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COMMENTATIONES MATHEMATICAE UNIVERSiTATIS CAROUNAE 

26,3 (1885) 

CONSTRUCTIBILITY AND SHIFTINGS OF VIEW 
Antonin SOCHOR 

Abstract: The axiom of construetibility in the alternati­
ve set theory (AST) is introduced and its basio consequences 
are shown. The corresponding interpretations are interpretati- . 
ons of AST + strong schema of choice in AST such that the class 
Fff is absolute. Using these interpretations we can strengthen 
the results concerning shiftings of the horizon (of. FS-V 53). 

Key words: The alternative set theoryf construetibility, 
the class FMf shif tings of view and of the horizon, restriction 
of view, sohema of choice. 

Classification: Primary 03E70f 03H15 
Secondary 03E25, 03E35f 03E45 

The alternative set theory (AST) can serve as an alterna­

tive to Cantor's set theory; it gives us a sufficiently strong 

framework for a great deal of mathematics (of. [V3), The axio­

matic system of this theory is sketched in the first section; 

the symbol TS denotes the class of (standard) finite natural 

numbers (see below). 

An interpretation # of T ' in T (T*f T being stronger than 

AST) is called a shifting of view (of T # in T) if 

Tt~ (Vx)Cls*(x)MVl*,Y*)(X*e* Y* m X * * Y*). 

If moreover T h FN* « FN, then * is said to be a restriction 

of view and if T f— FN* 4* FNf then * is said to be a shifting 

of the horizon. Of course there is a trivial shifting of view 

- the identity; other shif tings of view are called nontrivial -
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more formally a shifting of view ĉ of T in T is called nontri-

vial if Tr-iCJ X)-i Cls*(X). Evidently, there oan he shiftings of 

view of T ' in T which are neither restrictions of view nor shif­

tings of the horizon (in T ! ) . Each shifting of the horizon is 

a nontrivial shifting of view sinoe FK is no * -class* 

The importance of shiftings of view lies even on philosophic 
oal aspects* In AST we try to describe our understanding of the 
real world* Sets are considered as formalizations of collections 
we really meet, olasses are formal counterparts of our idealiza­
tions and generalizations* Thus shiftings of view describe our 
different approaches to the real world (the property "to be a 
set" and membership relation being absolute) - in different ap­
proaches we oan only change the collection of our idealizations 
and descriptions (i.e. the system of proper classes)* 

Collections converging to the horizon of our observation abi­
lity (describing unlimited prooesses) are formalized in AST by 
countable classes and from formal reasons it is sufficient to re­
strict ourselves to one countable olass - the class of finite na­
tural numbers FN. Hence shiftings of view * with FN*#-FN oan 
be considered as a formalization of such approaches which lead 
to changes of the horizon (shiftings of the horizon)* 

The schema of axioms of the form 

(Va*FN)C3X) 0 (nfX)~> (3X)( Vn^IH) 0 (n fXMn$) 

for aa arbitrary formula © i s called the schema of choice; simi­
larly the schema of axioms of the form 

(Vx)(BX) 6 (x,X)-~* (3Y)(Vx) 0 (x fX«ixP 

for aa arbitrary formula & i s called the strong schema of choice 

(of* the analogous definition of schema of oholce in the second 

order arithmetic). 

Inspired with Godel's constructive process - or with rami­

fied analysis if somebody likes - we shall define for every class 

Q the system of Q-oonstructible Glasses (see $2)* Thus with eve­

ry oonstant Q we naturally associate an interpretation «&(Q)* 
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Por coдvenieдt ciaeяtя Q we ere golщ to eдøw tдat Jfi(Q) iя a 

reøtrløtloд øf •iew øf Aøf + øtromg eøдema of eдoioe iд ASf 

<eí* f 3,4)* 

ïa ÍIMF 53 tћtrt wtra øoдøtruøted eдiftiдgø øf tдe дørl&øa 

iд tht tøtøry AЗf • øøдama of oдølet, fйere wae a queetloд wдe-

tћer l t lø poeaibXe to eoдetruøt øдiftiдgø øf tдe horiгon iд 

ASf ItetXf # ïîøiдg tøe reeuXte of tдt paper we aдewer tдiø quee^ 

tioд effirдаetiveXy aiдøe tдe øompoøitioдe øf øдiftinge of tдe 

дøriяon øøдetrueted iд ІS-Y 53 aдd iдterpretationя 5.6 (Q) řer 
øultaЫe øøдetaдte Q give ue øдlf tlяgø øf Шe дorlяøд in ABT i t -

flвXf (øee $ 5). 

Ъшt vш яøtt tìшt ueiдg tдe mttдødø mentioned lд [M-S] we 

art eдlt tø øøдetruot aд iдtarpretatiøд of ASf • etroдg øøдeдаe 

of øłioioe i д åBt 9 tøo, (aдd tø demoдetrate iд tдiø way tдe OOÎЗИ 

øieteдøy øf ÁSf + øtroдg яøћeraa of cдoiee raiativeiy to AST) øut 

eø øøaetruoted m iдttrpretatioд ia iд дo eaøe a øдiftiдg of vlew, 

дtдøe ew шn Iдterprttatiøд eaд hardiy et uetd iд tдe ooдeide-

ratlømø eoдQeming tbt aжløteдee of eдlftiдgø of tдe дoriяoд iд 

A&f* 

Aяяuяin.g tbt axiøю of oøдetruøtiøiXlty we are aђie to dtfl<-

nt (Ъy a Xormìљ) ш w*XX~ordtriд£ of oXaявeø (øf. f ЗЬ 

At tдe eдd we яnaXX dtai with ядiftiдgя of vlew in generaX 

aettlдg tmå we enaiX eet tbat íř(Q) le iд eoщe etдøt tдe mini-

шai jreetrløtiøa ø.f тttv øf AЗf iд Ш, дшeЗy If ж lø a rtet* 

riøtløд ot тiew (wltfc paraдаtttr Q) ot AЗf In A5f, tдen we eaддot 

ЎVOVФ iд AØf eiшuXtaдeøueXy 

(») Q i l i І -oXaяв 

Ш tfeare !# e % Ш^oЪмшш wfciøд le »e зfc ~ølaøø, 



§ 1, Preliminaries. At first we are going to summarize 

axioms of AST; further informations concerning the axiomatic 

system of this theory can be found in tVJ or in a more foimal 

way in CS 1]. AST is a theory with the following axioms: exten-

sionality for classes, Morse's schema of classes, Set(O) ft 

& Set(xuCyi) f induction for set-formulas (i.e. for every for­

mula y in which only set-variables and set-constants occur, 

we accept the axiom 

V K(9(0)&(Vx,y)((c ?(x)&9(y))-->9(xu-Cy>)))-^ 

~->(Vx)9(xXl, 

the prolongation axiom i.e. 

(VF)((Fnc(F)fcdom(F) » FN)—> ( 3 f )(F£f fcFnc(f))) , 

the axiom of choice in the form that the universal class V can 

be well-ordered and the axiom of cardinalities i.e. each class 

can be one-one mapped into FN or onto V. 

In AST we admit proper classes which are subclasses of sets -

FN is defined as the smallest possible cut of the class of natu­

ral numbers N closed under successors (see § 1 ch. II CVJ); we 

have N-FN4-0. 

A class A is called a well-ordering if it is a linear or­

dering such that every nonempty subclass of dom( <-=) has the least 

element. 

A well-ordering .£ is an ordering of type SL if for eaoh 

xedom(^) the segment iy\y£x] can be one-one mapped into FN 

(is at most countable) while dom(4e ) can be one-one mapped onto 

V (is uncountable). 

If 4r is a well-ordering then 0^ denotes its first ele­

ment. If *£ and "3 are two well-orderings then £ + rJ is the 

well-ordering 
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4«afx> f < b f y » * (a » 0 - b f e x . 4 y ) v ( a - 1 - b & x i y W 

v ( a « O&b » 1fcxedom(i-0&yi£dom( 3 ) ) 1 ; 

in particular, ^ + 1 denotes the well-ordering -£ -*-<<0f0>?» 

We use variables -6 and t£ (sometimes with indexes) for non­

empty well-orderings. 

If KfS i s a pair of c las ses , then Do(K,S) denotes the sys­

tem of c lasses -{%% ( 3 q 6 K ) X • Sw i q H • A system of c lasses 

13t i s cal led codable i f there i s a pair K,S with Wl * 

« Dc (KfS)$i we are going to write Dc(S) instead of Dc(dom(S),S)o . 

uio}. 

A formula i s said to be normal i f i t contains no quantifi­

er binding a proper c lass . Metamathematical formulas are denot­

ed by symbols <$ , ^ f B , • • • ; we can define formal formulas in 

AST as usual (cf. US 13) and the c lass of formal formulae with­

out parameters which are elements of FN i s denoted by the symbol 

FL* variables <j f Y , & f . . . run through elements of FL. 

For normal formulae which are elements of FL and a l l c l a s ­

ses X.j f . . . fX f the sat i s fact ion relat ion in the model(Vf e f X - j , . . . 

. . . f X n ) can be defined (see § 3 tS 11) and we shal l write 

/ fr (X 1 f . . . f X n ) instead of (Vf 6 fX.| f . . . fXn) N- & (X . , , . . . ,Xn) . 

For every q? e FL and every codable c lass / #t f the symbol 

(W) d e n o t e s the formula result ing from <p by res tr ic t ion of 

a l l quantifiers binding c lass variables to elements of fl& (quan­

t i f i e r s binding set-variables are l e f t without change)% similar­

ly for metamathematical formulae, but i n th i s case the codabil i -

ty of Wl i s not required. Thus e .g . the symbol ( ( 3 X ) ( V y ) y £ 

G X ) W denotes the formula ( 3 X « W ) ( V y ) y e X. 

The formula < y c w ' expresses the va l id i ty of <p in the 

model determined by the system of c lasses Itti (and a l l se t s ) 

and the usual membership re la t ion . Moreover, under the assumption 
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that 'Wl i t oodablt, tht formula <y c^> i t (tquivaltnt to) 
a normaX ont - thit i . tht rtaaon why wt havt dtfintd cF

cm) 

for oodabXt 431 only. 

If 7 i t a formal thtory ( i . t . a tubolass of FL) and if 
W i s * oodablt tytttm of 0X00000 thtn •$cm'> meant 
( V<y c T) 9 ^ I timiXarXy for mttaraathtmatioaX thtoritt. 
d *f $ dtnottt tht 0X000 of thttt tltratntt of FL which art for­

mal axióma of AST. 

If % Í0 an inttrprttation of T' in T than © i t oaXXtd 
abaolutt iff tht formula 

(vxy,...fxg)(e1ř(xf,.•.,!*) m e (x?f...fx*)) 
it prorablt in T. 

5 2. Tht axiom of oonatruotibility. In thia 0tction for 
tvory class Q wt dtfint tht oyottm of Q-oonotruotiblt olao0tO| 
for thi0 purpott tht auxiliary proptrty $ i t uttful. 

Tht symbol $(<č»S fQ) dtnottt tht formula 
dom(8) m dom(4)lSw-CO|<E? • Q *-t<0 f 0^>| O 

u i < y f <a t1> f0 4> *yC»€VU(Vx*(d*mU) - ÍO^i ))S"«íx$ « 

« 4 < < y 1 f . t y k > t <y t q i f . t q n > t * > * 9 * m^*****^ * 

e dom(S" -Í yiy< x\) 0V <p hat axaotXy k+n frat variablta ft 

At first Itt U0 rtalizt that tht systtm of 0100000 

Do(S" { yiy<x|) io oodablt and htnot tht symbol 

^D0(SMw<^) ( y i y ^ S j ^ ^ K ^ . ^ S ) ^ ) 

10mtaningfttX for q1 , . . . tq^domíS^yty^xl) and txprttstt tht 

validity of tht formula 
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in the model determined by the system of classes Do(Sw-iy*y< *?) 

i . e . by the system of olasses constructed up to the stage x. 

She formula in question i t equivalent to a normal one having 

S"\yiy< x$ at the only additional parametery thus even the who­

le formula $ i s (equivalent to) a normal formula. 

Let $ U f3yQ) and $ ( i 9^fQ) and let Q be an isomorph­

ism of 4t onto £$ . Then we can define a mapping (Gysay) of 

dom(rag(S)) onto dom(mg(S)) to that 

* S ( « 9 ,q 1 f . . . ,q n > ,X» « « 9 ,0(q1)y... i3(qn)>yG(x)> 

and 

S(<0y0J|fe> ) -<0y0 ; 3> 5t^(«» y 1> y 0^> ) -«*y1>yCLj>-

Suoh a mapping i s determined uniquely and moreover by induction 

for every xe dom(* ) and every q€.dom(Sn€x!r) wt can prove the 

equality (S"4x*)Hq} • (SMW(x)J)w •C'S(q)*. In particular, to 

each A and Q there i s at most one S with $ (^,S,Q). 

On the other hand, for every d& and Q there i s S with 

$(-&9SyQ)« This oan be proved by induotion using Morse's aohe-

ma (the definition in question i s oorrect since in the definiti­

on of Bnix\ only the class S My,y< x^ i t used). 

Further we put 

ofU,Q> «U*(3S) ($U y S y Q)4X*Dc(rng(S) ) ) i . 

This definition i s in harmony with ramified analysis because 

L(-i + 1 yQ) i s just the system of olasses parametrically defin­

able in the model determined by £(*9Q)% i f «-= has no last 

element, then J.7(£,Q) m U IX ( ^\Ky\y< x}fQ)%xt6om(4 )l 

and furthermort 

X(*<0y0>} fQ) « YuiQK 

Let us nott that the equality 

£{4 yQ) .4X|(VS>( $ U ,SfQ)-+- XsDe(rng(S)))i 
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holds because of ( V-^ )(\/Q)(3 ! S) $ (£ fS fQ); moreover, if 

^ and -£ are isomorphic, then («£(-£ fQ) -«-C(=$fQ). 

Now we are able to define the system of Q-construetible 

classes (in symbols oT(Q))% "bo obtain this system as small as 

possible we shall use the idea due to R. Gandy and consider the 

following two cases: 

(A) There is a well-ordering ^ such that £(£+ 1fQ) 

does not contain a well-ordering of type greater or equal to -£ * 

In this case let us fix *g as a well-ordering of the smallest 

possible ordinal type having the property in question. Further 

we define 

X(Q) -o£T(^ofQ). 

(B) There i s no well-ordering with the property described 

in the case (A). In th i s case we put 

«r(Q) • U - i J 7 ( ^ fQ); £ i s a well-ordering?. 

The statement 

(VX) X e oC(Q) 

is called the axiom of Q-constructibility and the formula 

(3Q)(VX) X 6-C(Q) 

is said to be the axiom of cons truetibility. 

Note. We have restricted the system of classes - to a con­

stant Q we constructed the system of Q-construetible classes. 

However, the original Godel s purpose was to restrict the col­

lection of sets (in Godel-Bernays set theory and so achieve the 

validity of the Continuum Hypothesisf cf. tGl). In AST we are 

able to restrict the collection of sets by many ways - see e.g. 

endomorphio universes tS-V 13. On the other hand we are not able 

to restrict the universal class suitably - more precisely we 

cannot ohoose sets using a set-formula so that the class of cho­

sen sets has properties analogical to the class of Godel 8 
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constructible sets. In fact, if 0 (z) is a set-formula and if 

the class {z, 0(z)j is closed under the sole conveniently cho­

sen operation i.e. if we have (0 (x) && (y)) — * © (xu-iyj) 

then V » \ z% 0 (z)$ by the axiom of induction (and an analogue 

of the class of Godel's constructible sets has to be closed un­

der xu^yi evidently). The basis of this impossibility of the 

construction of a set-theoretically definable class different 

from V and closed under the operation xu«iyl lies in the fact 

that all sets in AST are finite from the point of view of Can­

tor's set theory (they satisfy all ZP-axioms if the axiom of in­

finity is replaced by its negation). Thus it seems to be hardly 

possible to use Godel#s method to restrict the universal class 

without essential changes. 

§ 3. Some consequences of the axiom of construetibility. 

In this section we introduce a formula Hf(X,Y,Q) which repre­

sents a well-ordering of Q-construetible classes and using it 

we are going to show that the strong schema of choice is a con­

sequence of the axiom of construetibility. Furthermore, we shall 

specify what we mean by the minimality of the system of clas­

ses X(Q) and supposing the axiom of Q-constructibility we shall 

see that i (3 ^ ) OSSf^^*9®*, this result will be used 

in the last section. 

In AST there are well-orderinga of the universal class, let 

us fix one of them, say ^ ^. To every well-ordering ^ we de­

fine the well-ordering 2£ putting 

<a,x>£<b fy> 9 (x^y v C i - O ^ - y&(a - 0v(a^04-b 8c 

8k a .£., b))l v t x - y=fcO^ 8c x€dom(^ )8c(3g> ,q1f...,qn, Y , 

^ ' • • • • • 0 ( a " <<? •<*.!•••• #<!,!>** - < ¥ rtf •••••<£> &(<? ^ Y v 
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v ( f • Y&a€m)v(q> myk n m mfc(JiSn) C(Vjfii)(q^ « qp & 

&(4i+1^%+ lVi * m)3)))3). 

If $ (^ f8 fQ), then we have dom(«ig(S))S dom(jtt) and fur-

thermore i t i t qe (dom(2')--dom(a?ng(S)))-^ rngd)"-tq} «- 0. 

We define further 

Sf(XfYfQ)«i ( 3 * )(Jfl)( £> U fS fQ)iU3q£d0ff l (2)) (X « 

- w g ( S ) " - U l * ( V q ' 2 q)(Y + *ng(S)" <q"i))). 

if G i s an ieomorphiam of Jfr onto dt then for the mapping 

$ defined in the last seotion we oan prove by induction 

(Vq1fqacdom(8f))(q1S.(q2 attftq^Sf a(q 2 ) ) . 

Aooordlng to the second section we hftve 

( V (XfYfQ) & #(Y fX fQ))~* X - Y 

ftttd for every %fYf>«£(Q) the diajunetion 

¥(X»YfQ) s/ ^(YfXfQ) 

holds einoe for every each olaas there are ^ ,3 ftnd qpq2 c 

e* dom( % ) with 

$U f 8 f Q)fcX - ragd)M4q1l & Y - rag(s)" *q2*. 

Moreover, let ue realise that the tranaitivity i . e . 

( ¥(X fY fQ) k Sf(Yf2fQ» - * If(Xf8fQ> 

i t trivial. 

Let ue note that for eftoh Yf the tyitem 4X* ¥(XfYfQ)J is 

oodahle* 

Metfttltorta# 2o every formula 0(2 1 f Z 2 ) there i t a for­

mula If (21f22) auoh that in AST + ftxiom of Q-oonstruotibility 

we can prove 

(ft) (VXfY)( $(XfY) - > 6 (XfY)) 

(b) (VX)(UY) d ( X , Y ) - » (J t Y) t (XfY)). 

Damon* trfttion. Putting 

^(2 1 f z 2 ) i f f ed 1 f z 2 > -K-i (3Z) ( t f (ZfZ2fQ) K 

fc© (2^2)42*2-,) 
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we get the implication (a) trivially. Let ue proceed in AST -f 

+ (VX) X e £ (Q) . Aeeuming 

$ U t S # Q ) f c ( 3 Y ) ( 0(XtY)&. Y C<£(dtQ) 

we choose q as the least element in the ordering 3 eo that 

0(X frng(S)M4ql) end we obtain S(X tmg(S)w-tqt) according to 

the definition of x' • 

Corollary* The axiom of construe t ibi l i ty implies (in AST) 

(a) strong schema of ohoioe 

(b) sohema of dependent choices i . e . the system of axioms 

of the form 

(V&jXaZg) 0 (Z1#Z2)-~* (VX)(.3Y)(dom(Y) - FNAYMOJ -

- XKVneFN) 0 (Yw-inifY«-[n+n)) 

where Q is an arbitrary formula* 

Demonstration* If a formula © is given then O denotes 

the formula constructed in the last Metatheorem. Let us proceed 

in AST + (VX) X * o£(Q)s 

(a) we put Y - . • K y , x > l ( a z ) ( & (x fZ)&yeZ)j. 

(b) Assuming (VZ1)(3Z2) 0 (Z1tZ2)f we define for every X 

the olass Y by induction putting Y" 4,0* « X and choosing Y" -{n-fl} 

so that $ (Y" i n*,Y" -U+1J). 

MetajLejjraa. If Iffl i s a system of olasses containing a l l 

sets with AST , then for every Q and e£ elements of /Wl 

we have 

X ( ^ » Q ) f i ^ i U S e W ) $ U . 8 . Q ) . 

Demonstration* Aooording to the second section we have 

CCS S) ^ U ,S tQ).3 c w ) because of ASTC*^ and because 4 i s an 

7ft -well-orderingt too* Thus using the absoluteness of <$ (in 

the interpretation determined by W ) we get ( 3 8 e Wfc )&(.»*, 

S-Q), from which ( Vq)mg(S)" «tqt * *Wt follows* 
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Theorem. It ffll i s a codable system of c lasses with 

V u iQ$ml £ W, ^ a<ftfm) then dC(Q) Q Wl . 
Proof. The property Mto be a l inear ordering" i s absolute 

( in the interpretation determined by IPti ) t r i v i a l l y ; moreover, 

W* contains a l l countable c lasses because this system con­

tains PN and a l l s e t s , thence even the property "to be a we l l -

ordering" i s absolute. 

If there i s X 6 ( dC (Q) - 1f& ) f then there i s a well-order­

ing such that no element of Otfl i s isomorphic to i t by the las t 

resul t . Let us f ix a constant :_5 as a well-ordering of the smal­

l e s t possible ordinal type having th is property. . ^ the def in i ­

t ion of r? to each x€dom(___» ) there i s an W/ -well-ordering 

isomorphic to __? r <ty*y-* n\ and conversely to each IPti -we l l -

ordering there i s z c dom( ___? ) so that _1 K y*y A x \ i s isomor­

phic to the Wl -well-ordering in question. The well-ordering :_* 

cannot have the l a s t element because of (L^ST and thus 

by the l a s t Metalemma we obtain 

Xc£(__* fQ) m t ( B _ 6 ) ( 2 S ) ( $ ( ^ f S f Q ) & X € D c ( r n g ( S ) ) 3 ( 0 a t ' > -

Therefore every c lass parametrically definable in the model de­

termined by the system of c lasses X (-3 tQ) ( i . e . every element 

of •_£(-_$ + 1 f Q))is parametrically definable, too, in the model 

determined by W , hence i t i s an element of 3?t because 

d c ^ / f C ^ i S assumed. Since £ # Wtl we have _< £ X (__?+ 1 fQ) 

from which «*CT(Q) S X (:_! fQ) s Ifo follows. 

We have proved, moreover, that i f there i s a codable system 

of c lasses *& with V u <tQ,FH \ S. TPti fc (SWCT cm) then 

(3__l ) -_C(Q) - o C ( d , Q ) ( i . e . case (A)). Let us note that in the 

next sect ion we shal l show (for convenient constants Q#s) even 

the converse implication (we have, moreover, CWflT'**^ i n th i s 
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case) and thus we shall be able to conclude that if there is a 

codable system of classes Wt with V u i Q.FNS & Wl 8t a^T(99t)
> 

then the system of classes X (Q) is the minimal one with the 

mentioned property. Consequently, using the following statement, 

the existence of a codable system of-classes 29t with V u «£Q,Fn}c 

S W, & (L^T(M/) will be excluded in AST + axiom of Q-oonstruc-

tibility. 

Theorem. If (Vx) X e X (Q) § then there is no well-ordering 

i so that d^^iX(-^^. 

Proof. If a<*<f(X(*"a))
y then X (Q) £ X<:f fQ) by the 

last theorem and hence the system of all classes would be codab­

le - this would contradict the second theorem of § 5 ch.I LV.J. 

Let us note that in the last results we can assume (Morse's 

schema)<m) and ( WflovxJk tdhmas)*-**1 instead of AST C ^ and 

(L<l<rCm/) respectively. 

§ -U The interpretation S6(Q). The system of Q-construct-

ible classes determines naturally an interpretation which will 

be denoted o£(Q); formally 

Cls^(Q) ( X ) s l e X (Q) and 

x t f (Q) e *(Q) YSMQ)„zie(Q>cyrf(Q># 

In this section we are going to show - for convenient constants 

Q - that the interpretation S6(Q) is a restriction of view of 

AST + axiom of Q-constructibility in AST. For this purpose the 

following Lemma is useful. 

Lemma. If ̂  is an element of X(d ,Q) and if FN is definable 

from Q then there is S G X(3 + &<¥ 1 tQ) with § (^,SfQ). 

Proof. There is S with $ (t£,S,Q) by § 2 and we have to 

show S «• dC0-!»+^+ 1,Q). To obtain a contradiction let us 
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suppoae that x i s the emaileet element in the ordering -£ 00 

that 

SKz*z<x$ e> X ( i + (£ Kz*z<x | ) + 1fQ). 

At first let ue assume that x ie the ouooee0or of an ele­

ment y in the well-ordering 4 • According to our ohoioe of x 

we have 

SKz*z<y$ * X 0 + («-« Kz*z<x$) fQ) 

because 3 + (<£ t «{ z*z< y}) + 1 ie ioomorphio to £ + ( 4 Kz* 

z<x}) . 

For every qc dom(Sn"( y}) the 01000 (S"-? yl) Kq**q*-Z ql i0 

definable by a normal formula with parameter© q and SKz*z<y? 

(or Q if y m 0^ ) only, therefore this olaee i s an element of 

the syetem of olaeoee ©C (dr + (& Kz*z<x{) fQ). The olass 

dom(Sniy}) i s definable* too, using a normal formula with pa­

rameters Q (or FI» if aomebody prefere) and dom(S,f <ts*z<y$) on­

ly and henoe the class 

SMz*z<x* - SKz*z<y | u U < S » [ y } l k <Cq'*q'2qH qe 

e dom(Sw*y})l 

i s definable in the model determined by the system of classes 

X (& • (*6 Kz*z<x}) fQ) and thence i t is an element of 

^ ( 4 + U K z * z < x ! ) + 1fQ)# 

If x«j»0^ ie limit then for every y< x we have 

S K z * z < y } &*C0 + (-if *Cz*z<y}) + 1 ,Q) S 

£ X ( i + ( 4 r i z*z< x\) fQ) 

and therefore ueing the uniqueness mentioned in the seoond sec­

tion we obtain 

S K z * i < x $ « U tSKz*z<y**y<xi - U \S € £(d + 
+ (-*t-U*z<xP§Q)* ( 3 y < x ) $ (£t 4z*z<yl f1 fQ)| • 

Since $ i« normal, the formula $ « « • € # Mm, ««*»* .«> 
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ie the eame as the formula (J> and thua 

S K a . ! a < x 1 e X « + (** i%%%<x\) • 1,Q) 

ae a olass definable in the model determined hy X(:rf •(-£$*'(** 

a^xp.Q). Since S \^%%%<Oj!^i - 0 Is evidently an element of 

oCCi + 19Q)f we are done. 

In the following we shall assume that QM «C 0} ia a well-or­

dering of V of type H • Under this assumption we are able to 

show that & (Q) la an interpretation of AST + axiom of Q-eonst-

ruotibility in AST and if moreover the alternative (A) ho Ida 

then «t (Q) determines even a model of (X/$f • Of course, it 

would be aufflolent to suppose that a well-ordering with the de­

sired properties is defined by whatever combination of Godel'e 

operations from Q9 hut in the general oaao S*5(Q) need not he 

an interpretation of AST - at the end of the paper we ehall 000 

that #(0) cannot he an interpretation of the axiom of choice 

in AST. 

Metatheorem. The interpretation ££(Q) ie a restriction 

of view of AST + (VX) X s X(Q) in AST +"Q«-tO* *•• * weBrorder-

ing of 7 of type &f> • Moreover in the lastly mentioned theory 

we oan prove 

(3*)UT(Q) m*C(4§Q))^ta<tf • (Vx) X€X(*)3imCiQ)K 

Demonstration. We write & instead of «#(Q). Directly 

from the definition of X (£ 9Q) we aee that these aysteme are 

oloaod under Godel'e operationa (except otC(4<090>| 9Q)9 may 

he) and henoe the eame ie true for the eyetem of a l l ZC -elass-

ee. Evidently eaoh eat ie an -a£-eetf formulae $ 9 Hf are nor­

mal and thenoe they are ahaolute. 

Furthermore FH » FI since the olaaa FI la deeoribahle 

from Q«40̂  (e.g. FH «*ace W%(3 t)(3x€ dom(Q»4o}))( t i e an 
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isomorphism of e n oO 2 onto Q"-t 0} Is 4y* < y f x > e Q"-t 0 } } } ) . 

Every countable c lass i s an ££-c lass because every countable 

c lass i s of the form t"F8 according to the prolongation axiom* 

Thus the property Mto be a well-orderingw i s absolute because 

the property "to be a l inear ordering" i s absolute tr iv ia l ly* 

In the case (A)f for each * smaller than ^ there i s a 

well-ordering £^ isomorphic to s£ since i f there i s no such 

*-* f in X (£ + 1 ,Q) cannot be a well-ordering of type grea­

ter or equal to ^ and th is contradicts our choice of .£ . 

In the case (B) for every ^ there i s * isomorphic to 

*£ because in X(£ + 1 fQ) i s a well-ordering of type greater 

or equal to * according to the assumption (B) and because i f 

d- i s an *£ -well-ordering then d? T - C y j y ^ x l i s an ^ - w e l l -

ordering, too, for each z e d o n i ( J ) . 

Thus we get as a t r i v i a l consequence 

( V X ^ K J * * ) X ^ 6 o C ( ^ , Q ) . 

Moreover, by the previous Lemma we have 

. f t * * fQ) . j C * < * * f Q ) 

(because .J + --=> i s an «5-?-well-ordering) and therefore we 

have proved the o£ -axiom of Q-constructibil ity. 

We are going to show that for every formula © and every 

well-ordering * there i s a well-ordering -2 greater than 

^ so that 

( V x 1 f . . . f x n c o ^ ( ^ f Q ) ) ( e ^ ( x 1 f . . . f x n ) s 

- . e ^ ^ t x , xn». 

According to the l a s t paragraph and to the properties of the 

formula ^£ f to every X^ we can choose one well-ordering 
•£ 2& it 

< - * x with X e X (-£X fQ). Furthermore since every X'(& fQ) i s 
if. codable we are able to choose to every *L a well-ordering 
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with the desired property using properties of the formula t-f> 

the usual construction based on Skolem s functions given by 0 

and the fact that for each codable system of well-orderings 

there i s a well-ordering greater than each element of the sys ­

tem in question. Thus in the case (B) we are done because to ,__? 

there i s a well-ordering ___? isomorphic to :__? , but in the 

case (A) we have to prove moreover that __£ i s of type smaller 

than ___:
0 (and then again there i s rJ isomorphic to -3 ) . 

We have 

¥ t x * f Y * ) * * * ( x * f Y * * ) - » Y w r ( - q » Q ) > ( x ^ f Y ^ ) 

and 

X*£ j T i i f fQ) m lXc £* ( i f fQ) m X*€ XW * ° » Q ) ) ( 4 * fQ) 

9<g£ 3 

for every rs -j end therefore ot i s definable in the model de­

termined by _X(_-r fQ)f thence i t i s an element of eaC(^0+1fQ) 

and thus our statement follows from the choice of ___•__# 
o 

it z£ 
In particular, for every O and every X_j f... fXl; there i s 

d* with x f f . . . f X ^ e X (d* $Q) such that 

(Vx)(e*(xfxff...,X*)__*8(,r(^ »Q))(xfxff...fX^) 
and hence we have proved the t£ -Morse #s schema because 

ixf 0* ( x f x f f . . . f X ^ ) } c X(4* + 1 fQ). 

If X (Q) « X(d?tQ) -for some __£ f the previous conside­

rations are true even for formal formulae. 

The ££ -axiom of extensionality and a l l S£ -axioms concer­

ning se ts are t r i v i a l (the property V _-* g* being absolute); the 

46 -axiom of choice and the £ -axiom of cardinal i t i es hold ac­

cording to the def ini t ion of X (-C<0f0>^ fQ) and to the requi­

rement put on the constant Q. At the end l e t us consider that 

the ^-prolongat ion axiom i s an easy consequence of the pro­

longation axiom, absoluteness of the c lass FN and the fac t that 
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•&oh 0ftt I0 an «6 -oat* 

Corollary* If Q* i 0 J I0 a wall-ordaring of V of type & 

then the following I0 equivalent! 

(a) ( 3 i ) -ff(Q) mXiii ,Q) (oa0« (A)) 

(h) there I0 a oodable •y«tera of claeee» W with Qffi* « 

c'Hfc fc aw1"1*. 

* 5# Shif^tinf0 of view* Lat U0 raoall 00n* definition* 

from tS-V 11 and CS-V 21 . A olasa X I0 eaid to ha ravealed if 

for avary countable YSX there 10 a »et u with Y£tt£X and X la 

oftllad fully ravaalad if every claoa of the form {x$^(x f X)| la 

ravaaled under tha aaeumptlon that $> € 7L la a normal formulai 

I i f a ravaalmant of Y i f f X I0 fully revealed and for avary 

normal formula y < ?L wi have <p (X) m 9 (?) (in other word* 

X la fully ravaalad iff thara i» no normal formula 9 « FL des­

cribing FN uaiag tha parameter X and s«t-parameters only), 

formal formulae (avaa alamanta of ?X») are ah0oluta in eaah 

shifting of view. 

Lat * ha a raatriotloa of vlaw. fhaa tha propartia0 *to 

be ravaalad* and *to ha fully ravaalad* are abaolute 01110a II * * 

m WW and alnee every countable class I0 of tha form f *IH» fhua 

avan tha property *X ie a ravaalmant of X* i s ab00lute, Further-

mora lat ua realize that the property X « X (4c fQ) 10 ahaoluta 

0iaca i t la equivalent both to (VS) ($ (* f S f Q) - * X*D0(rag(3))) 

aad to (B S)($>(£fStQ) A. XcDo(rng(8))) and alnea tha formulaa 

$ (a* fS,Q) and Xa-D0(rag{8)) are ahaoluta* At tha mA lat ua 

appreoiate that for 9w%rj 6* and Q* wa hava (v/X)(X« £{**$ 

Q*) —fr-Ola* (X)) by Matalamma of 5 3. ^auaf in partiaular, i f 

for aaoh wall-ordariag thara ia ft * -well-ordaring laoMorpiiia 
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to the given one then ( V i s «C(Q*)) Cla*(X). 

In TS-V 5.1 we have constructed shiftings of the horizon in 

AST + schema of choice, the following statement shows the exis­

tence of shiftings of the horizon in AST itself. 

Met a the or em. There are shiftings of the horizon in AST, mo­

reover in AST + nB is a revealment of FHW we oan construct a 

shifting of the horizon * with FN* - B. 

Demonstration. According to § U S-V 5-1 there is a shift­

ing of the horizon # in the theory AST + "B is a revealment of 

IN" + schema of choice and moreover # fulfils the requirement 

FS& m B. Let us fix s£ so that & is a well-ordering of V of 

type SX (the existence follows from the axiom of oaruinalities 

and from the construction of -& in § 3 oh. II tVl) and let us 

put Q m £ x-ioSuBx.'OK The interpretation *. is defined as 

the composition of iC (Q) and # . Now, it is sufficient to re­

alize that .$£ (Q) is a restriction of view of AST + "B is a re­

vealment of FN" + schema of choice in AST + WB is a revealment 

of FN" by § 3,4 and absoluteness mentioned at the beginning of 

this section* At the end let us consider that in [S-V2 3 the 

existence of revealments of FN was proved. 

Thus the question whether there are (nontrlvial) shiftings 

of the horizon in AST was solved positively. However, let us men­

tion an open problem in this area: For every so far constructed 

shifting of the horizon * in T we have T r— * -schema of choi­

ce and thus if T V— ~i schema of choice then there are state­

ments whjch are not absolute. Question is if we are able to con­

struct shiftings of the horizon in AST in such a way that all 

statements are absolute (writing AST + schema of choice Instead 

of AST, the problem is solved oonfirmatively, see CS-V 5 3 ) . 
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Dealing with the existence of non tr iv ial res tr ic t ions of 

view we shal l obtain a part ia l answer since we sha l l see that in 

AST + axiom of Q-oonstruetibility we are not able to construct 

a nontrivial res tr i c t ion of view * such that Q i s a * - c l a s s . 

Metatheorem. If * i s a res tr i c t ion of view of AST + 

+ ( V X) X € X (Q) in a theory T such that T H (3 X e X (Q)) n 

1 Cls*(X) then we can f ix d so that the formula 

Cls*(X) s X e.X(d 9Q) 

i s provable in T (with the constant d ) . 

Demonstration. Let us proceed in T. According to 

( J X £ -C(Q))-i C l s * ( X ) , § 2 and to Metalemma of the third sec­

t ion, there i s a well-ordering such that no * -well-ordering 

i s isomorphic to i t . Let us f ix d as a well-ordering of the 

smallest possible ordinal type with th i s property. The formula 

( V X s X (d ,Q)) Cls*(X) follows t r i v i a l l y from the mentioned 

Metallemma and from the def init ion of d since d cannot have 

the l a s t element. 

The Interpretation #• i s furthermore supposed to be an i n ­

terpretation of the axiom of Q-constructibil ity in T and thus 

to every X* there i s ^ * with X* G* «C*(^* ,Q); however, the 

l a s t formula i s equivalent to the formula X*€oC(^*,Q) and then­

ce by the definit ion of d , for each X* there i s xcdora(^? ) 

with X e,X(d r - ty;y^x},Q) and therefore X * e X(d9Q). We ha­

ve proved ( V X * ) X * £ X(d 9Q) and we are done. 

Corollary. If * i s a res tr ic t ion of view in a theory T 

such that Tt- C l s* (Q)M3 X c C (Q)) "i Cls*(X)fcWQ"40} i s a wel l -

ordering of V of type JL w then we can f ix d so that Cls^(X) 

defined by X e X(d ,Q) determines a nontrivial res tr ic t ion of 

view in T (with the constant d ) # 
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Demonstration. The composition of ;* and «S6(Q) is a re­

striction of view of AST + (VX) X € oC(Q) in T, therefore our 

statement is a trivial consequence of the previous result. 

Let us continue in a sufficiently strong metamathematics 

(e.g. ZF is strong enough, cf. 5 9 tS 3J)# Furthermore, let us 

assume that ;*- is a nontrivial restriction of view (with Q as 

a parameter) of AST in AST + (VX) X € •CT(Q) such that 

AST + (VX) X 6 oC(Q)h- Cls*(Q). 

According to § 9 CS 33 and to the fourth section of th i s 

a r t i c l e there i s a model OL and i t s c l a s s Q so that 

a t~ AST + ( VX) X & X(Q) + "Q«.[ 0* i s a well-ordering 

of V of type XI " and FN a • ca ( CO denotes the set of metamat-

hematical natural numbers). By the la s t Corollary we can f i x an 

Ot-well-ordering £ so that Cft k» A S T ^ - * ^ . However, F N a • 

» CJ and hence we have even OC h » W { T ^ * which contra­

dicts the l a s t statement of the third sect ion. 

We have proved that there i s no nontrivial res tr ic t ion of 

view * of AST in AST + (VX) X e X (Q) with Q as a parameter 

such that Q i s a *: - c l a s s in a l l cases. 

Open problem. I s there a nontrivial res tr ic t ion of view 

in AST ( i . e . i s i t provable in AST that there i s a well-order­

ing £ of V of type H with ( J X ) X ^ ( ^ *<0\))1 

At the end we are going to show that £6(0) need not be an 

interpretation of AST. Let % denote the system of real c l a s ­

ses defined in Cc-VJ; by the s ixth theorem of § 1 of the c i ted 

paper fa determines an interpretation of Morsel schema. Assum­

ing a t-= AST and FN** « o> we have OL t-- ( WUmt'h /bcJkma)(7® 

and thus according to the third section (supposing coincidence 

of the c lasses of metamathematioal and f i n i t e natural numbers 
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we need not require the oodability of the system of c lasses in 

question) we obtain OL l« <£ (0) G fh and therefore C£ I*- "the­

re i s no well-ordering of V in «C(o)w by § 1 CC-V.3. We have 

proved that «&(0) i s no interpretation of the axiom of choice 

in AST. 
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