
. [/
(P (x,¥)y (u,v)) = v tor (x,¥) g"k)“ Hy. This is obvious for all

points (x,y) € E\ (0 x{0%). To prove the remaining case, we first
note that, whenever teC and (u,v)el{n, then O€v ‘(bn - an) .
-dist(u,{an.h })‘(b -8 )\u - t|. Since b, - 8,—> 0, this shows
?°(%,0) = O for every teC’. Now let t:{a sb l, we have to show

1im Flu,v) - v

(u,v)=>(t, 0) \(u,v) - (t,0)1
(u,v)eH

=0

Since P(u,v) = v 1f (u,v) € O K and F(u,v) = O otherwise, it
is enough to prove that

v

11
(u.v)—f(t,O) T-t=0
(u,v) e U S:

Since & &and b, do not belong to the closu.re of the set :g‘ s¥,

thus o = ALst((4,0), U § n)>o 1t (u,ve, G, 5%,a6t((n,9),

(t,0)) < d’ , then (u,v) cmg)m S end hence there is nZm end

scS, such that lu- slévéd dlat?(s,T )6 3(s - )2,

Therefore u = t1 Zls = tlc lu- glzlpg=-tl=~ (s- )2z

Zz- is - t| end vég(s - )2, which proves our assertion.
Finally, we note that P’ 1s not Baire 1 on H, since Cx{0%

contains no point of continuity of the restriction of *’ to

cx{ol,

3. Extension of differentiable functions. Our next result
will be used in the proof of the extension theorem, but may have
some interest in itself, Let H be & nowhere dense, closed subset

of the metric space (X,d). By a Stolz cone with vertex a€H we
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mean a set

{xeX; dist(x,H)Z ¢ » d(!.a)g.‘

where ¢ is a positive constant. Our theorem implies that if

£:H — R is of Baire class 1 then there is a function g:X—

—» R such that for every a€H, 1lim g(x) = £(&) relative to
x>a .

any Stolz cone with vertex a. Using a loocally finite, continu-
ous partition of unity of X\H gubordinated to the system of
balls with center x€ X\ H and radius % dist (x,H), one can ea-
sily show that g can be chosen to be continuous. This result
is a generalization of a theorem by L.E. Snyder [5].

Theorem 6. Let (X,d) be & metric space, let H be a closed
subset of X and let £:H — IR be of Baire class 1 on H. Then the-
re exists & function g(X\H) — R sush that

- dst(x,H) _ o
(3) (M e - t(a) 1-(,1};,-1

xeX\H
for every a ¢ OH,

Proof. Pirst we remark that if £:Y-— R is & Baire 1 funo-
tion defined on the metric space Y then £ is the pointwise 1i-
mit of a sequence of bounded Lipschitz functions., This has been
proved by Heusdorff in a more general setting (see [2], § 41,
PPe 264-276)3 or it follows more directly from [11, Propositi-
on 3.9

Applying this result to Y = H as a subspace of X and to
£:H — R, we get a sequence !nxn — R of bounded Lipschitz
functions converging to f on H, Let 1£M, €M, €... and 0< K, £
€K,€... be such that | |&M and If (x) - £ (¥)\ €K, a(x,y)
(n=1,2,...3 x,y€H).

Let x€X\ H be fixed. If dist (x,H) Z (K, (M, + 2))71, we
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define g(x) = O, If, for a natural number n,

() ((n + 1)K (a1 + 2)] “¢ &l st(x,H) < (oK (oM + 2)] -1

then we select 8 point u(x)e H with d(x,u(x))<2 dist(x,H) and
detine g(x) = f,(u(x)). We prove that if a€H, xcX\ H and (4)
holds then

() g - (@) SEHEID g1, L@, e (o) L 2ol

Since £, (a) — 2(a), this will prove (3). We distinguish between

two cases,

It Qﬁfﬁ‘,ﬁfﬂz‘%ﬂ; then we have lg(x) = £(a)| yﬂ"é&? €

& 12, (u(x)) ~ 2(a))

o2 55:.}. + 2N g thus (5) holds true.
;
It W’Et then d(u(x),s)# d(u(x),x) + da(x,8) <

<2 aist(x,H) + ol dist(x,H) = (oM, + 2) dist(x,H) <1/nK,
and hence

lg(x) - £(a)l = 12 (u(x)) -~ £(a)l& 12 (u(x)) - £ (a)l +
+ g 00 - 2(0)l € Kpau(x),e) + I2,() - f(a)i< &+
+ 12,(8) - 2(a)l.

Since dist(x,H)&d(x,a), this implies (5), which completes the

proof,

Theorem 7. Suppose that H is a closed subset of R®, P is
a resl valued function defined on H and LtE — ¥, ( R") 1s a de-
rivative of P on H, Then P can be extended to a function F eve-
rywhers differentiable on RY with

#°(x) = L(x) (x¢ H)
if and only if L is & map of the first class.
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Proof. The necessity of the condition is obvious, since,
by Theorem 4(il), the derivative of every function differentiab-
le on R® is Baire 1. In order to prove the sufficiency, suppose
that £:H —> R and L setisfy the conditions of the theorem.

Then there is & map A: ( R®\H) —» %(R™) such that

EN

6 lim §A(u) - L(e)§ L2 _ 4

(6) “S’n“““) (a) ) LpH(uA)
u

for every a € d H, Indeed, let
mn
(L(x),u) = ‘.231 L, (x)uy (xeH, u = (uy,ee.,u0) € IRn.),

'

then the funotions Lizﬁ —» |R are of Baire class 1, By Theorem.

6, there are functions 81‘( R\ H) — R smch that (3) holds with
mn

X« R and £ = L;. We define (A(u),v) -‘.“21 g;(w)vy

(u € RP\EH, v = (vy,000,7,)) ¢ k"), then the map A:( R®\H) -
~—> $( R®) satisties (6).

Let T: R® — H be & map with lu - T(u)| = dist(u,H)(u ¢ R®).
Let ¢, be & locelly finite ¢! partition of unity on [RPNE sub-
ordinated to the system of opem balls with center u € R®\H and

radius -15 aist(u,H). For every §, let us ¢ R®\ H be chosen such
that &,(uy)+0. We define # vy

. P(u) if ue€H,
F(u) = {

?;‘ &5 ()IF(N(uy)) + (Aluy),u-(uy))] 1f ueH,
Let a ¢ 0H, Then for every u ¢ H

1B(u) - #(a) ~ (L(a) yu - a)l
- l§ Qj(u)[!('!(ua))-i-(ﬁ(uj).u-T(uJ))-'l\‘(a.)-(L(a) Ju-a)l|
= \3‘} @a(“)lF(T(uj))-l’(A)-(L(a) »2(uy)-a)-(L(a)=A(uy),

u-‘r(ua))]l
€ ;2- Qd(u)\r(!(ud))-l'(s)-(l.(a),'r(ud)-a)l&-
5,(&)#0
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def
+ ? Qj(u)‘(L(B)-A(uj),u-'l‘(uj))l - 21 (u)"’ za(u)o
B+ 0
Now Qd(u)-o-o implies lu - nj|<% dist(u,H), from which
(n |u-T(uJ)| ‘\u-uj\ + Iud-T(uj)l 6|u-uj\ + |u3-T(u)I
P ziu-ujl + |u-T(u)| & 2 dist(u,H).
Thus we have
\T(uj)-a\ﬁ\u-m(ud)\ +lu-al%2 dist(u,H)+ lu-al& 3 lu-al.
Since P (a) = L(a), there is a function wsH — TR such that

lim w(z) = O end

x->8

L X4
|P(z)-P(a)~(L(a) ,2~8)) = w(z)iz-al (% €H).

Then N

12wl = O (ww(T(u))IT(u,)-alg3lu-al
b] 3 b]
Qa(u)*o
? Qd(u)mp{w(z);zeﬂ,lz-dé3|u—al§ = 3lu-alsupiw(z);
Q‘Lu.)#o
zeH, |z-a\&3lu-al}.

Hence

" LI
u-b: u-a U
uéH

On the other hand, by (7), we get

\(L(a)-A(uj),u-T(uj))l < I|L(a)-A(uj)\l- 2 ast(u,H)

u~-a Tu=-al
4.dist(u,,H)
£ V(o-aGupy S
Elu;j-‘ l
which, taking (6) into consideration, implies
un 28
u-+a To-aT * ¢

u¢H
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Since, from the differentiability of F on H,

IO ) :
1in Hw-F(a)-(L(e),u-a) _,

u-a u-a
ue€eH

we obtain f’(a) = L(a), This finishes the proof of the theorem,
since B is continuously differentiable on [R™\ H.
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