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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
26,3 (1885)

SOME AUTOMORPHISMS OF NATURAL NUMBERS
IN THE ALTERNATIVE SET THEORY
J. MLCEK

Abgtract: A method of construction of automorphisms of
natural numbers is presented. It is based on a saturation of
the structure in question and on some properties of indiscerni-
bles in this one, Majorizing and minorizing eutomorphisms are
constructed.

Key words: Alternative set theory, natural numbers, auto-
morphiam, Indiscernibles. ’ !

Clapgification: 03E70, 03C50, O3H15

Introduction. It is known that there exist non-trivial

automorphisns of natural numbers in the alternative set theory.
There are several possibilities, how to construct these ones.
In the paper presented, we introduce one method of such a con-
struction, based on a saturation of natural numbers and on some
properties of indiscernibles. A description of this method is
contained in the section "Proofs".

By using this method, we can, for example, construct to a
given class X of naturel numbers end & collection & of func-
tions, an automorphism of natural numbers which majorize (mi-
norize resp.) every function from & on X. A precise formula~
tion of this vegue description is given in the sectién "Main

results”,
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Preliminaries. By a language we mean & countable first-
order language & with equality. The set of formulas of this
language is obtained by a usual construction on FN, Writing
9 ¢ &£ we mean that @ is a formula of <.

We use M, N,... as symbols that range over structures for

& . If M is such & model then M is the universe of this one.

Having WM; = &€ ,1i=1,2, and a mapping HEM, % M,, we
sey that H is & similarity between IM; and M, iff the follow-
ing holds: (V@ e )(Vay,... € dom(H))( My = @ (By,0.0) &>
& M, =@ (H(ay),...)). Recall the following fact: 1f M is a
fully revealed model for & , then every 1-type of &(C)-for-

mulas, where CSM is at most countable, is realized in M. Thus,
every at most countable similarity between two infinite fully
revealed models for & can be extended to an isomorphism of
these ones, Note that every revealment of a class X is a fully
revealed class, (See [3].)

Let } denote the language of Peano arithmetic and let N
be the structure ( iN,+,.,0,1,<> for 3} . We use o¢,f3,%,d",
(; (possibly indexed) as variables ranging over natural numbers.
Assuming « < 3 , we denote [ , 31 the interval
1y36 € < (3% and & the class {%; > <.

Suppose that H is an automorphism of the model M, M = 7} -
This property of H can be expressed in an extension }' of ¥ ,

3 = } v {h3, where h is a new unary function symbol. Indeed,
let < IM,H) be the expansion of IM to the structure for }’ .
Then H is en eutomorphism of M 1ff < M,ED = {@ (Xqsees) >
<>z, )i9e FHo {(YD(ANED = 0 '

Mein results. Throughout this paper, F_, ¥, T, denote at
most countable classes of functions such that
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Ped uF uF,—> B:N—> N and there exist P(x,7,2) 64 end
4 wWthF(<) = B> P(ct,B,7)& (Ve )(21B)p (£, B,
Let H:N —> N be a function, XSN, H majorizes (minorizes resp.)
FoonX it (Ve X)(VE € F)(G(x )< H(cr))

(Voo e X)(VG € F ) (G(oc )Z H(ec)) resp.) holds.

H is over constants if (Ve )(IR ) Vy >R )(H(g)>x). F

is over constants if (VF e 5 )(F 1is over constants).

Theorem 1. (Vy)(3d")(IH)[(H is an automorphism of
1¥) & (H is identic ony) & (H majorizes &, on ;‘ )1.

Theorem 2, Let 93, be over constants. Then
(Vy)(30°)(3H)[(E is an automorphism of IN) & (H is identic on
¥) % (H minorizes 3, on & )1 holds.

An interval [«,3] 1s % -large 1ff (VP € 5 ) (P ()<f3).

Theorem 3. Assume that %, is over constants. Then
(Vy)(3H) {(H 15 an automorphism of IN) & (H is identic ony)&
& (Ve ) [(30U) s &)(U is en F -large interval % H majorizes

$, on & (3IVL)(U 15 an ¥ ,-large intervalg H minorizes
F, on MK(IR >« )E(R) =3I .

Remark. Eseh of Theorems 1, 2,3 guarantees that for every
o , the mapping Id Ao¢ can be extended to a non-trivial auto-
morphism of IN.

Proofs

Notation. Let {B, ¥, py be an indexed sequence of classes.
We shall write more briefly iB,3, only.

Suppose that 3‘1 = {P; 3y 1=0,1,2. Assume that for i =
= 0,1,2 and k¢ N, Yn(x,y.z) and 7y, are such that the sta-

tements
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Piplec) = B> Yoty B, %y ) & (Vo ) (3 10" Wy, (01 o)
hold.

To simplify some following notations, we put
Tie * Trer Fox = Yops KEFN and Iy = 7, «>120,1,2 &

& X m3.£ + 1.
Let ) be the extension of } of the form
X =3 u{h}u{oo.c1§u{dk}k,

where h is & new unary function and oy, 4 are new constants. Let
T’y be the following theory, formulated in ¥ ;
Lg(xypese) «> @ (n(xy)yeee)s@e FIv 1(VX) (3 y)(b(y)mx)d U

vix<s,—> h(x)mx}uio < x — (Vy) (Vqu(x,3,4)—> y< h(x));ki.
It is easy to msee that the theorem 1 is equivalent to the follow-
ing propositions

(V) (3 ) (BN — N ( <IN Ey, 7 {8, > = T,

We can construct quite analogously the theories " 2 and T 3
in ¥ much that the theorem 2 is equivalent to the proposai tion

(qu)(ax1>(3 HN— N)( IV H, 50,9, $900 0> = T,
and the theorem 3 is equivalent to
(Voo J(IEN — K) ( {W,H, 95,0, {d5 8, > 3'3.

Now, let 1 be fixed.
Assume that to given q"o, there exist
71, a substructure M of I and a mapping G:M — N
such that
(W) fng, o id, i cn
(B) IN<LIN
(0) <IMyGy Yor Ty s L0t > = Tye
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Then there exists a mapping H:N —> N such that
KIE, A, Py o £ > =Ty

and, consequently, Theorem i is true.

Proof. Put B = < IM,G, Yo s ¥1s £33 3 7+ Then a reveal-
ment M* of T hes the form < M*,6*, %0, M {Jik}km*>'
where I* is the revealment of X. We have ﬁ{x fif* and, especial-
1y, M <y IM* is true, too. We deduce from this, (A) and (B),
that TAA({%, %3 U {d  ])) 1s a similarity between IN and
[M*, Let Z be an isomorphism of N and M* which is identical
on {9, MI v 4d, b Put H(x) = B ¢> @*(2(x)) = 2(R ).
Then Z is an isomorphism between { IN,H, ¥, ¥, {d'ik}k) and
M* ., We deduce from this that the assertion in question holds.

To finish our proof of Theorem i it suffices to find, to a
given ~, , & mumber 7y, & substructure M of IN and G:M —> M
suoh that (4),(B), and (C) hold. We shall construct 7f;, [ and G
in question by using some properties of indiscernibles in AST,
Recall that there exists an unbounded oy =class J of strong in-

discernibles in N. (See [2].) We start with two lemmas which
will be used frequently in the sequel. Let us introduce the fol-
lowing notation., Let X& N, We denote by mx the gmallest sub-
structure of [N guch that the universe of mx contains X as a
subcless.

Lemma 1, Let I be a class of strong indiscernidles in N,
Assume that Z¢ N has the property (VesI)(Zce).

(1) Let G, be an automorphism of < ZuI,<> which is
identic on Z, Then there exists an automorphism G of the struo=-
ture INz,; and 626, hold.

(2) Assume, moreover, that I has no last element and I£J.

Then I is cofinel in Nyo1°
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Proof, (1) Ve define the mapping G as follows:

Suppose that ae Ny 1 is definable by the formula q>(x,o1 soee
eeesBqgees) Where 8,,., is an inoreasing sequence from I (i.e.
¢, <e;<... and ¢ €I, e, €T,.00), Z1€ 2,000 and G(X,7q,000
ceesXypeee) 6 F o Vo put G(a) = b 1ff @(b,G(e1),e00sZq400.)
holds.

It bEN, 1 is definable by y(x,®45000,21,0..) in [N, whe-
T® 84,00, i85 &n increasing sequence from I and z,€ Z,..., then
there exists an element a&N, ; such that qr(a,G;1 () seve
eeesBqsees) holds. Therefors, the mapping G is onto Nyo1°

To finish the proof, it suffices to prove the following:

If &y,000 €8z 70 §(Xy4ee0) 6F then Wy o+ =9 (81,000) ¢=>
- IlzuI|=g>(G(a.1)....). But W, . < IN and, consequently, we
have to prove:s If &;,... €Nz 1, cg(x,_,...) é} then
W = @(ayyeee) &> ¥ =@ (G(8),00.). Assume that vi(xi,a},...
...,3:1"....) defines a, in W, 01'.... is an increasing sequence
from I and si‘,...e Z. We have
@(aggeee) &> (3140004 Yi(xi,o%....,:%,...) & @(xy,000))

& (3 ) CA vy (x,6,(e)) 0 0sh,ein) &

& @(xy,eee)) o

> @(G(a),000).

(2) Assume a is definable by G (x,@q,0ec5%4400.) in IN,
LT is an increasing sequence from I, %q9eee € Zo Suppose that
esI has the property: {e;,... % S e. We can easily see that a<e
holds.

Lemma 2, Let F:N—> N be a function, definable by the for-
mla @(x,7,7) ¢ } ({3} ) in N, Suppose that I is a class of
strong indiscernibles in N which is unbounded in N. Let <8<
<ey<ey be an inoreasing sequence from I, o < ...
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Then (1) P" [eq,e,1¢ e, and
(2) 4if F is over constants, then F" [ey,e,] & :o'

Proof. (1) Let y(ey,e,,0;) be the formula
(3xele),0,])(R(x)2 ey).

Then %(e1,02,e3) —> ((ecTke> 03) —> %(01 ,ea.o)), which is

impossible.

(2) Let x(eo,eI,ez) be the formula
(I3xeley,0])(P(x)<e,).

»

Then (e ,e4,8,) —> ((e.feI&e2< e<?) —> 7y (e ,e,1)), which
contradicts the assuming property of F.

Let Yo N, 1e[0,2], We are looking for 77, & substruoc-
ture IM of IN end G:M —> M such that (A),(B), and (C) hold.
Let K denote the class of all finite integers.

Case 1 = 1, Choose G € N with {y ju{dqpl s § and
ISJ of the form I = {e}  y such that (YoeK)({ <ey) holds.
Put M = NSuI‘ Let G, be an automorphism ot (G uI,<?, satis-
fying: G, is identical on § and Go(°e) = e,,, holds for eve-
ry cec K. Let GQGO be an automorphism of [M, Assume that
xe [°k"k+1] N M. We can see, by using Lemma 2, that G(x) >
ZG(e) = e 4o > Fy;(x) holds for every i, k. The class I is co-
final in M and, consequently, ¥y = e I and G have the re-
quired properties (A),(B), and (C).

Cese 1 = 2, Choose again § e Nwith {7y (v d{dyl, €¢
end I, M as above. Let G, be identical on ¢ end let Go“o) =

o?

=0, - hold for every ce€ K. Suppose that GaGo is an automorph-
ism of IM. We can see analogously as above (by using the pre-
sumption that ¥, is over constants) that x € [‘k"k+1l nMN—
—> ¥, (x) > G(x) holds for every i, k. We can conclude that
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Y = e IM and G have the required properties.

Case 1 = 3, Let again ¢ € N be such that “’J’of“id;k}xs
¢§ . Choose IcJ of the form I = {ek°§ ke FN, c €K with the
property

(Vk<1)(Vec,deR) [(F<e <o )& (ccd—> e < o,)].

An existence of I is guaranteed by the fact that J is an unboun=-
ded or -class, Put M = "guI'
We define G: ful — § U I as follows:
0) k=0 (mod 3) —> Go(°ko) = e . cEK,
1) k=1 (mod 3)—> G (e ) = & ..., cag,
2) k=2 (mod 3)— G(e;) =& -, cek,
3) e ¢ -'-*Go(oc)-oc.
It is easy to see that G, is an automorphism of (§{ v I,<>.
Let GQG° be an aitomorphism of IM. We can see as above that the
following propositions hold:

(1) k=1 (mod 3)— x6 [‘ko'°k1J nM—> 213(x)< G(x),
k,Je PN,

(11) k=2 (mod 3)—> x€ f'ko")ﬂ l1nM—> Faj(x)> a(x),
k,jc PN,

We deduce, using Lemma 2, that the assertion

(o) Pod(°k0)< e s KyJEPN
holds, too. The clags I is unbounded in M. We conclude from this
and from 0), (o0),(1),(11), and 3) that ~, = O, IM and G have
the required properties.
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