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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
26,3 (1885)

ON A PRIORI ESTIMATES FOR POSITIVE SOLUTIONS
OF A SEMILINEAR BIHARMONIC EQUATION IN A BALL
P. OSWALD

Abstract: We deal with a priori estimates in L® for poai-
tive, radial symmetric solutions uec4(§) of the problem
0% = g(u) 1n B, u = 28 =0 at 9B,

where BcRn, NZ1, is the unit ball, and the nonlinearity g=R+-—>

—> R nas superlinear growth at infinity. As a straightforward
application some existence results are proved.

Key words: Biharmonic equation, semilinear elliptic equa-
tion, positive solution, & priori es%imtes.

Classification: 35B45, 35P30, 35J65

1. Introduction. In the present note we are mainly inter-

ested in studying 1%~ a priori estimates for positive, radial
symmetric solutions of the homogeneous Dirichlet problem for a
semilinear biharmonic equation

A% = g(u) in O
(1) u = glu (uect(3L))

us= % =0 at 0
in the aspecial case where SL = B ig the unit ball in Rn.

The motivation for considering this question arises from
the extensive literature on analogous problems for second order
nonlinear elliptic equations where nearly optimal results have
recently been obtained in the case of the Laplace squation. We
refer to the paper [1] by D.G. de FPigueiredo, P.-L. Lions, and
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R.D, Nussbaum (cf. also [2-4] and the further references in
£11). As it was shown in [1], L bounds combined with well-
known fixed point properties of ocompact, cone-preserving ope-
rators in Banach spaces end variational techniques tum out to
be very useful for investigating structural properties of the
positive solution set of semilinear problems.

In order to prove a priori L°° bounds for the solutions
u6 C2(0) of the related semilinear Laplace equation

Au = g(u) in 2

1Y
( uso0 at 200

for more general bounded, smooth domains ) c RY and under near-
ly final conditions on the growth and the regularity of the non-
linearity g, the suthors of [1] explored the Pohozaev identity
[5) and some monotenicity properties of the molutions of (1 5
near the boundary 3l which follow from results in [6]., The
other detalls were more or less familiar. While identities of
Pohogzaev type remain valid also for polyharmonic semilinear
problems, the results of [6] cannot immediately be carried over
to the case under consideration. Thus, we have to look for oth-
er techniques which allow to atteck higher order problems,

In our special situation (problem (1) with ) « B and u =
= u({x|)) we use an explicit description of the Green’s funoti-
on of the corresponding ordinary differential equation. This
yields some analytioal properties of positive, radial symmetric
solutions of (1) which allow %o establish in combination with
the ideas used in [1] satisfactory ea priori oit:hntu and exiw-
tence results. A somewhat nqpnﬁod but typical result for pro-
blem (1) is the following:

Let 0 = Bc R®, ¥Z1, and giR*—> R* be & oontimuous func-
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tion satisfying the conditions

(1) Lim glweu ' > Aqy where A,>0 1s the first eigenva-
W+

lue of A2 with respect to {l (superlinearity)
(11) 1if ¥Z4 then s(u)-u"s is decreasing for large u and some
A< € = (N+4)/(N-4) (regularity and growth condition).

Then any positive, radial symmetric solution u€ 04(5) of (1) se~
tisfies (with a constant independent of u)
(2) Iu“m €C <00,

Por illustration, consider the pure power case ( > 1)

A2u = AvuP inB
(3) 3

u = ﬁ =0 at 9B,
Then, by our results, a priori L% bounds for positive, radial
symmetrio solutions of (3) hold for arbitrary A > O and 3 <
if X€4 resp. p<©€& if N> 4, Thus, by the fixed point theorems
quoted in [1] (propositions 2,1 - 2,3) the existence of at least
one positive solution Ya,n = Y0 (1xl) of (3) follows for all
these parameters. Purther information on the behaviour of the so-
lutions (e.g., concerning their dependence on A.) can be obtain-
ed,

On the other hand, in the remaining cases, i.e., N> 4,

3 &6, and A > 0, no positive solutions of (3) exist at all,
This is an easy consequence of the Pohozaev type identity given
below (cf. Corollary 1). Thus, the growth condition in (ii) seems
to be sharp in some sense, It should be mentioned that (in ana-
logy to [1]) it is an open question whether a priori estimates
in L® hold under the less resirictive and more natural conditi-

on
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(11Y 1m gwew? =0
A >+ 80

insteed of (i1).

2, Preliminaries. Let f2 be a bounded, smooth domein in
R¥, Buixer®: Ixl<1}, NZ1, gec(rR'), and u = u(x) e c4(3)

any solution of (1).
Leyna 1. (Pohozaev type identity.) With these assumpti-
ons we have

(0 Et. f‘1 18ulPax - ¥. [ G(uax = -} - Jyo ! bul? (nux)ax

where G(u) = f:g(t)dt.

Prpef. Multiplying equation (1) by Vuex and integrating
(over L ) by part we obtain (we use the notations n = n(x) for
the outer unit normal vector at x € 3L x;, n; for the compo-
nents of x, ny u, -8&; eto.; w= Au, anl the summation con-

vention)
_‘fns(n)nix,_dt - j;nq(“)“ixid‘ -N. fnc(u)dx
and .
j;'”nixid: - fannj'axi“id‘ - L w, (ug+xguy g)ax
- fm{ndwduizi - "(";l“;l*n;)‘i“ij)}d‘ + fnw(au”uiwi)dx
= foo iRz - wingupngxiug g - g agxie s 2 - B
' o [ vax

Thus,
(s) Ut. fnlAu 2x - W . [ G(wax

- [oidtuovw - sul+ ixevw) - § xw) -
- G(u)(x.n)}ax.
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Pinally, teking into account u = 0, Vu = 0 at 31 we get (4).

Corollary 1, Assume that Sl c RY s bounded, smooth, sad
that there exists a point x such that n-(x-x°)>0 for all
x ¢ 30 (e.g. let QL be convex). Let N>4 and suppose t-g(t) 2
£ 2N/(N-4)-G(t)& O for t>0. Then no positive solutions u &
¢ c4(B) of (1) exist at all.

Proof. Without loss of generality, let x, = O. Multiply-
ing in (1) by u and integrating by part we get

(6) fnldulzdx = [n A%u.u dx = fn g(u) -u dx.

From our assumptions, (4), amd (6), it immediately follows that
w= Au=0at 30 , But Aw = Azu-g(u)zo, by the maxigum
principle this yields w€O in 00 , Thus, Au€0 in 2 , u = O at
201 , and the Hopf maximum principle (cf. [7]) gives either

u=01n 02 or §8<0 at 20 which is the demired contradiotion.

Now we specify to the case L = B, We need some information
concerning the corresponding linear eigenvalue problem.

Lemma 2, There is & 7\1 >0 such that the prodlem
(N 4% « AjovinB, v -%5- 0at 3B

possesses & positive, radial symmetric solution AL] (x) which se-
tisfies .
(8) Cy+(1 ~ 1x1)24 v, (x)40C,*(1 - 1x1)2, 26, ¢, >0.

Lemma 3, Let u = U(r), r = Ixl¢ (0,11, Do & radial syanet-
rio 04(B)-mlution of (1) where O = B. Then U(r) ¢ C4(0,1) and
satisfies
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o8, 2(E=1) y(3), ﬂ-ﬁi&:})(m - 35 U7) = g(u),
(9) ¥ 0<r<i,

0°(0) = U€32(0) = 0, U(1) = U(1) = O
Inversely, any solution U(r)ec‘(oﬂ) of (9) gives a radial
symmetric solution u = U(|x|) of prodlem (1).

The proof of Lemma 2 and 3 is obvious. The next lemma ocon-

tains the desired results ooncerning the Green’s function of
the linear problem oorresponding to (9). Unfortunately, we ha-

ve not found these formulae in the literature (except the ce-
ses N = 1, 2).

Lemma 4, If the kernel function is defined by

ag(s) + * by(s), Oérésk?
(10) k(r,l) -{
o/ (ag(n) + o2 y(r)), Ogsérén

where

(2 + (F-8)8"2 - (5-2)d4) 1t N42,4
4(N-2) (N~4)

(11) ag(s) = 4 (s - #7(1 - 1n8))/8 1B w2
(8 -26° Ina =~ #)/B 12N =4

—Lf (N2 o (N-2)e” - 2) 1f N42,4
4N(E-2)

(12) byls) = < (8.(1 +2 1ns) = £7)/8 it W =2

(-8 +26° - 8)/16 12 N = 4
then any solution U(r)e C(0,1) of the integral equation
(13) 0 = [ k(ry0)-60(a)) as, relo,

actually belongs to 04’(0.1) and solves (9). The following pro-
perties hold for arbitrary r, s ¢ [0,1]
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1 , N<4
(14) 04k(r,0) 4 C.a" ' (1-8)2. ] (1 + |1n(max(r,s))]), N = 4

(max(r,8))4¥ , >4

(151 0 & & k(r,s)
& 1 N1 2
(16) 37 l:(r,s)lr‘1 - E"N- 1 - s%).

The proof of this lemma is & simple but tedious verificati-
on of all the properties stated, the details will be omitted.

3, L% g priori estimates. Now we are going to prove the
main result.

Theorem. Let gec(ﬁ) be a given nonlinearity satisfying

(1) ;l.:ig;mg(u.)-u"1 > Ay, where A, iz defined in Lemms 2,
wr+

(11)° 1im gw)-u"% =0, 6= (N+4)/(H-4), 12 K> 4
>+ 00

(resp., 1lim s(u)-u‘a- O for some 3 < 00 if N = 4)
A=+ 00
and
(11)" if >4 then there exists o & [0,2N/(N=-4)) suwh that
TIm (u.g(u) - o« «G(u))- (u"z-g(u)'"n) 60,
A <b + 00
Then the estimate
an  lull €c <o

holds for any positive, radial symmetric solution u of (1) (with
£) = B) where C does not depend on u.

Proof. We mainly proceed in amalogy to (17, Pp. 44-50, Let
L «Band u = u(x) = U(r), |x| = rel0,1], be any positive, ra-
dial symmetric solution of (1),
Step 1. We prove
- 571 =



(18)  [uevy axée, [ lel.v, axfc
under the only comdition (i):

fn_\s(u)\w, ax£C + _(ng(u)- v, ax = C + fn A2u.v, ax
=C + _};’quzq dx = C + f“;?\ﬂnv‘l ax€c +q'j;15(u)'71 ax

with some q< 1, and (18) follows.
Let us mention that (18) yields (17) for N<4: According
to (8), Lemma 3 and 4 (especially (14)), end (18) we get

1 1 N1 2
(o) & max | [k(x,0))e(U())aséc J) 8" (1-0)%| g(U(a)) |28

?

4 .
&C j; sn'1-v1(s)lg(0(u))ldn.€c fB v1~|8(u)| dxcC,

Thus, in the following, let N=4.

Step 2. We prove the estimatesU(r)£C for r e[2/3,1] and
-2
(19) élgu(x) = U1 &0, x¢ 38, [ 1g(wlaxéc
n

12 (1) is fulfilled. For this we in.troduce the function
Ur)£UY(r) = f: k(r,s)g(U(s)) | ds £U(r) + C

(the latter inequality easily follows from (i)). Because of
(15), U*(r) is decreasing in r and, therefore, for arbitrary
r¢l[2/3,1] we have (cf. also (8),(18))

Ut (r) 607 (2/3)%3 - fmu*(e)ds(.c A i S LR A PN
. 1/3 0

€C-(1 + [ vi-u ax) C.
This proves the first inequality which now yields (19) by ana-
logous censiderations (use (16) resp. (18) and once again (8)),
As e immediate consequence of (19) and the Pohoszaev type iden-
tiﬁ (4) we obtain
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0) |54, fnlb\ﬂzdx-ll- J swaxlge.

Step 3. Now we additionally suppose (ii)* to sstablish
@) [ legl.uaéc, [folAulaxéc,

This can be done by a straightforward adaption of step 3 in [1],
p. 47/48, the details will be left to the reader (the needed
facts from the preceding steps are (19),(20), and (6))., It should
be mentioned that now the case N = 4 can already be finished by
using the growth restriction in (i1)°, the W3 bound from (21),
and the usuel embedding and regularity results for the (linear)

biharmonic equation.

Step 4. Finelly, we get (17) for N> 4. By the conslders-
tions in Step 2 it is clear that (ecf. (10) - (11))

1 1
Ilullwé u*(o) ffo x(0,8)| g(U(s))lds4C -f; aSlg(U(a))lds.

We denote g'(u) = + ne%xu‘llg(t)l and teke an arbitrary re (0,1).
€10,

Then, by Holder s inequality, (ii)°, and (21) we have

- PN 1
tul, ¢ ¢ £ [7 Pt wienas + [ & la(ua))l and

1
sc {rh gt (ull) + ( f,: L@+ 4 (& T . » .
s 1ol & an®TE

N-
¢ .{rh g+(ﬂu|La) + ( f’: s'N'1ds)nA'
S

£C .-ir4. g+(iuﬂw) + ra'lel, where ~ = 3 ~ (N-1). UET .

4
- ([ & g(u(e)) U(s)as)

Taking in this inequality the infimum with respect to r we geti
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Lull, &ce(t + g ully,) /6 ),
But this estimate yields (17) since (11) ° implies g'(t) = & (+%)
for t— + 00 .

Thus, the Theorem is ocompletely proved.

Remaxk 1, Por applications it is importeant to observe
that the constent in (17) can be chosen independent of the pa-
rameter t e [0,4)], 0<t <00 , if we consider positive, redi-
al symmetric solutions of (1) for the family of nonlinearities
8, = 8(urt).

Remark 2. A ocareful analysis shows that exocept Step 2 the
proof could be carried out for more general domains . . This
remark is obvious for Step 1 and 3, in Step 4 you might follow
the line of argumentation in [1], p. 49/50, if the identity

(p-1)2
IN

2
(2M)12x = —+— - [ g(w).uPax + .
{nlbu Iy g(u).u —T—"l

o [ 1v) dax,
0.

which is satisfied for positive solutions of (1) and p23, 7 =
= (p+1)/4, will be explored.

Remark 3. Clearly, condition (i1)" is technical and not
necessary for obtaining a priori estimates. Por.instmoo, it
g(u) = u¥. (ln“u)"‘ where 1n,  u = max (1,1m) for u>o0,

o > C, and K> 4, then (1),(11) * hold but condition (ii)"
does not. Nevertheleas, a slight modification of the above ocon-
siderations gives (17), at least, for oc > 4/(N-4), We only
sketoh the proof of this statement. A direct verification shows
that
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o w .4 - -1
» [ 4%. (1nt dt
6w - Exfu-gw) ={ &7 L ) s B>e
0, ufe

Hence, by (6),(20) we have
1 Nl -1 .
f) & g(u(e) 0(e)- (1, U(a) N as £,

and, repeating the estimations &s in Step 4 of the ebove proof,
we obtain

6
. 0,1=c¢ /8
hul & c{r‘-g"(lulm) + r2-ﬂ/2_(1n++ lu“w)m mex(0, / )}_

It remains to check the infimum,

Purthermore, if N = 4 then the growth restriction in (ii)
can easily be weakened to

TIm  1ng (weu"' < 4.

U=y <+ 00
Pinally, it should be mentioned that condition (ii) stet-
ed in the Introduction obviously yields (ii) ", and (ii)".

Remark 4. We only considered radiel symmetric solutions
but it is not yet clear whether there can exist non-radial sym-

metric molutions of (1) for & = B at all (concerning (1)~ ef.
6l).

We close the exposition by stating en existence result
(the analog of Theorem 2.1 in (1)) which immediately follows
from our Theorem (for other assertions which can be obtained

on the basis of the L bounds we refer to [1],[4)).

Corollary 2. Let Q = B end g:R*—> R* be continuous. If
g satisfies (1),(11) ",(it)", and

e -1
(111) “l_i;no g(u).u™" < Ay,
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then there exists at least one positive, radial symmetric solu-
tion u = U(r)e 04(3) of (1) which has the additional properti-

es U°(r)< 0 for O<r<1 and U"(1) >0,

Proof. Let us consider the compact map F:Kx[0,00) — K
where K = {Ue C(O,‘I‘):U(r); 01 is the closed cone of nonnegetive
functions in C(0,1) given by the formula

RO, = [ k(z,8)-g(U(a)+t) da.

The following properties hold:
(a) Any non-zero solution of the fixed point equation

U = d(U) = P(U,0), UEK,
is, actually, a positive solution of (9) and, thus, u(x) = U({xl)
is a positive, radial sy}nmetric solution of (1).
(b) U +A-3(U) for arbitrary A € [0,1) and UeK with [[Uf, = R
for sufficiently smell R, >0 since according to (1ii) g(u(x)) £
£4q * Myeu(x), q<1, and, therefore,

.7\1 ,[Q_uﬁdx = &u-bzvﬂx = fn_ Azu-\r,dx - _[n g(u)vydx &

£q° }‘1 . fn‘w ax
for sufficiently small solutions of (1) which is a contradiction.
(6) There exists t, such that U o F(U,t) for arbitrary UeK and
tZ to becanse for some finite to we have from (1) g(urt)Z A.u
uniformly in uZ 0 and %2 t, where A > A4 (then proceed as in
Step 1 of the proof of the Theorem or as in (b) to obtain a con-
tradiction).
(d) Pinally, according to the Theorem, (c), and Remark 1 we can
choose & sufficiently large R,> R, such that U#F(U,t) for arbi-
trary t€l0,c0) and UcK with WUl, = R,.
Now, the Krasnosel ‘skii type fixed point theorem from L1]
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(cf, Proposition 2.1 and Remark 2,1) can be applied. Hence, the
existence statement is proved, the additional properties are

obvious consequences of Lemma 4.
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