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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
26,3 (1885)

NOTES ON REVEALED CLASSES
Antonin SOCHOR

Abstract: We constryct a revealed class X such that P(X) .
is not revealed and furthermore we show that there are iwo ful-
ly revealed classes so that their intersection is no fully re-
vealed class.

Key words: Alternative set theory, revealed and fully re=-
vealed c¥ass, set-theoretically definabie class, real class,
similarity, automorphism, revealment.

Clagsification: Primary O3ETO

Secondary 03H15

One of the important notions of the alternative set theory
(ct. [V]) is the property "to be revealed"; this notion corres=-
ponds in some aspects to the saturation property in the model
theory.

A clasgs X is called revealed if for every countable class
YSX there is a set u with YcucX (cf. § S ch, IILV]); a class
X is fully revealed if for every normal formula ¢ (z,Z) (even
formal one - element of FL, see below), the class {23 ¢(z,X)}
is revealed (cf. § 2 [S-V 1]).

At first we are going to summarize results describing the
system of revealed classes ~ e.g. we describe some properties
fulfilled by revealed classes and show under which of the most
frequent operations the investigated system of clesses is clo-

sed. A nontriviel result in this area 1s thgt P(X) = {xyx€ X}
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need not be revealed even in the case that X is revealed.

The system of all fully revealed classes is closed under
Godel s operations having one free variable by the definition;
e.g. V-X,dom(X), V»=X, 1'1, Cnv3(x) ={<{x,y,273{y,2,x>€ X}
end furthermore U X and P(X) are fully revealed under the as-
sumption that X is fully revealed. On the other hand, also tri-
vially, this system of classes is not closed under operations
working with countably many classes - e.g. for every n€ FN, the
cless N-n is fully revealed, but the class N-FN = (1{ N-n;ne FN§
is not fully revealed (being revealed) because FN is not reveal-
ed.

It is not so trivial to enswer the question whether the
system of fully revealed classes is closed even under Godel ‘s
operations having two free variables, In this article we are go=-
ing to show that it is not, unfortunately, the case - we shall
see that the intersection of two fully revealed clesses need
not be fully revealed. Comstructing a pair of such classes we
shall prove some statements which seem to be interesting them-

selves.

Let us note that a class X is revealed iff there is no func-
tion £ with PN = { ¢ G dom(f); "o € X%, In fact, for every
countable Y there is a one-one mapping f with ¥ = £"FN &

% dom(f) € N by the prolongation axiom; supposing YcX and

< (3 u)(YSucX) we get FN = {6 & dom(f); £"o¢c € Xf. On the
other hand, assuming PN ={« < dom(f); f"«<¢ < X} and £"PnSusc
€ X, we obtain FN ={«¢ s dom(f); f" «¢ & ul from which Set(FN)
follows - contradiction., Thence X is not fully revealed iff
there is a normel formula @ (2,Z) with set-parameters only (of,

the eighth theorem of § 2 [S-V 11) so that PN = {zy ¢ (z,X)¥ .
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Thus the above mentioned result can be reformulated in the
following way: there are classes X, Y such that there is no nor-
mal formula @ (z,2) with PN =23 9(z,X)§ v FN =132, ¢(2,Y)}
but there is a normal formula v (2,24,Z,) with FN =
={z3 ¥ (2,X,Y)¥ (¢, ¥ with set parameters only). In this for-
malation our result is not 80 surprising.

We use the notation usuel in the alternative set theory (cf.
[V]); in particular, veriables F,G,f,g,... run through functiops;
the symbol Fo G denotes the composition of F and G.

Let us recall some definitions.

A pair of classes K, S codes a system of classes M 1t
(VI)(X ¢ M= (3 qekK) X = 5" {q}); a system of olasses is co-
dable if there is a pair coding it.

A formula is normel if no class variable is quantified in
ity a formula is called set-formula if there are only set-varia-
bles and set-constants in it., We define formal formulae in the
alternative set thgory as usual and the class of all formal for-
mulae (without constants) which are elements of PN is denoted
by the symbol FL. The symbol FLV denotes the class of formulae
of FL in which set-parameters are allowed.

A class X is called set-theoretically definable (element of
Sd, resp.) if there is & sei-formula @€ FL; (@ € FL resp.)
with X ={ 23 @ (2z)}. X is a ar-class ( & ~class resp.) if it is
the intersection (union resp.) of a countable sequence of set-
theoretically definable classes,

P is @ similarity if for each set-formula ¢ (z, ....,zn)c FL
and for each Xy,e..,X,& dom(F) we have

@ (XypeeesXy) = @ (F(Xy),000,R(x)))3
a similarity whose domain and range is V is called an automor-
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phism (see § 1 ch, VLV]).
A cless X is seid to be a revealment of & class Y if X is
fully revealed and for every nomal formula ¢ (2)€& FL we have
@ (X) = @(Y) (see § 2 [5-V 21).
A class is called real if it is a figure in ean indiscerni-
bility equivalence (see § 1 [§~V] and ch. III LVI),

To obtein a complete picture of revealed classes let us re-
call results of § 5 ch, II [ VI:

(e) If for every set u the intersection Xnu is a set,
then X is revealed; in particular, each set-theoretically defin-
able class is revealed.

(b) If X and Y are revealed, then XnY and XuUY are reveal-
ed, too.

(¢) It {In;nc PN} 18 a descending sequence of revealed clas-
ges, then ('\{xn;nelﬂﬂ' is also revealed and furthermore
dom(N { X yncFN}) = N4 dom(X )sne PNi.

(a) 1¢ {xn;n 6PN 1s a descending sequence of nonempty re-
vealed clasges, then M4 X yneFNi+0.

The most important result from the previously mentioned ones
is the last one, it guarantees the importance of the notion of
revealness.

The following statement expressing mainly that the system Of

the revealed classes is closed under union and all Godel ‘s ope-
rations except the complement is formulated for completeness on-

1y, its proof is quite trivial. It is necessary to emphasize
that the complement of a revealed class need not be revealed; as

an example can serve the revealed class N-PN,

Theorem. (a) If X is revealed, then dom(X),X™', Cnv,(X)
and U X are revealed, too.
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(b) If X and Y are revealed classes, then also the class
XxY is revealed.

(¢) If P ie a revealed function, then even the class
U { P(x)x {x}yx 6 dom(F)} 1s revealed. ’

Proof., (&) If Y is & countable class with Y& dom(X) (Y &
[ 1'1, YSGan(X), Y £UX resp.), then we are able to choose a
counteble cless Z€ X with dom(2) = Y (2 = Y"', ¥ = Cavy(2),
(VyeY)(22z6Z) ye = reap.). Assuming X is revealed there is u
with ZGuS X and thus Y< dom(u) € dom(X) (Y€ u™'s X™', Ye Cnvy(u)e
anv3(x), Y& Uu & UX resp.); dom(u), u'1, Cnva(u) and Uu
are sets by § 1 ch, IL[V],

(b) If Z is & countable part of XxY then dom(2Z) and rng(Z)
are countable, too, and hence supposing X, Y to be revealed the-
re are u, v with dom(2)g v& Y& rng(2)$ uEX from which ZSuxve
EX»Y follows.

(c) If Y is a countable subclass of U<{ F(x)x{x}; x €
¢ dom(P)} then dom(Y) S dom(F) is also countable and assuming
thet F is revealed we can choose f&F with dom(Y)E dom(f) and
therefore Y& U £ 2(x) x ix¥yx c dom(£)t and the lastly mentioned

class is a set.

Lemma, If Y is a revealment of FN then there is a reveal-
ed mapping P of Y into N-FN with ) F"Y = FN (P being moreover
decreasing i,e. L <fl € Y—>F(x)IZF(B)).

Proof. Using the same idea as in § 4 [S2] we define by in-
duction & sequence {f : o € 1% putting £, = 03 the property
dom(f )& Y& rng(f . )s N-FN& £, is decreasing&(Vp ¢ (cnf)))
Ip (-] fo(. serves as the induction hypothesis,

It £ (o € L1) 18 constructed then we put £ ., = £ v
ui{x}yx(y-dom(f, )) where y (x resp.) is the smallest element
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(in a fixed well-ordering which orders V by type L. ) of
Y-dom(£ ) (N ms(fcc )=FN resp.). Our choice is possible since
dom(f, )EY and rng(f, )N FN = O by the induction hypothesis
(and because FN is a proper class and thus Y is also a proper
class).

CIf ot € ) is & limit and if if5 5 B e (Xn Q )} is const-
ructed, then we choose an increasing sequence {ocn;nEFN3E
€6 NQ with Ul sne®N}=ULB ;5B € (¢ n L)} (the
countability of o¢ N £l enables us to make such a choice) and
turthermore we fix J€(MN4 /N rmg(fp); B e (¢ NN} -FN)
(this choice is possible since FN is no 4V -class). By the pro-
longation axiom there is g with g(n) = t, & dom(g) € N. Accord-
ing to the induction hypothesis we have n<meFN—> g(n)c g(m) &
% g(n) is decreasing & dom(g(n))ec Y& rng(g(n))eN - d” . Thus
there is even an infinite natural number o’ with the proper-
ties in question because Y is fully revealed and therefore, de-
fining £, = g(X’ ), we obtain dom(f, )e Y& rng(fy ) SN - & &
%, is decreasing %(VneFN) . s £, from which the induction
hypothesis for o¢ follows because of our choice of the sequence
{« psne PN},

At the end we put P = U{f 3¢ 6 L% . Evidently F is
revealed since if fxn;nem}s dom(F), then we can choose « € )
with {H;ncl’lﬂe viom(foc )3 P is & decreasing mapping which is a
part of (N-FN)x Y, Moreover, dom(F) = Y & N F"Y = FN because

of the comstructionof £ &H “s.

Theorem. There is a revealed class X such that P(X) is not
revealed. ‘
Proof. Let Y be a revealment of FN (for the existence see
§ 2 [s-v 2]), F be a revealed mapping of Y into N-FN with
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M F"Y = FN and let Y & oL € N. We define X as U{P(x)x{x};
xcdom(F)I vt x( L - ¥Y), This class is revealed as the union
of two revealed classes (o¢ - Y is revealed since Y is fully re-
vealed). For every n€FN we have n x o € X, but according to the
choice of F there is no 3€ N-FN with fx o6 & X and thus the-
re is no u with {n x ¢ y3n< FRIc ucP(X).

The following trivial lemma is useful.

Lemma, If {Sn{n6m§ is a sequence of revealed classes with
(VneFN) S,,4C S, then the class V - N {Sn;nerlﬂ is not revea-
led. )

Proof. Let us choose f so that f(n)< (S, - S,.¢) for every
néc PN, Evidently mzn —>f(m) € Sn and thus assuming the classes
S!1 are revealed, we can choose a decreasing seéequence iun;nsFN} with
£"(FN - n)€ u, &8 . Furthermore I"FNE(V - N {Sn;ncmf) and
if the lastly mentioned class would be revealed, then there would
be a set u such that £"FNcu&unM isn;nem} = 0, For every

ncFN we would have f(n+1)<¢ (unnnu)s(unr\ u) from which
04unN{uncPitc unNis ;neNi

would follow by (a) and (d) of the beginning of the paper - con-
tradiction.

Corollary. Each revealed & -class is set-theoretically
definable.

Proof. If {Sn;ncFN} is a sequence of set-theoretically de-
finable classes, then for every k& FN the class S, = U {S;; n£k}
is set-theoretically definable, too, and thence the class V - sk'
is revealed. If U { S 3n€PFN} =V ~-N{V = S ;ncFN} is revea-
led, then there is ke FN such that (VnZk)(V - Sx; -V - s,;)

f.e. U {S sncPNt = 5.,

Corollary. There is no revealed cless which is countable,
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in particular, the class PN is not revealed.

Corollary. Each fully revealed 3¥-class is set-theoreti-
cally definable.
Proof. Its complement is & revealed 6 -class, therefore

its complement is set-theoretically definable.

Corollgry. Each fully revealed real class is set-theoreti-
cally definable.
Proof. In § 1 [8-V] the authors prove that every revealed

real class is & 4JY ~oclass.

Theorem. (&) A class is set-theoretically definable iff
the system of all its revealments is codable,

(b) Every set-theoretically definable class which is no e-
lement of Scl° has {1 -many revealments (i.e. if a pair K,S codes
the system of all its revealments, then K is uncountable) and
each element of 34, is its sole revealment.

Proof, According to the second theorem of § 2 [S-V 2], the
system {Y; Y is a revealment of X} equals to the system {F"Y ;

F is an automorphism} where Yo is an arbitrarily chosen reveal-
ment of X (by the first theorem of § 2 [S-V 2] every cless has

e revealment).

. It Xe¢ Sdo, then X is its sole revealment by the second theo-
rem of § 3 [8-V 2),

If X is set-theoretically definable, then there is a set-
formula ¢ (z,24) of FL end a convenient parameter p, (may be
an n-tuple) with X = {23 ¢ (z,po)}. Let the symbol Mon denote
the monad of P, in the indiscernibility equivelence < defined
in § 1 ch, V[V], Purther let us suppose X4 sd .

Put Aq = ip;(Vz)(g (z,p) = @ (z,q))} and let us assume
at first that there are Pjje..,P,& Mon with Mongc U { Apk;kén}.
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Since every Aq is set-theoretically definable, the class
uupk-,kénl is set-theoreticelly definable, too. If

Ppe U {Apk;k_{- n} then there is i< n with (V2)(@(z,p) =

=@ (z,pi)) and moreover for each sutomorphism F we have
(vz)(@(z,P(p)) = @ (z,F(py))). Furthermore let us realize
that P(p;) £ p, (becsuse py & P,) end therefore there is j<n

with (V2)( @ (2,F(p;)) = g’(z,pj)) from which F(p) e U { Apk;

k<4n} follows, We have proved that U{,Apk;kﬁ nt is a tigure
in the indiscernibility equivalence £ and thence by the ni- '
neteenth theorem of § 1 ch, V[L[V] it is an element of Sd,. Ac-
cording to the twelfth theorem of the mentioned section there
is a definable p e U {Apk;k-S nt i.e. there is 1 £ n and a set-

formula Yy of FL such that {23 ¢ (z,py)} = {23 y (2)}. Further-
more there is an automorphism F so that F(po) =Py (because

p % p; and because of the sixth theorem of § 1 ch. VLVI) and
hence X = {25 @(z,p )} = iz cg(z.P'1(pi))§ = "z @ (z,py)f =
= Fln § gy y(2)} = {z, ¥ (z)}. This contradicts our assumption
b Sd,.

Let {pk;kemﬂQMon be a sequence such that p, ¢ U {Apk;
k<n} for every neFN. The class Mon is & or-class by the de-
finition end thus it is revealed. Therefore for every ne FN the
clagsg Mon -~ U {Apk;k< nt is revealed, too, and it is nonempty

(p,, veing ite element). Thence by (d) of the beginning of the
paper, even the cless Mon - U { Apk;keFN} is nonempty.

We suppose that X = {z; g(z,po)} ¢ Sd,. Then X is its re-
vealment and for every p € Mon there is an automorphism G with
G(po) = p and furthermore for every automorphism F we have
F(py)e Mon and P"X = F"{ zy g(z.po)i - {n;g(z,r(po)}. Thus the
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system of classes {F"X; F is an a.utomorphism}.is coded by the
peir Mon,{<z,p> 3@ (z,p)} end moreover there is no class Z < Mon
which is at most countable so that Mon & U{Aq;qez}. We have
proved our statement (b) and one implication of (a).

Let Yo be a revealment of a class X, If the system of clas-
ses {!"YO; P is an automorphism} is codable, then by the eighth
theorem of § 1 [ §-V], the class ¥, is real, This class is even
fully revealed &nd hence Y is set-theoretically definable by
the last Corollary end thus Y = {23 @(z,p)t for some @ € FL
and a suitable parameter p. Therefore X = { z3 q»(z,p')} for some
parame ter p' by\ the definition of revealment, We have proved the
second implication of (&) which finishes the proof of our theo-
rem.

Since there are classes which are not set-theoretically defin-
eble, the last theorem guarantees that the system of fully reve-
aled classes is not codable i,e. it is very large, On the other
hand, the following statement shows that this system is "narrow"
- there is rather a small number of types of fully revealed
classes 1f in one type there are classes satisfying the same nor-
mal formulae of FL. This is raised by the countability of the
class of considered formulae (the system of all subclasses of FL
is codable according to the prolongation axiom). (If we would
admit in the considered formulae even set-parameters, we would
get a quite opposite result, of course.)

) The system of all axioms of the fomm

(Vx)(3Xx) & (x,X) — (3¥)(Vx) & (x,¥"{x})
where @ is an arbitrary fomula is called the strong schema
of choice; the alternative set theory with the strong schema of
choice is consistent relatively to the altermative set theory.
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Theorem. If the strong schema of choice is available, then
there is a codable system of classes 770 such that

(VX)(3Ye 7 ) Y is & revealment of X.

Proof. As & (z,2) we fix the formula

[(3Q(Vg e PL)(( @ is nornal& @ has exactly one free
variable) > (@(Q) ™ @ € 2))—> (Vg € PL)(( @ is normal &
& @ has exactly one free varisble) = ( @ (2) = @e z)]l& 2
is fully revealed.

The following result is a slight generalization of the eighth
theorem oz § 1 [&-v].

Theorem. If there are x, y so that the system of classes

{F"X; P is en automorphism with F(x) = y§{ is nonempty and codab-
le then X is a real class.

Proof. Let x, y be sets with the above described property.
Since there is an automorphism F with F(x) = y, the set {{y,x>$
is a similarity,

To every similarity {{z,y>} there is an automorphism H with
H(y) = z by the sixth theorem of § 1 ch. V L[V], Moreover, if a
well-ordering of V of type {) is chosen, then such an automor-
phism cen be constructed uniquely and we are going to denote it
by the symbol H,.

If a pair of classes K,S5 codes the system of classes {rnx,
P is an automorphism with F(x) = y} then we put .

K = UL{(H,"K) x {2} {<2,7>} 1is & simiiarity}
and
5 = {<H,(p) <H (1) ,223 (P, @€ S&{<2,7>t 18 a similarity}.

If G is an automorphism with G(x) = z then {{z,y%} =
" =w§<z,x7t 04 x,y)} 18 & similarity since the‘compoaition of
similarities is also a similarity and the converse of a simila-
rity is a similarity, too (sée § 1 ch. VLV])., Thus the auto-
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morphism H, bad to be chosen and putting F = H;’o G we have
F(x) = H;1 (G(x)) = H’;1(z) = y and thus there is qe K with FP"X a
= S" 4§ q¥. Since {<z,y>% is a similarity, < H,(q),z? 1is an ele-
ment of ?Cl and moreover

v i<H,(),2>F = {H,(P)s(psa> € S} = H"(S" {q}) =

= H"(P"X) = H,"(H]'"(G"X)) = G"X.

We have proved that the system of classes {G"X; G is an au-
tomorphism} is codable. We finish the proof using the mentioned
result of § 1 [&-vI,

Theorem, If F is a similarity which is at most countable,
then there are f, g such that Fu{<g,f>% is a similarity eand
such that every automorphism G with G(f) = g is an extension of
F.

Proof, We suppose that dom(F) is at most countable and thus
there is £ with £"FN = dom(F). According to the third theorem of
§ 1 och. VLV)] there is g such that Fu { {( g,f>} is a similari-
ty. I¢ G is an sutomorphism with G(f) = g, then G(f(n)) =
= (G(£))(G(n)) = (G(£))(n) = g(n) and (f(n),n> ¢ £ implies
(Fu{<{g,2>})(Kt(n),nd) e (Pu{ (g, £>3)(2) i.e. {F(f(n)),nd>€ 8
from which F(£(n)) = g(n) = G(f(n)) follows for every n€ FN. We
have proved FC G because £*FN = dom(F).

Lemma, If F is & similarity which is at most oéuntable,
then for every o ¢ FN there is 3¢ o¢ ~FN such that Pu{{(3,3>}

is a similarity.
Proof. Let %1 be the system of classes of the form

{@(& m ‘eﬁ 8L (?((3 ,11,....Xn) = ? ((3 ,P(I1),...,F(Xn)))f
where mc FN, Xq,s..,X, ¢ dom(F) and @ is a set-formula of FL

with exactly n+1 free variables.
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For every mePN there is & get-formula +(z)c FL so that
(31 x) y (x) &y (m+1).
If @ (Z,0Z90e00+%;) 18 an arbitrary set-formula of FL, then
(3x)( @ (X42q4000,2;) & Y(x)) is & set-formula of FL, too. Us-
ing the fact that P is a similarity, we obtain
(Ax)(@ (xyXyy000,xy) & y (%)) = (3 ) (g (x,F(x),0.0,F(x,)) &
& y(x))

i,e.

@ (mHl yxq,000,x)) = @ (m+1,F(xq) ye00,F(x,))
for every Xi,... X, € dom(P),

Thus 7 is a countable system of nonempty set~theoreti-
cally definable classes such that X,Y € 9 — XnY¥ & 2L . The-
refore by (8) and (d) of the beginning of this article we have
N {X3X € W13 30, Acoording to the definition of . , every
element of M4 X3X e 7} catisfies our requirements.

Theorem, THere are fully revealed classes X aml Y such that
XNY is not fully revealed.

Proof., Let us define

Sat =§{<{x, 9> 3 € FL & @ is a set-formula with exactly

one free varisble & ¢ (x)}.

The class Sat determines the satisfaction relation in the model
{V, &> and the pair of classes FL, Sat codes the system of olas-
ges Sdo. Furthermore, for every revealment Q of Sat and every
neFN, we have QM n = Sat ' n since Sat ' n is set-theoretically
definable, Since each class has a revealment, we are able to fix
Z as a revealment of the class Sat.

Let {y 3 4 @ L} be a descending sequence of natural num-
bers with PN = f\{ccw;xeﬂ.} and 1et{xf;?«s_ﬂ,§ be an
enumeration of the universal class, We are going to construct a

sequence of similerities {Hy3 ¥ € 13 by induction putting
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H, = 0 and for every limit o € £ we define H, as
UiHgs pe(yn .

Por every ¥ € ) we construct the similarity H’X"*'
the assumption that H,r is & similarity which is at most count-
able,

1 under

By the last lemma we can choose [3 e K = FN such that
By v wWp, (3>} is a similarity; furthermore according to the
lest theorem we are able to fix g, f such that H ui<f,A§V
Uid g,2>} is & similarity and such that every automorphism F
with P(£) = g is an extension of H,J,u{(ﬁ ' B33%.

At first we are going to show _that there is an automorphism
P with F(f) = g such that Z P 3+P"(Z2 1 3). If there would not
be such an automorphism then the system of classes

{P"(Z M3 )y P is an sutomorphism with F(f) = g}
would be codable and nonempty (1< g,2>} Dbeing extendable to an
automorphism since ;Lt is evidently & similarity) and thus Z } 3
would be real because of the last but one theorem, Since 2 I'f3
would be fully revealed and real, it would have to be set-theore-
tically definable by the last Corollary. On the other hand, the
pair FL, Z M (3 ocodes the system of classes 54, and thus we would
obtain a contradiction to the first theorem of § 4 [S-V 21, Ouzr
claim is proved.

We have proved that there is an automorphism P2 Hou KB,B>8
with 2N (@ # (F"2) P (3 (= (F"Z)P P(B) = P"(Z (3 )). Therefore
we are able to choose H,a.ﬂ 80 that

(1) B’f"" is a similarity which is at most countable;

Brx € K[«H
(@) (3p<ay )(3zezPE)(Ayé 20@)Kny)e

€ (B0 Hryq))
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At the end we put H = u&nx;'re'.fl} . Evidently H is en
automorphism and for every o ¢ FN we have (H"Z) Poc #+ Z Mot ,
since for every <y € Q there is 3 < Lp such that for every one-
o#4+1 We have (Prz) P B +2Z MR

Acocording to the second theorem of § 2 [S-V 2] , the class

one mapping F with F2 H

H"Z is a revealment of the class Sat, too, and thence for every
nePFN we get ZM'n = Sat ' n = (H"Z) P n, Eventually we define X =
= Zx$03UVx{1? and Y = Y x40k u(H"Z) x {1}, Both classes X and Y
are fully revealed classes and we have XnY = Zx {03 v (H"Z) x {113
this class is not fully rewvealed because

{e 3(XNY"§01) Mot = ((XND)"{1}) Pt F =

={c¢ 32 Mot = (H"2) ' $ = PN

is not revealed by the first Corollary.

Let us note that as a trivial consequence we get that the
system of fully revealed classes is closed neither to Cartesian
product nor to the pairing operation of classes (<X,Y »® = xxfotu
UvYx{1}). On the other hand, according to [S-V 5] , %o every ful-
ly revealed cless there is a system of fully revealed classes con-
taining it and closed under all Godel s operations.

At the end let us note that we have constructed two reveal-
ments Z, 2° of the satisfaction class Sat with FN = {ot 3Z Mo =
-z ot , but using the same technique as in the last proof
we are able to prove a still stronger result, namely, for every
codaPle system W1 of revealments of the class Sat we can const-
ruct & class X with

(VY 6 9L )FN = {o¢c 3X P o0 = Y Do}

Thus we can construct by induction & system {X,; ¥ € 03 ot
revealments of the class Sat so that
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(Pr¥ e D &BHy)—> PN = {o03Xg Mex =Xy loc?
i.e. we are sble to construct ) -many revealments of Sat with
the property in question.
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