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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

26.3 (1885) 

EQUIVALENCE OF SOME GEOMETRIC AND RELATED RESULTS 
OF NONLINEAR FUNCTIONAL ANALYSIS 

J. DANES 

Abstract: The author s Drop theorem, Generalized drog 
theorem, Krasnoselakii-Zabreiko renorming theorem, Br,owder s 
generalization of the Bishop-Phelps theorem, Ekeland s vari­
ational principle and Caristi fixed point theorem are mutually 
equivalent• 

Key words: drop, fixed point. 

Classification: 47H10, 47H15, 46B99 

Introduction and notation. The goal of this paper is to 
show that the theorems listed in the abstract (see theorems D, 
GD, KZD, B and B', E and C below) are mutually equivalent. 

If D is a convex set, H a set and s a point In a linear 
space, then co(M) denotes the convex hull, of 11, K(D) the convex 
cone generated by D (i.e. the set £tx : x in D, t in R+J), 
K(D,s) = co(D U {&}) (the generalized drop with vertex s and 
basis D). If (X,d) is a metric space, D and S sets in X, s a 
point in X and r > 0, then B(s,r) denotes the closed r-ball 
centered at s, d(s,D) = inf £d(x,s) : x in D} (the distance of 
s from D), d(S,D) » inf fd(x,y) : x in S, y in D3 (the distance 
of the sets S and D) and diam(D) » sup £d(x,y) : x,y in D} (the 
diameter of D). 

Acknowledgement. The results of this paper have been 
obtained during the author's stay at Riga State University 
(Sept.-Oct. 1978). The author is grateful to the authorities 
of Riga State University for excellent conditions for his work. 

1. Preliminary (geometric) results. 

Lemma 1* Let D be a convex set in a linear space X, BQ 

in X and s in K(D,sQ) (so that s « asQ + (1-a)u for some a in 
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[0,1J and u in D). Then: 
(1) s + t(K(D,s 0)-sQ) C K(D,s) C K(D,sQ) for a l l t in tO,al; 
(2) if X is a normed linear space, d(sQ,D) > 0 and tQ » 
• d(s,D)/d(sQ,D), then tQ ̂  a and 
(s + K(D-s0)) OBtB.^dlB^)) C s + t2t0(K(D,sQ)-s0)c 

C K(D,s) C K(D,s0) 
for all 0 £ t-j < t2 .& 1. 

Proof. (1) Let x in s + t(K(D,s0)-sQ) be given (t € fatal)• 
Then x * s + t(bsrt + (1-b)z - s^) « s + t(1-b)(z-s^) for some 

r t -1 -1 

b in [0,1J and z in D. Assume a > 0. Then »0 « a s - a (1-a)u, 
so that x » (1 - a" 1t(1-b))s + a~1t(1-b)(az + (1-a)u) = (1-c)s + 
+ cw, where c * a" t(1-b) and w « az + (1-a)u € D. But 0 ^ c ^ 

iS 1-b -.*£ 1 and hence x i s in K(D,s). Then the inclusion K(I^,s)C 
C K(D,s ) i s t r i v i a l (both D and s are contained in K(D,s ) ) . 

Assume a « 0. Then t « 0 , s « u € D and (1) i s t r i v i a l . 
(2) As (s + K(D-s0)) r iB(0 9 t 1 d(8 9 D)) « 

» s + t1(K(D-s0) O B ( 0 , d ( s , D ) ) ) C s + t2(K(D-sQ) H B(0 ,d(s ,D))) « 
« ( s + K(D-sQ)) D B (s , t 2 d (s ,D)) and similarly s + t 2 t 0 ( K ( D , s Q ) - s 0 ) C 
C s + t 0 (K(D,s 0 ) -sQ ) for 0 J6 t 1 -6 t 2 s.Cr 1, i t i s suff ic ient to 

show that 
(s + K(D-s0)) n B ( s , d ( s , D ) ) c s + t 0 (K(D,s Q ) -s 0 ) C K(D,s). 

Let x in (s + K ( D - s o ) ) n B(s ,d(s ,D)) be given. Then x « s + 
+ T(Z-B ) for some r 1>0 and z in D. As x i s in B(s ,d(s ,D) ) , we 
have d(s,D) ^ |[x-s|| « rttz-s^H, so that x < d(s ,D)/8z-8„i *£. 

o O -j 

j^d(s,D)/d(s0,D) • tQ. Assume tQ > 0 and set b « 1 - rt~ . Then 
b is in [0,1] andx « s + t (bs0 + (1-b)z - sQ) is in 
s + t0(K(D,s0) - s Q). If tQ « 0, then r « 0 and x » s is in 
s + t0(K(D,s0)-sQ). We have proved that (s + K(D-sQ)) f\ B(s,d(s,D)) 
is contained in s + tQ(K(D,s0)-s0). 

By the convexity of D we have d(s,D) « d(asQ + ( 1 - a ) u , D ) . ^ 
«j$.ad(s0,D) + (1-a)d(u,D) » ad(sQ,D), so that tQ<£. a. This in­
equality and (1) imply that s + tQ(K(D,s0)-s0) C K(D,s). 

Remark 1. (s + K(D-sQ)) nB(s,d(s,D)) is a "natural" ball 
section of the cone s + K(D-sQ) parallel to the generalized 
drop K(D,s0). Similarly, s + t0(K(D,s0)-s0) « K(D^ ,s) is a ge-

o 
neralized drop parallel and similar to the generalized drop 
K(D,sQ), where Dt « s + t0(D-s0). 

o 
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Lemma 2. Let D be a convex set and s a point in a linear 
space. If s is not in Dt then 

(s + K(D-sQ)) O K(Dts0) « K(D f) (s + K(D-sQ))ts) 
for each s in K ( D , s Q ) . 

Proof. Let s « asQ + (1-a)u with u in D and a in (0,1l. If 
0 4 h € K(D-sQ)t then the ray sQ + R

+h intersects D and hence 
s + bh is in D for some b > 0. Set w « a(s + bh) + (1-a)u. 
Then w is in D and w « s + abh is in s + "BTh. We have shown that 
each ray s + R+ht 0 4 h € K(D-sQ)t intersects D. 

Let x in (s + K(D-sQ)) A K(DtsQ) be given. We show that 
x is in K(D H (s + K(D-s )),s). We may assume that x 4 s- Then 
0 4 x-s is in K(D-sQ) and hence there exist b > 0 and c > 0 
such that v « s + b(x-s) is in D and w « s + c(x-s) is in D. 
If the set (s + R+(x-s)) n D is unbounded, then one easily sees 
that x £ B + R+(x-s) C K(D fs (s + K(D-s0)),s). Now assume that 
the set (s + R+(x-s)) f\ D is bounded; this set is nonempty be­
cause it contains the point w. The set J « {t ^ 0 : s + t(x-s)€ 
€ DJ contains c and is bounded. We show that s + t(x-s) £ 
f K(Dts0) for each t > J (i.e. for each t satisfying t > 3 for 
each j in J). Assume the contrary. Then y « s + t(x-s) is in 
K(DtsQ) for some t > J (and hence t > c ) , so that y « gsQ + 
+ (1-g)z for some z in D and g in (0tl]. It is easy to see that 

y - (bg + t - c)~ (bgw + g(t-c)v + (1-g)(t-c)z)t 
which shows that y is in Dt i.e. t is in J, a contradiction. 
Hence y is not in K(DtsQ). This implies that 
x € co(4.s! U (D n (s + R+(x-s))) C K(D n (s + K(D-sQ))ts). 

The above considerations give the inclusion 
(s + K(D-a )) n K(Dtsrt) C K(D A (fl + K(D-sJ)ts). 

-*o o o 
As the opposite inclusion is trivial, the lemma is proved. 

J[. Let D be a convex set and s a point in a linear 
o 

space. If aQ is not in Dt then 

s + K(D-s0)C B + K(D-s) 
for all s in K(D,sQ). 

Proof. Let s * asQ + (1-a)u for some u in D and a in (0tl] 
and let x in s + K(D-s0) be giwen. Then x « s + c(v-s ) for 
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1 
some v in D and c >.0. We have w *- av + (1-a)u CD, s^ » a s -

— 1 —1 
- (a" -1)u and hence x * s + c(v-s0) * s + a"" c((av + (1-a)u) -

1 
- s) a s + a c(w-s) is in s + K(D-s). 

Lemma 4. Let D be a convex set, S a set and s a point 
in a linear space. If S K(D,sQ) » S n(s Q + K(D-sQ)) and s is 
a poin< in K(D,»Q) such that S HK(D,s) » £sj , then 

S O (s + K(D-sQ)) =- fs}. 
Proof. By lemma 2 we have 

s € (s + K(D-sQ)) O S - (s + K(D-s0)) O (sQ + K(D-sQ)) O S =. 
• (s + K(D-so)) H K(D,s0) O S = K(D H ( s + K(D-sQ)),s) flSC 
C K(D,s) O S »fs}. 

Lemma 5. Let D be a closed bounded convex body in a normed 
linear space X such that D-z is symmetric for some z in D, 
s Q€ X, S O X , s SK(D,so), K(D,s) O S • £s} and S H K(D,sQ) « 
« S A ( s 0 + K(D-sQ)). Then 

K - xl>K " a\ 
for all x in S with x ̂  s and all t ^ 0, where \ . \ is the 
(equivalent) norm in X defined as the Minkowski functional of 
the set K(D-z0,sQ-z0) U K(D-z0,zQ-s0) and ut • s + t(z0-sQ) 
for t .> 0. 

Proof. Let t ̂  0 and let Bt be the t-ball in the norm l.| 
centered at ut, i.e. Bt -= K(Dt,s)U K(Dt,2ut-s), where Dt «-
=» s + t(D-sQ). As Dj.cz. a + K(D-s0) and 2ut-s € s + K(D^aQ) 
(because (2ut-s) - s « 2t(z -s ) B K(D-s )), we have B.C. 
<Z a + K(D-s0). By lemma 4, (s + K(D-sQ)) Pi S » £s} , so that 
Bt n S « fs}. Hence for any x in S with x 4 a we have x p B. 
and this implies )ut - x| >. \\x^. - s| • t. 

Lemma 6. Let D be a convex set and s a point in a linear 
space satisfying s ti£ D, S £K(D,s ) (so that s » as + (1-a)u 
for some u in D and a in (0,1J), zQ£ D, ut =- s + t(zQ-s0) and 
Dt • s + t(D-sQ) for t ̂  0. Then: 
(1) 2ut - s £ K(D,s) U K(D,2z0-sQ) and 

K(Dt,s) U K(Dt,2ut-s) C K(D,s) U K(D,2zQ-s0) 
for all t € C0,al; 
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(2) 2ut - s € K(D,a) U K(D,2z0-a) and 
K(Dt»») U K(D t,2u t-s) C K(D,s) U K(D,2z0-s)C 
C K(D,s) UK(D,2z0-s0) 

for all t £ tO,a(2-arlL 

.Proof follows from the ident i t ies 
2tit - s - (1-a~1t)s • t(2z0-sQ) • t(a"1-1)u 

and 
2ut - s » (1+t-2a~

1t)s + 2t(a"1-1)u + t(2z0-s). 
Under the corresponding restrictions on t, the right hand sides 
of these identities are convex combinations of points s, 2z -s ,u 
and s, 2z -a, u, respectively- This proves the first part of 
(1) and (2)« The second part of both (1) and (2) follows from 
the first part and the inclusions D t C K(V%,a) C K(D,s) (see 
lemma 1). 

Lemma 7* -Let D he a closed bounded convex body in a normed 
linear space X such that D-zQ is symmetric for some zQ in D, 
S a set in I, s 0€ Xs"-*!), s £ K(D,sQ) (so that s * as0 + (1-a)u 
for some u in D and a in (0,lj)f u% » s + t(zQ-s0) for t 5,v 0. 
Assume that K(D,s)n S * £*}. Then. 
(1) If l*| is the (equivalent) norm on X defined as the 
Minkowski functional of the set K(D-z0»s0-z0) U K(D-zQ,z0-s0), 
then 

I ^ - x\ > luj. - at 
for mil x in S V K(D,2z0-sQ) with x * s and all t in [0,a7. 
(2) If fll.||j is the (equivalent) norm on X defined as the 
Minko 
then 

Hut - xft>Wut - s||l 
for all x in S-^K(D,2z0-s) with xj* and all t in tOfa(2-a)-1J. 
(Sote that a(2-a)-1<T a for all a in (0,1).) 

Proof follows from lemma 6 (compare with the proof of 
lemma 5)# 

2* «Mtt results. Several years ago we have proved the 
following 

Iheorejn p (CDAJreSJ, Drop theorem). Let X be a Banach space, 
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S a nonempty closed subset of X, z a point in X X s, £ > 0 

and 0 < r < R « d(zQ,S). Then there exists a point s in S such 

l l f l - z 0 I K R + e and K(B(zQ,r),fl) f\ S • £a}. 

The proof of theorem D has been given by means of the 

Lemma KZ ([KRASHOSELSKlI, ZABRElKO] ) # Let X be a Banach 
space, x,y in I, 0-^r<p-<C llx-y ft. Then 
diam(K(B(x,r),y) \ B(x,p)) <tf Sdlx-yii-^^^lx-yU+^Olx-yll-p). 

A natural generalization of lemma KZ is the following 

Lemma GKZ. Let D be a bounded convex set in a normed li­
near space X, sQ in X with d(sQ,D) > 0 and s in K ( D , s Q ) . Then 

lls-8011.4(1 - d(s,D)d(s0,Dr
1).(d(s0,D) +diam(D)). 

Hence, if d ( s , D ) > . q , then 
tts-s0U^(1 - %d(s0,D)*

1).(d(s0,D) +diam(D)). 

Proof. As s is in K(D,sQ), we have s » asQ + (1-a)u for 
some u in D and a in (0,1] • Then 
Hs-s0il - (1-a)»u-s0(i ^(1-a)(|Iv-s0ll + l u - v i i ) . 6 

^(1-a)(Jiv-s0li + diam(D)) 
for each v in D, so that 
»s-s0l!^(1-a)(d(s0,D) +diam(D)). 

By lemma 1, a ^ d(s,D)/d(s ,D) and the result follows. 

Remark 2. Setting D • B(x,r), s » y and s • x in 
lemma GKZ, one obtains a slight refinement of lemma KZ. 

Theorem GD (Generalized drop theorem). Let X be a Banach 
space, S a closed subset of X, D a closed bounded convex subset 
of X with d(S,D)> 0 and sQ a point in S. Then there exists 
a point s in Sf. K(D,s ) such that 

K(D,s) H S - £s}. 

Proof. Theorem GD follows from lemma GKZ in the same way 
as theorem D does from lemma KZ (see fDABlSj). 

Remark 3. It is clear that theorem GD implies theorem D. 

Remark 4. Putting theorem GD and lemma 7 (or lemma 5) to-
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gether one may obtain futher results. 

Remark 5» The assumption on the boundedness of the set D 
is essential as the following example shows. Let X be a non-
reflexive Banach space. By the James' theorem there exists a li­
near continuous functional f on X such that ||f I) » 1 and f does 
not attain its supremum on the closed unit ball S of X. Set 
D « {x € X : f(x) *» 2}. For each s in S we have f(s) < 1, 
K(D,s) » {x € X : f (s) < f (x) £ 2} (J £sj and K(D,s) O S » 
«{x € S : f(s)< f(x) < 1} U{sl ,- {s]. 

Theorem 6D may be also derived from 

Theorem E (fEKELAJIDl). Let (X,d) be a complete metric 
space, f:X—>(-co,+ooJ a l.s.jc. function with finite infimum 
i » inf f(X), u in X, £ > 0 with £ > f(u) - i and ^ > 0. 
Then there exists a point v in X such that 

d(u,v)-4 1 A , f(v)^ f(u), 
f(w) - f(v)> -}£d(w,v) for all w ^ v. 

Theorem E implies theorem GD. Set Y » K(D,s0)D S and 
define f:Y—j> R by f(x) • d(x,D). Then Y is a complete metric 
space and f is a continuous function on Y with inf f(Y) « d(Y,D). 
Take £ , 3 > 0 such that 
(§) (1 - a£)d(Y,D)>3ediam(D) 

(for example, one may take £ « "̂  a cT , where S is any 
number satisfying 0 < S<* d(Y,D).(d(Y,D) + diam(D))"1). By 
theorem E there exists s in Y such that f(s).^ f(s ), lls-s U*£ 
£ 1/7| and f(x) - f(s) > -^£)\x-s)! for all x in Y with 
x 4 s, i.e. 
(5§) d(x,D) +T.e))x-sll > d(s,D) for all x in Y with x ^ s. 
We show that K(D,s)f) S - |s3. As K(D,s)C K(D,sQ), this is 
equivalent to showing that K(D,s) O Y « fs). Assume K(Dfs)f) Y + 
4 {s3. Then there exist u in D and a in (0,1) such that x « 
• as + (1-a)u is in Y* By the convexity of D we have 
d(x,D) + ̂ ettx-s!) • d(as + (1-a)u,D) + a£(1-a)|0-u|4 

Zad(s,D) + (1-a)d(u,D) + Ae(1-a)l|s-ut|*£ 
-£ad(s,D) + ̂ e(1-a)(d(s,D) + diam(D)), 

because )ls-u|).£ d(s,D) + diam(D). 
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She above inequality and (§$) give 
d(sfD) < ad(afD) • *e(t-a)(d(sfD) + diam(D)), 

i.e. (as l~a> 0) 

(t - Tit )d(s,D) <C ^€diaa(D) 
and hence O - 3e)d(Y»D) < 3£diam(D)f which is a contra­
diction to (§)• 

As theorem S works on metric spaces and theorem CD only 
on normed spaces, it may he somewhat surprising that theorem QD 
implies E. We show that even theorem D (a weaker form of 
theorem CD) implies theorem B. line trick is to imbed a metric 
space isometrically in a normed linear space. We will use the 
well-known 

Lemma 8. Let (Xfd) be a metric space ,x0 in X and C^(X) the 
Banach space of all continuous bounded (real-valued) functions 
on X (with the supremum norm). For x in Xf let fx(y) » d(xfy) -
- d(z0»y)f y 0L X. Then fx is in C^(X) and the mapping 
f:X—-•CT>(X) defined by Tx • f is an isometry. 

Corollary 1. Let (Xfd) be a complete metric space and 
f:X—>(-oo t+oo3 a l.s.c. function. Define a function 
F}C,(X)—>(-QO,-HXTJ as follows 

(f(r"1u) if u is in .C(X) 

+oo otherwise f 

where T is as in lemma 8« .Chen the set T(X) is closed in C^(X) 

and F is an l.s.c function on C-^X). 

Proof. If t » -H»f then {u£ (̂ (X) : F(u)-£tl« S W * 
If t is finite, then £u £ C^X) : F(u) -£}t • T(£x € X : 
f (x) ̂  t]) f so that tne set £u C (̂ (X) i F(u) « t} is complete 
as the image of the complete set { x ( I : f (x) £ t} under the 
isometry T. The same argument shows that T(I) is complete. 

theorem D implies theorem E. Let (Xfd) be a complete 
metric space, f:X—>(-oo9+coJ a l.s.c. function with finite 
i « inf f (X), u in X with f(n)^ i + C and * > G. By co­
rollary t we may assume that X is a Banach space and d is the 
distance given by the norm of X. Let Y » X x Bf S « epi(f) « 
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- £(*»*) - x i a X. +oo > t ^ . f ( x ) J f 0O - ( u f f ( u ) ) f a > 0 f 

0 < r < 1 f « 0 • ( u f i - 1 ) aad l e t the norm on Y be defined by 
f|(xft)l| - aflxlf + ItJ. 

Then 
0 < r < 1 4 5 U o i S ) .4 Bs50-s0l| - f (u) - i + 1 f 

where J (« 0 , S ) i e the distance from zQ to S in the norm of Y. 
Oae e a s i l y sees that 

K(B(*ofr) fs0) H H . ( s 0 + K) n H, 
aad heaoe 

K(B(aoir)fa0) C\ S - (s0 + K) f) Sf 
where H - {(x,t) : x in I, t ̂  i} and K - K(B(«o-0o§r)) 
(beoauee S C H , K « K(B(Ofr/a) x (i-1-f(u)) aad B(»ofr)nfi • 0\* 
By theorem D applied to the set S n K(B(z0,r),*o) rather than 
to S there exists a point a in S n K(B(z0,r),eQ) euch that 
S n K(B(z0,r),a) - {0} aad hence, by lemma 5 (set P - B(z0,r))$ 

(5) |ut - x l > lî  - el 
for all i ia S with x 1- 0 aad all t > 0 , where 1.1 ie the 
(equivalent) norm oa Y defined ae the Minkowski functional of 
the set K(B(Ofr)fs0-«0)U K(B(Ofr)f*o-0o) aad v^ » 0 + t(«o-0o) 
for t > 0 . It is clear that 0 * (v,f(v)J for some • in dom(f) » 
- {x £ I : f(x) fiaiteli note also that 
/(xft)| - ar"

1|lxll + t»«o-0o!f
1 - ar"1)lxH + t.(f(u)-i+l)~1 

for (xft) ia Y. Applying (5) to aay x - (w,f(w)) with w ia 
dom(f) aad w J •» we have 

((•-wff(v) - f(w) - t(f(u)-i+1)|>1(Of-t(f(tt)-l+1))U 
i.e. 

ar"1llw-vll + |(f(u)-i+ir1(f(w)-f(v)) + t| > t for all t ̂ 0 . 
Thie givee 

ar-1||w-vll+ (f(u)-i+ir1(f(w)-f(v))> 0, 
i.e. 

f(w) - f(•) > -ar*1 (f(tt)-i+1 )Mw-v 1 ̂ -ar~1 (£ +1 )«*-•... 
We have proved that 

f(w) - t(r)> -a(e+1)r"1nw-v1l 
for all w ia dom(f) with w i • aad heaoe for all w ia X with 
w 1- •. 

low we show that fltt-vll*£ i'1r6(£ +1)~1. Let y - (u,f(v)) 
aad let x be the iatereection of the ray a0 + R

+(s-e0) with 
the hyperplaae X x (i-1) (take 1 - i0 if 1 - iQ). Siaoe 
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ls-s0l - Js0-y| |s0-xl IVfol""
1' 'V 2^! * 1* ! V y l " 

• (f(u)-f(v))*(f(u)-i+1)-1 and Js0-x|.£ 2 (both s0 and x lie 
in the unit ball in the norm ! * I centered at zQ), we have 

ar~1|ltt-vll + (f(u)-f(v)).(f(u)-i+1)~1 • |s-flQ|14 
£ 2(f(u)-f(v))-(f(u)-i+1)"1 

(here we4iave used the inequality f(v) a£ f (u) which is an 
obvious consequence of the inclusion (vff(v)) C K(B(zQfr)fs )C 
C BQ + K) and thus 
||u-vll£ a~1r(f(u)-f(v)).(f(u)-i+1)~1 ̂  a~1r(f(u)-i).(f(tt)-i+1)"1^ 

^*"1rC(e+D"*1. 
The proof will be complete if, for given 7. > 0f we are 

able to find positive a such that 

1/?S - a~1r£(£+1)~1 and }£ - ar~1(£+1). 
But this is easy: given ^ > 0, set a « ̂ £ r(£+1)~ . 

In fBRtlZISf BROWDER] there is shown that theorem B below 
implies theorem D* 

Theorem B (fBRJllZIS, BROWDER], Theorem 4). Let S be a closed 
subset of a Banach space I and sQ in X V S. Let 0 < r < d(zQf S) 
and s0 in S. Then there exists a point s in S O K(B(z fr)fs ) 
such that 

S n(s + K) t\ B(B,S) « {si 

for all J < d(z0,S) - rf where K » K(B(zQ-s0)fr)). 

How we show that 

Theorem D implies theorem B. By theorem D applied to the 
set S n K(Df s0) rather than to S (where D «- B(zQfr) and £ > 0 
is arbitrary) there is A in SnK(D,sQ) such that Sfl K(Dfs) * 
m {sj. By lemma 1 (with t.| a 1) we have 

(s + K) H B(s,d(flfB(z0,r)) C K(Df s). 
Since d(s,B(z fr)) » Ss-z0U -r^d(z0>S) - rf we have also 
(s + K) O B(sfd(zo,S)-r) C K(Dfs) and hence 

S H(s + K) HB(flfd(zofS)-r) » £s}. 

We have shown, in fact, that theorem D implies the follow­
ing apter form of theorem B* 

Theorem B#. Tinder the hypotheses of theorem B, there 
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exists a point s in S fi K (B (z Q , r ) , s Q ) such that 
S O (s + K) H B(s,d(z0»S)-.r) • {s}. 

Let us remember the Caristi fixed point theorem: 

Theorem C ( [CARISTl] , fCARISTI, KIRK]). Let (X,d) be 
a complete metric spaee, f a real l.s.c. function on X bounded 
below and T:X—^X a mapping such that d(x,Tx) ̂  f(x) - f(Tx) 
for all x in X. Then T has a fixed point. 

The equivalence of theorems C and £ is evident (see also 
TBR^ZIS, BROWDER]). 

Let us mention also a refinement of Krasnoselskil-Zabrelko 
renorming theorem CKRASNOSELSKlI, ZABREJ-KO] as stated in 
[DABBS]." 

Theorem KZD. Let X be a Banach space, S a closed set in X 
and zQ a point in X \ S. Let 0 < S < 1. Then there exists an 
equivalent norm f . I on X such that the I • (-distance of z 

o 
from S is attained at a point of S and at most at two points 
of S (in this case the sum of these two points equals 2zQ), and 
such that 

(1 - S) ||. U ̂  \ .\ ^ \\.\\ . 

In rDAHE5 3 we have shown that theorem D is equivalent to 
theorem KZD. Summarizing, we may state the following 

CLAIM. Theorems D, GD, KZD. B, B#
t £ and C are mutually 

equivalent • 

Concluding remark. The manuscript of this paper has 
circulated since Dec. 1978* Originally, we have not intended 
to publish it. As the number of papers in which the same (or 
related) results are derived by one ef the equivalent theorems 
considered in this paper is increasing, we have decided to 
publish the manuscript. In the meanwhile, J*-?. Penot sent me 
his preprint "The drop theorem, the petal theorem and Bkeland 's 
variational principle" (Sept. 1984) where he also proves among 
others the basic implication theorem D =->theorem £. Unfortunately, 
a common publication Is impossible because he has sent his pre­
print for publication. 
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