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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

26,3 (1885) 

ON A PRIORI ESTIMATES FOR POSITIVE SOLUTIONS 
OF A SEMILINEAR BIHARMONIC EQUATION IN A BALL 

P. OSWALD 

Abstract: We deal with a priori estimates in lf° for posi­
tive, radial symmetric solutions ueC^(B) ef the problem 

A 2u m g(u) in B, u - || - 0 at dB, 

where B c R f H 2 1 , is the unit hall, and the nonlinearity g:R
+~—3 

—> R+ has superlinear growth at infinity. As a straightforward 
application some existence results are proved. 

Key words: Biharmonio equation, semi linear elliptic equa­
tion tHpoiTilve solution, a priori estimates. 

Classification: 35B45, 35P30, 35J65 

*• Introduction. In the present note we are mainly inter­

ested in studying L06*- a priori estimates for positive, radial 

symmetric solutions of the homogeneous Dlriohlet problem for a 

semillnear biharmonio equation 

A 2u - g(u) in D- , v 
(1) (ueC4(SL)) 

u - |g • 0 at dIL 

in the special oase where Si » B is the unit ball in R • 

The motivation for considering this question arises from 

the extensive literature on analogous problems for second order 

nonlinear elliptic equations where nearly optimal results have 

recently been obtained in the case of the Laplace equation. We 

refer to the paper C1} by D.G. de Figueiredo, P.-L. Lions, and 
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R.D. Husabaum (of* also [2-43 *»d the further references i n 

L1]). As i t was shown in M3 f lf° bounds oombined with we l l -

known fixed point properties of compact, cone-preserving ope­

rators in Banaoh spaces and variational techniques turn out to 

be very useful for investigating structural properties of the 

posit ive solution se t of semilinear problems. 

In order to prove a priori L°° bounds for the solutions 

u€C (&) of the related semilinear Laplaoe equation 

, Au • g(u) in £L 

u • 0 at d£L 

for more general bounded, smooth domains H e R and under near­

ly f inal conditions on the growth and the regularity of the non-

l inear i ty g, the authors of 11J explored the Pohozaev ident i ty 

15] end some monotenioity properties of the solutions of (1 J 

near the boundary d-Q. which follow from resu l t s in 161. The 

other de ta i l s were more or l e s s familiar. While i d e n t i t i e s of 

Pohozaev type remain val id also for polyharmonio semilinear 

problems, the re su l t s of [ 6 ] oannot immediately be carried over 

to the case under consideration. Thus, we have to look for oth­

er techniques which allow to attack: higher order problems* 

In our special s i tuat ion (problem (1) with i l - B end u » 

* u ( | x l ) ) we use an expl i c i t description of the Green's funct i ­

on of the corresponding ordinary dif ferent ial equation* This 

y i e lds seme analytical properties of pos i t ive , radial symmetric 

solutions of (1) which allow to establish in combination with 

the ideas used in H I satisfactory a priori estimates end e x i s ­

tence results* k somewhat simplified but typical resul t for pro­

blem (1) i s the following: 

list £ - Be R*t 1*21. and gtR*—* R+ be a continuous func-
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t ion Batiflfying the conditions 

( i ) Sin g(tt)*tt > A 1 9 where X > 0 i s the f i r s t eigenva-
44^+00 

lue of A 2 with reepeot to H (euperlinearity) 

( i i ) i f H £ 4 then g(tt)*tt"*ie deoreasing for large u and some 

ft < tf • (H+4)/(H-4) (regularity and growth condition). 

Then any pos i t ive , radial symmetric solution ueC*(S) of (1) ea-

t i s f i e s (with a constant independent of u) 

(2) IttB^ 6 C < o o . 

For i l l u s t r a t i o n , consider the pure power oaee ( /} > 1) 

A 2 u - A . u P i n B 
(3) 

u - | | - 0 at oB, 

Then, by our r e s u l t s , a priori L°° bounde for pos i t ive , radial 

symmetric oolutions of (3) hold for arbitrary A T 0 and (3< Oo 

i f H i 4 resp. /.}<€? i f H> 4. Thus, by the f ixed point theorems 

quoted i n 1.13 (propositions 2.1 - 2*3) the existenoe of at l eas t 

one poeit ive eolution u^ * • tt^ * U x l ) of (3) follow© for a l l 

these parameters. Further information on the behaviour of the 00-

lutions ( e . g . , oonoerning their dependence on X ) oan be obtain­

ed* 

On the other hand, in the remaining oases , i . e . , H > 4 , 

fi S € , and X > 0, no poe i t ive eolutione of (3) exist at a l l* 

This i s an easy consequence of the Pohozaev type ident i ty given 

below (of* Corollary 1)* Thus, the growth oondition in ( i i ) seems 

to be sharp in some sense. I t should be mentioned that ( in ana­

logy to t1J) i t i s an open question whether a priori estimates 

i n L00 hold under the l e s s r e s t r i c t i ve and more natural oondit i­

on 
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( i i У ìiш gtul.tt"6, - o 
Ц.-++OO 

inвtead of ( i i ) . 

2. Preliminarieg. Let SI be a hounded, smooth domain in 

RM

f B --fxfH1* ixl<1?» H S l f g6C(R1), and u - u(x)eC 4 (H) 

any solution of (1) . 

Lemma 1. (Fohosaev type identity.) With these assumpti­

ons we hare 

( 4 ) T 4 * J^IAul2dx - H. j^G(u)dx - - | • ^ M u | 2 * ( n # x ) d x 

where G(u) • f g(t)dt. 
•0 

Proof. Multiplying equation (1) by Vu-x and integrating 

(oTer .0. ) by part we obtain (we use the notations n » n(x) for 

the outer unit normal Tec tor at x c 311 f x±, n± for the compo­

nents of X* H| u^ • 2 ^ e t c ; w * Au, and the summation con­

vention) 

/ gUJt^x^dx m f G(u)njLx1dx - I • f G(u)dx 

and 

4 "ji*-^* " /aQ-jV^i'5 1 " fa. w j ( u J + x i u i j ) < t f 

" 4a< B-WJU- x- " w ( a J u J + a J x i u i J ) } d x + Jk w ( 2 u j j + X i w i ) d x 

" fvL^fi****- - w ( n J u J + n J x i u i J " -" a i x i ) ^ a - + ( 2 " f> * 

Thusf 

(5) *5± • Ja I An 2dx • v • J^OdOdx 

- J^-C^Au-U.^u) ~ Au($g + ^ ( x . V u ) - £ (x.n)) -

- G(u)(x.n)]dx. 
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Final ly f taking into aocount u - 0 , Vu « 0 at d-fr we get ( 4 ) . 

Corollary 1. Assume that Si c R i s boundedf smoothf and 

that there e x i s t s a point xQ such that n»(x-x Q )>0 for a l l 

x e 3-D. (e»g. l e t £L be convex). Let H>4 and suppose t - g ( t ) g 

£2H/(H-4)-G(t)S 0 for t > 0 . Then no pos i t ive solutions u « 

« C 4 ( 5 . ) of (1) exist at a l l . 

Proof. Without l o s s of general i ty , l e t x • 0. Multiply­

ing in (1) by u and integrating by part we get 

(6) JAIAul2dx - J^ A2u.u dx m J ^ g M - u dx. 

From our assumptions, (4) 9 and (6 ) f i t immediately follows that 

w - Au m o at dXl . But Aw » A2u - g (u )£O f by the maximum 

principle th i s y i e lds wslO in Si • Thusf AusiO in i l f u » 0 at 

*d£L , and the Hopf maximum principle (cf. £73) gives e i ther 

u « 0 in JO. or | u » < 0 at dXl which i s the desired contradiction. 

How we specify to the case -0. - B. We need some information 

concerning the corresponding l inear eigenvalue problem* 

Lemma 2. There i s a Xj > 0 such that the problem 

(7) A 2 v - A1 . T in Bf T « | J - 0 at 3B 

possesses a pos i t ive f radial symmetric solution v.j(x) which ge> 

t i s f l e s 

(8) C^O - lx l )2£T1 (x) .w02 - (1 - l x l ) 2
f x c f f C .^0. 

Lemma 3. Let u - U(r), r » iik[0,1], be a radial sy*Mt-

rie C*(S)-solution of (1) where il • B. Then 0(r)cC4(Ot1) and 

satisfies 
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0C4>+ ttfcU U<3>+ (H-1j(H-3)(0w . 1 tj') . g ( r j ) § 

(9) 0-<rr<1t 

u'(0) « U { 3 ) (0 ) « Ot U(1) « U'(1) « 0 

Inversely- any aolution U(r)eC 4(O t1) of (9) gives a radial 

symmetric aolution u « U ( | i l ) of problem (1 ) . 

The proof of Lemma 2 and 3 i s obvious. The next lemma oon-

taina the deaired resu l t s oonoerning the Green's function of 

the l inear problem corresponding to (9)* Unfortunately, we ha­

ve not found these formulae in the l i terature (except the ca­

sta N « 1 - 2 ) . 

Lemma 4> If the kernel function i s defined by 

(10) k(rta) « J 

where 

a-jía) + r2 "bgís), O é r é a á l 

(a/r)*"1 (ajjír) + a2 b j í r ) ) , O é a á r é l 

(2 • (H~4)a3í~2 - ( H ^ ) / - 4 ) i f H * 2 t 4 
4(H-2)(H-4) 

(11) a^a) « \ (a - a3(1 - lna ) ) /8 i f H « 2 

(a 5 - 2a3 Ina - ^)/B i f H « 4 

and 

(Ha31-2 - (H-г)** - 2) i f Hф2 t 4 
4H(H-2) 

(12) byU) « I (a.(1 + 2 Ina) • e*)/& i f H « 2 

[ ( - a 5 4- 2a 3 - B ) / 1 6 i f H « 4 

than any aolution U ( r ) e C ( 0 , 1 ) of the integral equation 

(13) U(r) « f k(r t a) .g(U(a) ) dat r c t O t 1 j t 
tfo 

actually belonga to C 4 (0 t 1) and aolvee ( 9 ) . The following pro-

pertiea hold for arbitrary r t a c t0 t13 
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r 1 f H < 4 

(14) 0^k(rfB)^C-B ,-1(1-B)2.J (1 + |ln(maj:(rfB))i)f H - 4 

Ujaax^s))*"* f H>4 

05J 0 5 | k ( r | S ) 

a2 
(16) - % k ^ s ) ^ - ^ s ^ O - B 2 ) . 

The proof of this lemma i s a simple out tedious verificati­

on of a l l the properties stated, the details will he omitted* 

3» L00 a priori estimates* How we are going to prove the 

main result. 

Theorem* Let geC(R) he a given nonlinearity satisfying 

(1) 11m g(u)»u~ >> &*f where X* i s defined in Lemma 2 f 
U.-++O0 

( i i ) ' Urn gOi).*** • 0f S« (H+4)/(H-4)f i f H>4 
44,-*+ 00 

(resp*f lim g(u)»u"^ -. 0 for some fi < oo if H « 4) 

and 

( i i )" i f H>4 them there exists 06 s tOf2H/(H-4)) swh that 

Hm (u.g(u) - oc .a(u))-(u""2.g(u)"4/H) 4 0 . 
44/-++OP 

Then the estimate 

(17) iluli^eSc < 00 

holds for any positive, radial symmetrio solution u of (1) (with 

i l m B) where C does not depend on u* 

Proof. We mainly proceed in analogy to t l 1 f pp. 44-50. Let 

-Si - B and u « u(x) » U(r)f \x\ • rc£o f13 f he any positive, ra­

dial symmetrio solution of (1)* 

Step 1. We prove 
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(18) Lu*v1 <**-*ct j^lg<u>^vl d*- 0 

under the only condition ( i ) : 

J^U&OOUT., dx*C + J^g(u) . T-J dx - C + f^ A 2 U . T , dx 

• C + f u • A 2 T. , dx - C + f^ A.jU^T.1 dx^C + q • jf̂  g(u) .v 1 dx 

with some q«r 1 f and (18) follows. 

Let us mention that (18) y i e lds (17) for H<4$ According 

to ( 8 ) , Lemma 3 and 4 (especial ly (H) )# and (18) we get 

lu(x)l * max f k ( r f s ) l g ( U ( s ) ) U s * C L s N - 1 (1 - s ) 2 | g (U( s ) ) |ds 

£C f^ s H - 1 . ? 1 ( s ) | g ( U ( s ) ) l d s f C / B v r i g ( u ) i dx-£c„ 

Thus, in the following, l e t H i 4 * 

Step 2. ffe proTe the estimate.;U(r)^ C for r c f 2 / 3 f U and 

(19) 2 _ u ( x ) . U « ( 1 ) « f x e 3 B , f i g ( u ) l d x £ c 

if (i) is fulfilled. For this we introduce the function 

U(r)#U+(r) « f1 k(rfs)lg(U(8))|dst?U(r) + C 
JQ 

(the l a t t e r inequality easi ly follows from ( i ) ) . Because of 

(15)* U*(r) i s decreasing in r andf therefore, for arbitrary 

r * C 2 / 3 , U we haTe (cf. also (8 ) f (18 ) ) 

U + ( r ) 4 0 + ( 2 / 3 ) # 3 • f2 /3U4 ,(s)dselC • /** s H - 1 (1-s) 2 *U + (s )ds 

^C-(1 + f T r u dx)^C. 

This proTes the first inequality which now yields (19) hy ana-

logoue considerations (use (16) reap. (18) and once again (8)). 

km «a immediate consequence of (19) and the FohosaeT type iden­

tity (4) we obtain 
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(20) |S^i . j ^ Uul 2 dx - H. h G(u)dxUc. 

Step 3. How we additionally suppose ( i i )* to establish 

(21) ^ | g ( u ) l . u dx*Ct J^l Aul2dx£C. 

This can be done by a straightforward adaption of step 3 in [1 ] , 

p. 47/48, the details will be left to the reader (the needed 

facts from the preceding steps are (19),(20), and (6))» It should 

be mentioned that now the case N - 4 can already be finished by 

using the growth restriction in ( i i ) ' , the W2 bound from (2^)t 

and the usual embedding and regularity results for the (linear) 

biharmonio equation* 

Step 4* Finally, we get (17) for HT-4. By the considera­

tions in Step 2 i t i s clear that (cf. (10) - (11)) 

l l u l l ^ U + ( 0 ) ^ / o k(Ofs)|g(U(s))|ds^C .fQ s3lg(U(s))|ds* 

We denote g+(u) - max |g(t)| and take an arbitrary r e (0,1). 
i e C0,u3 

Then, by Holder's inequality, ( i i ) ', and (21) we have 

llull^-4 C •*' f0 s3.g+(U(s))ds + f s3 |g(U(s))tdsi 

^c</ .g+ ( t tulL) + ( f V « + 1 > * . ) * * • 

•< / J s ^ l g W ^ ^ d s ) ^ ! 

*C .{Ag+(tiull ) + ( / V H - 1 d s ) ^ . 

• ( f sN""1Ig(U(s))|U(s)ds)^ir 

£ C . 4 r4. g+du^) + r2-H / 2K where ? - 3 - (H-D- Jfc . 

Taking in this inequality the infimum with respect to r we get 
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l u f l ^ - f C O +g+(luBpo)
1/« ). 

But thia estimate yields (17) sinoe (11) ' implies g+(t) - or (t*) 

for t -*• + CO . 

Thus, the Thtorem i s oompltttly proved. 

Remark 1. Por applications It i s Important to observe 

that the constant in (17) oan be chosen independent of the pa­

rameter t e [ 0 9 t 0 3 9 0 < t <oo 9 i f we consider positive* radi­

al symmttric solutions of (1) for the family of nonlinearitles 

g t - g(u+t). 

Remark 2. A oartful analysis shows that exoept Step 2 the 

proof could be carried out for more general domains i l • This 

remark i s obvious for Step 1 and 3, in Step 4 you might follow 

the line of argumentation in 11J 9 p. 49/50, i f the Identity 

2 (P-D2 

f lA(u2l*)|2dx - - 3 — . f g(u).ttpdx 4- M • 

• / . ^ ( u ^ d x , 

which is satisfied for positive solutions of (1) and pjr39 ^ « 

- (p+D/49 will be explored. 

Remark 3. Clearly, condition (ll)n Is technioal and not 

necessary for obtaining a priori estimates. For instance, If 

g(u) m u*. (In^u)"**6 where ln^u » max (19lnu) for u> 0, 

oC > G9 and H > 4 9 then (i)f(ii)' hold but oondition (ii)" 

does not. .nevertheless9 a slight modification of the above con­

sideration* gives (17), at least, for oc > 4/(H-4). We only 

sketch the proof of this statement. A direct verification shows 

that 
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•{ 
^ - • / " V . (mt)-*-1 dt, u>e 

G(u) - S | | .u*g(u) 

Of u ^ e 

Hence, by (6) , (20) we have 

J" s l | - 1 . g ( U ( s ) ) ^ ( s ) * ( l n + + U ( s ) ) - 1 d s ^ C f 

and, repeating the estimations as in Step 4 of the above proof f 

we obtain 

lul é CÍr*.gniuU • ^ - ^ . ( I n ^ í u H ^ ) ^ ' ^ 0 ' 1 ^ ^ } 

It remains to check the infimum. 

Furthermore, if B" » 4 then the growth restriction in (ii) 

can easily be weakened to 

flm Ing (u)«u~ < 4. 
44,-*+ 00 

Finally, i t should be mentioned that condition ( i i ) s t a t ­

ed in the Introduction obviously y ie lds ( i i ) f and ( i i ) " . 

Remark 4 . We only considered radial symmetric solutions 

but i t i s not yet clear whether there can e x i s t non-radial sym­

metric solutions of (1) for XL « B at a l l (concerning ( 1 ) ' cf. 

(63) . 

We close the exposition by stat ing an existence result 

(the analog of Theorem 2.1 in (13) which immediately follows 

from our Theorem (for other assertions which can be obtained 

on the basis of the 1°° bounds we refer to H3#t43)# 

Corollary 2 . I*et JCL • B and g*R+—> R+ be continuous. If 

g s a t i s f i e s ( i ) , ( l i ) \ ( i i ) * f sad 

( i i l ) I S g(u).u"1 < Jv,1f 
M,-i> 0 » 
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then there ex i s t s at least one pos i t ive , radial symmetric solu­

t ion u » U(r)c C H S ) of (1) whioh has the additional properti­

es II'(r)< 0 for 0 < r < 1 andU"(1)>0 . 

Proof. Let us consider the compact map P:K>«.COf-x>) —> K 

where K -» -t UcC(0 ,1) :U(r)S 0$ i s the closed cone of nonnegative 

functions in C(0f1) given by the formula 

F(U ft)(r) - f k (r , s ) .g (U(s)+t ) ds. 
' 'O 

Th£ following properties hold: 

(a) Any non-zero solution of the fixed point equation 

U . $(U) « F(U,0) f U6K, 

i s , actual ly , a posit ive solution of (9) and, thus, u(x) • U((xl) 

i s a pos i t ive , radial symmetric solution of (1 ) . 

(b) U 4*A*$(U) for arbitrary X e CO,1.1 and UeK with ||U|0 - R 

for suff ic ient ly small R.j > 0 since according to ( i i i ) g(u(x)) & 

£ q • X^ »u(x) , q<1 f and, therefore, 

*1 4 , ^ 1 ^ " 4 u # A 2 v 1 d x " fsi ^ 2 u - v i t e • S& g^v-jdx £ 

* <- • *1 * £ x u v te 

for suff ic ient ly small solutions of (1) which i s a contradiction, 

(o) There ex i s t s t such that U 4»F(Uft) for arbitrary UcK and 

t i ? t because for some f i n i t e t we have from ( i ) g(u+t) S X* u 

uniformly i n u « 0 and t & t Q where X y A-j (then prooeed as in 

Step 1 of the proof of the Theorem or as in (b) to obtain a con­

tradict ion) . 

(d) Final ly , according to the Theorem, (c) f and Remark 1 we can 

ohoose a suf f i c ient ly large Rgi* R<| such that U4?F(Uft) for arbi­

trary tcCO fco) and UfcK with l\U|c « Rg. 

Howf the Krasnosel'skii type fixed point theorem from XXI 
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(of. Proposition 2.1 and Remark 2.1) can he applied. Hence, the 

existence statement i s proved, the additional properties are 

obvious consequences of .Lemma 4. 
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