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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
26,3 (1885)

EQUIVALENCE OF SOME GEOMETRIC AND RELATED RESULTS
OF NONLINEAR FUNCTIONAL ANALYSIS
J. DANES

Abstract: The agthor'a Drop theorem, Generalized drop
theorem, Krasnoselski -Zabreiko renorming theorem, Browder s
generalization of the Bishop-Phelps theorem, Ekeland 8 vari-
ational principle and Caristi fixed point theorem are mutually
equivalent.

Key words: drop, fixed point.
Classification: 47H10, 47H15, 46B99

Introduction and notation. The goal of this paper is to
show that the theorems listed in the abstract (see theorems D,
GD, KzD, B and B", E and C below) are mutually equivalent.

If D is a convex set, M a set and s a point in a linear
space, then co(M) denotes the convex hull of M, K(D) the convex
cone generated by D (i.e. the set §tx : x in D, t in R"'}),
K(D,8) = co(D U {8}) (the generalized drop with vertex s amnd
basis D). If (X,d) is a metric space, D and S sets in X, s a
point in X and r > 0, then B(s,r) denotes the closed r-ball
centered at s, d(s,D) = inf §d(x,s) : x in D} (the distance of
s from D), d(S,D) = inf {d(x,y) : x in S, y in D} (the distance
of the sets S and D) and diam(D) = sup {d(x,y) : x,y in D} (the
diameter of D).

Acknowledgement. The resulis of this paper have been
obtained during the author’s stay at Riga State University
(Sept.-Oct. 1978). The author is grateful to the authorities
of Riga State University for excellent conditions for his work.

1. Preliminary (geometric) results.

Lemma 1. Let D be a convex set in a linear space X, 8,
in X and 8 in K(D,so) (80 that 8 = as, + (1-a)u for some a in
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[(0,1] end u in D). Then:
(1) 8 + t(K(D,so)-so) € k(D,s) c K(D,s,) for all t in {0,a];
(2) if X is a normed linear space, d(so,D)> Oand t =
= d(s,D)/d(so,D), then toé e and
(s + K(D-s,)) N B(s,t,d(8,D)) C 8 + t,t,(K(D,8)-8,) C
C K(D,8) C K(D,s)
for all 0 £ ¢, £ t, K 1.

Proof. (1) Let x in s + t(K(D,s )-8 ) be given (t € f0,a1).

Then x = 8 + t(ba + (1-b)z - 8 ) =8 + t(1-b)(z—s ) for some
b in [0,1] and zinD. Ansumea>0. Then 8 =a1a— a~'(1-a)u,
so that x = (1 - a. 11:(1-).)))5 + a t(1—b)(az + (1-a)u) = (1-¢c)8s +
+ cw, where ¢ = a” t(1 b) and w = az + (1-a)u € D. But 0 £ ¢ <
£ 1-b <1 and hence x is in K(D,s). Then the inclusion K(iu,8) C
[esd K(D,so) is trivial (both D and s are contained in K(D,so)).
Assume & = O, Then t = 0, s = u €D and (1) is trivial.

(2) 4as (8 + K(D-—so)) ﬁB(s,t1d(s,D)) =
=8 + t1(K(D-a°) N B(0,d(s,D)))C 8 + tz(K(D—so) N B(0,d(s,D))) =
= (8 + K(D-so)) [p) B(s,ted(s,D)) and similarly s + tzto(K(D,so)-so)C
Cs + to(K(D,so)-so) for O é.t1 < t, <1, it is sufficient to
show that
(s + K(D—so)) M\ B(s,d(s,D))c 8 + to(K(D,ao)-so)c K(D,s).

Let x in (8 + K(D—so))ﬂ B(s,d(s,D)) be given. Then x = 8 +
+ r(z—s ) for some r >0 and 2 in D. As x is in B(s,d(s,D)), we
have d(a D) 2 jx-8l} = rliz-s ofl» 80 that r < d(s,D)/nz—s <
£ d(s,D)/d(s,,D) = . Assune ty> 0 and sot b = 1 - rt;‘
b is in [0,1] andx = a + t (b8, : (1-b)z - 8_) is in
s + to(K(D,so) - so). If t, =0, then r = 0 and x = 8 18 in
8 + to(K(D,ao)-so). We have proved that (s + K(D—so)) N B(s,d(s,D))
is contained in s + to(K(D,so)-so).

By the convexity of D we have d(s,D) = d(as + (1-a)u,d) <

sed(so,D) + (1-a)d(u,D) = ad(so,D), so that to_ a. This in-
equality and (1) imply that s + t (K(D.s )-s ) € K(D,s).

« Then

Remark 1. (s + K(D-s,)) N B(s,d(s,D)) is a "natural” ball
section of the cone s + K(D-s ) parallel to the generalized
drop K(D,s, ). Similarly, s + t (K(D 8 )—s ) = K(Dt ,8) is a ge-

neralized drop parallel and similar to the generalized drop
K(D,ao), where Dto =8 + to(D—so).
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Lemma 2. Let D be a convex sel and 8, & point in a linear
space. If 8, is not in D, then

(s + K(D-8)) N K(D,8,) = K(D N (8 + K(D-5.)),s)
for eeach s in K(D,so).

Proof. Let 8 = as ) + (1-a)u with u in D end a in (O, 1. 1f
0 # h € K(D-8 ), then the ray s, + R*h intersects D and hence
+ bh is :Ln D for some b> 0. Set w = a(s_ + bh) + (1-a)u.

Tﬁanwismnmdw-s+abhisins+n*h We have shown that
each ray 8 + R*'h, 0 #h € K(D—so). intersects D.

Let x in (8 + K(D—so)) n K(D,so) be given. We show that
x is in K(D N (s + K(D—ao)),s). We may assume that x # s. Then
0O f§ x-38 is in K(D—ao) and hence there exist b > 0 and ¢ 3» 0 .
such that v = 8, + b(x-s8) is in D and w = 8 + c(x-8) is in D.
If the set (8 + R'(x-8)) N D is unbounded, then one easily sees
that x € 8 + RY(x-8) CK(DN (s + K(D—s )),8). Now assume that
the set (8 + RT(x-8)) N D is bounded; this set 18 nonempty be-
cause it contains the point w. The set J = {t 2 0 : 5 + t(x-8)€
€ D} contains ¢ and is bounded. We show that s + t(x-s) ¢
f K(D, 8, ) for each t > J (i.e. for each t satisfying t > j for
each J 1n J). Assume the contrary. Then y = 8 + t(x-s8) is in
K(D,so) for some t > J (and hence t >c), so that y = gs, +
+ (1-g)z for some z in D and g in (0,1). It is easy to see that

y = (bg +t - c) '(bgw + g(t-c)v + (1-g)(t-c)z),
which shows that y is in D, i.e. t is in J, a contradiction.
Hence y is not in K(D,ao). This implies that
x ¢ co({s3U (D N (s + R*(x~8))) C K(DN (5 + K(D-s,)),8).
The above considerations give the inclusion
(s + Kgp-s_o)) N K(D,so) CEKDN(s + K(D—ao)),a).
As the opposite inclusion is trivial, the lemma is proved.

Lemma 3. Let D be a convex set and 5, a point in a linear
space. If 8, is not in D, then
8 + K(D—-s )C 8 + K(D—-a)
for all s in K(D, 8,).

Proof. Let s » as  + (1-a)u for some u in D and a in (0,1}
and let x in 8 + K(D—ao) be given. Then x = 8 + c(v—so) for
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gome v in D and ¢ > 0. We have w = av + (1-a)u €D, 8, = als -

- (3'1-1)11 and hence x = 8 + c(v-8,) = 8 + a”c((av + (1-a)u) -
-8) =8 + a'1c(w-s) is in s + K(D-s).

Lemma 4. Let D be a convex set, S a set and 8, 8 point
in a linear space. If S K(D,s,) = SM(s, + K(D-5,)) and s is
a poinf in K(D,s ) such that S MK(D,s) = {s} , then

SN(s + K(D—so)) = fs}.

Proof. By lemma 2 we have
8 € (s + K(D—so)) NS = (s + K(D—ao)) N(s, + K(D—-so)) Ns =
= (s + K(D~s8))) N K(D,s,) N8 = K(D N(s + K(D-8,)),8) NS C
C K(D,s) N S = {s}.

Lemma 5. Let D be a closed bounded convex body in a normed
linear space X such that D--zo is symmetric for some Z, in D,
8,€ X, SCX, s €K(D,s,), K(D,8) M 5 = {8} and SN K(D,8,) =
= Sf\(sO + K(D—so)). Then

lu, - x> |u; - s\
for all x in S with x # s and all t>> 0, where \.| is the
(equivalent) norm in X defined as the Minkowski functional of
the set K(D—zo,eo—zo) V) K(D—zo,zo-so) and u =8+ t(zo—so)
for t > 0.

Proof. Let t >0 and let By be the t-ball in the norm \.|
centered at Ug, i.e. Bt = K(Dt,e)u K(Dt,Zut-s), where Dt =
=8 + t(D—so). As D, C 8 + K(D—so) and 2u,-s € 5 + K(D—so)
(because (Zut-s) - 8= 2t(z°-a°) € K(D—so)), we have B,C
C 8 + K(D-s,). By lemma 4, (s + K(D-s,)) NS = {s}, so that
By N 5 = {s}. Hence for any x in S with x # s we have x ¢ B
and this implies Juy - x[ > lu, - 8| = t.

Lemma 6. Let D be a convex set and 8, 8a point in a linear
space satisfying so¢ D, 8 EK(D,sO) (so that s =» as, + (1-a)u
for some u in D and a in (0,1]), 2,€ D, uy =8 + t(zo-so) and
Dt =8 + t(D—so) for t 2 0. Then:

(1) 2u, -8 € K(D,s) U K(D,Zzo—so) and

K(Dt,s) v K(Dt,2ut-s) C K(D,s) U K(D,Zzo-so)

for all t € [0,a];
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(2) 2u, - s €K(0D,8)U K(D.2zo--) and
K(Dt.a) U K(Dt,Zut-s) C K(D,s) U K(D,Zzo—s) fed
C K(D,s) U K(D,Zzo-so)

tor all t € [0,a(2-a)""L

Proof follows from the identities

2u, ~ 8 = (1-a"'t)s + t(2z-8,) + t(a~'e1)u
and

Zut -8 (1+t-2a"1t)s + 2t(a‘1—1)u + t(Zzo-a).
Under the corresponding restirictions on t, the right hand sides
of these identities are convex combinations of points s, Zzo-so,u
and s, Zzo-s, u, respectively. This proves the first part of .
(1) and (2). The second part of both (1) and (2) follows from
the first part and the inclusions D, C K(D,‘,a) C K(D,8) (see
lemma 1).

Lemma 7. Let D be & closed bounded convex body in a normed
linear space X such that D--zo is symmetric for some z, in D,
SasetinX, s € XD, 8 € K(D,so) (8o that 8 = as, + (1-a)u
for some w in D and & in (0,1]), u, = 8 + t(z,-8,) for t > 0.
Assume that K(D,s)M S = {s}. Then:

(1) 1£ | .| is the (equivalent) morm on X defined as the
Minkowski functionml of the set K(D—zo,ao-zo) v K(D-zo.zo-so),
then

lu - x\> lu, - sl
for wll x in S\ K(D,2z ~s ) with x ¥ & and all ¢ in [o,a].
(2) If M.H] is the (equivalent) norm on X defined as the
Minkowski functional of the set K(D—zo,n-zo) U K(D~z,2 ~8),
then

Mu, - x>, - sl
for all x in S K(D,2s-5) with x¢s and all t in [0,a(2-a)""'].
(Fote that a(2-a)'1< a for all a in (0,1).)

Proof follows from lemma 6 (compare with the proof of
lemza 5).

2., Mpig results. Several years ago we have proved the
following

Theorem D ([DANEE], Drop theorem). Let X be & Banach space,
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S a nonempty closed subset of X, z & point in X \S, £> 0
and 0 < r <R = d(zo,S). Then there exists a point s in S such
that

Ils - zll<R+€ and K(B(z,r),s)N S = {s}.

The proof of theorem D has been given by means of the

Lemme KZ ([KRASFNOSELSKII, ZABREIKO]). Let X be & Banach
space, x,y in X, 0L r < p<£ lix-yi. Then
diam(K(B(x,T),¥) \ B(x,p)) £ 2(Ux-yl-1) "' (Nx-yl+r) (lx-yh-p) -

A natural generalization of lemma KZ is the following

Lemma GKZ. Let D be a bounded convex set in a normed li-
near space X, 8, in X with d(so,D) > 0 and s in K(D,so). Then

ls-8,ll & (1 - a(s,D)d(s,,D)"").(d(s,,D) + dianm(D)).
Hence, if d(s,D) > q, then
Ba-s )l < (1 - qd(s,D)"").(d(s,D) + diam(D)).

Proof. As s is in K(D,ﬂo). we have 8 = as + (1-a)u for
some u in D and a in (0,1]. Then
is-s I = (1-a)Ru-s |\ < (1-a)(v-s ll + Iu-vi) &
£ (1-a)(liv-s )l + diam(D))
for each v in D, so that
ls-8 Il £ (1-a)(a(s,,D) + diam(D)).
By lemme 1, a > d(s,D)/d(so,D) and the result follows.

Remark 2. Setting D = B(x,r), s,=yand s =xin
lemma GKZ, one obtains a slight refinement of lemma KZ.

Theorem GD (Generalized drop theorem). Let X be a Banach
space, S a closed subset of X, D a closed bounded convex subset
of X with d(S,D)> O and s, 8 point in S. Then there exists
a point 8 in SN K(D,so) such that

K(D,s) N 5 = {s}.

Proof. Theorem GD follows from lemma GKZ in the same way
as theorem D does from lemma KZ (see [DANES]).

Remark 3. It is clear that theorem GD implies theorem D.

Remark 4. Putting theorem GD and lemma 7 (or lemma 5) to-
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gether one may obtain futher results.

Remark 5. The assumption on the boundedness of the set D
is essential as the following example shows. Let X be a non-
reflexive Banach space. By the James’ theorem there exists a 1i-
near continuous functional f on X such that ||f]} = 1 and £ does
not attain its supremum on the closed unit ball S of X. Set
D={x€X: £(x) = 2}. For each s in S we have £(8) < 1,

K(D,8) = {x € X : £(8) < £(x) < 23U {&} and K(D,s) N5 =
={xes: £(a) < £f(x) <13 U{s} # {s].

Theorem GD may be also derived from

Theorem E ([EKELAND]). Let (X,d) be & complete metric
space, £:X—>(-00,+0)] a l.s.c. function with finite infimum
i=idnf £(X), uin X, €> 0 with € > f(u) -i and A D> O.
Then there exists a point v in X such that

a(u,v) & /2, £(v)£ £(u),

f(w) - £(v)> -)ed(w,v) for all w # v.

Theorem E implies theorem GD. Set Y = K(D,so) N S and
define f:Y—» R by f(x) = d(x,D). Then Y is a complete metric

space and f is a continuous function on Y with inf £(Y) = 4(Y,D).
Take é,*'/\ > 0 such that
€)) (1 - 2€)a(Y,D) > A e diam(D)
(for example, one may take £ = A = 51/2, where J is any
number satisfying 0 < &'< d(Y,D).(d(¥,D) + diam(D))~'). By
theorem E there exists s in Y such that f£(s) £ f(so). ls-s N<
< 1/A2 and £(x) - £(8)> -Aelx-s) for all x in Y with
x # 8, i.e.
(§§) a(x,D) +Aehx-sll > d(s,D) for all x in Y with x # s.
We show that K(D,s)) S = £s3. As K(D,s)C K(D,s.), this is
equivalent to showing that K(D,s)N Y = {e}. Assume K(D,s) N Y ¢
¢ {s}. Then there exist u in D and a in (0,1) such that x =
= a8 + (1-a)u is in Y. By the convexity of D we have
d(x,D) + AeNx-sh = d(as + (1-a)u,D) + A&(1-a)lls-ul<

£ ad(s,D) + (1-a)d(u,D) +Ae(1-a)lls-ull£

< ad(s,D) + A& (1-a)(d(s,D) + diam(D)),
because )l s-ull £ d(s,D) + diam(D).
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The above inequality and (§§) give
d(s,D) L ad(s,D) + A€(1-a)(d(s,D) + diam(D)),
i.e. (as 1-a> 0)
(1 - A€ )a(s,D) £ AE aian(D)
and hence (1 - ) €)d(Y,D) < A€diam(D), which is a contra-
dictiom to (§).

As theorem E works on metric spaces and theorem GD only
on normed spaces, it may dbe somewhat surprising that theorem GD
implieas E. We show that even theorem D (& weaker form of
theorem GD) implies theorem E. The trick is to imbed a metric
space isometrically in & normed linear space. We will use the
well-kmown

Lemma 8. Let (X,d) be a metric space,Xo in X and C,(X) the
Banach space of all continuous bounded (real-valued) functions
on X (with the supremum norm). For x in X, let :l’x(y) = d(x,y) -
- d(xo,y), y€X. Then £, is in cb(x) and the mapping
P:X=>C) (X) defined by Tx = £, is an isometry.

Corollary 1. Let (X,d) be & complete meiric space and
£:X—»(-w,+®] a l.s.c. function. Define & function
F:C, (X)—> (- ,+w] as follows

(T W) if u 18 10 T(X)
F(n) - {

+00 othexwise,
where T is as in lemma 8. Then the set T(X) is closed in ch(x)
and P is an l.s.c. function on cb(x).

Proof. If t = +, then fu g€ C(X) : F(u) £ t}= ¢ (X).
If t is finite, then {u € Cy(X) : F(u) €}t = M({xe€ X :
2(x) € 1), s0 that the set {u € ColX) : Flu) £ t} is complete
as the image of the complete set {x € X : £(x)< t3 under the
isometry T. The same argument shows that T(X) is complete.

Fheorem D implies theorem E. Iet (X,d) be & complete
metric space, £:X—>(-,+w] a l.s8.c. function with finite
i=inf £(X), u in X with f(u)< 1 + € and A > 0. By co-
rollary 1 we may assume that I is a Banach space and & is the
distance given by the norm of X, Let Y = X X R, S = epi(f) =
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= {(x,t) : xin X, +0 > t > £(x)} , s, = (u,f(w)), a>0,
0L rLt, g, = (u,i-1) and let the norm on Y be defined by
Nix,t)l = apxpl + It].
Then
0Lr<1<L a(z »8)£L g ~8 | = £(u) - 1 + 1,
where K(no,s) ise tho d:l.nta.nco rrom z, to S in the norm of Y.
One easily sees that
K(B(so,r),lo) NH= (8
and hence
K(B(so,r) 8,) NS = (s +K)N s,
where HE = {(x,t) : x in X, t;i} and K = K(B(z-s,,r))
(because S< H, K = K(B(0,r/a) x (i-1-f(u)) and B(so,r)ﬂn - @),
By theorem D applied to the set SN x(B(zo,r),lo) rather than
to 8 there exists a point s in 5 NK(B(z,,r),s,) such that
sN K(B(ao,r).s) = {8} and hence, by lexma 5 (set D = B(zo.r)).
€)) lut-xl>lut--l
for all X in S with X ¥ & and all t >0, where ).\ 1is the
(equivalent) norm on Y defined as the Minkowski functional of
the set K(B(D.r),no-:o)u K(B(O.r).zo—soJ and u, = 8 + t(so-uo)
for t » 0. It is clear that 8 = (v,f(v)) for some v in dom(f) =
- {x€x: 2(x) finite}; note also that
I(x,%)] = ax™'izli + ths -s )" = o’ el + t.(2(u)-141)""
for (x,t) in Y. Applyina (§) to any x = (w,2(w)) with w in
dom(f) and w ¥ v, we have
[(v-w,2(¥) = £(w) = $(£(w)=-1+1)] > 1(0,-4(2(u)-1+1))],
i.e.
ar Ww=vll + [(2(u)-141)"1(L(W)-2(¥)) + t] >t for all ¢ > 0.
This gives
ar” Vw=vll + (£(u)-141)"1(2(w)-2(¥)) > O,
i.e.

°+x)nn,

2(w) - 2(v) > -ar~  (£(u)-1e1)Uw-v 1 3 -ar~ (& +1)Uw-vII.
We have proved that

£(w) = 2(v) > -a(€ +1)r" Iw-vl)
for all w in dom(f) with w ¥ v and hence for all w in X with
wiv.

Now we show that fu-vii< a~'r 8(€ +1)~1. Let y = (u,2(v))
and let x be the intersection of the rey s, + R"’(u—-o) with
the hyperplane X X (i-1) (teake x = 8, if s = 8. ). Sinoe

- 451 =



la-s) = Iageyl lagex lagon, ™", Iagesgl = 1 1oyl -
= (f(u)-2(v)).(£(u)-i+1)""' and lso—xl 2 (both s, and x lie
in the unit ball in the norm |.| centered at z ). we have
ar Mu-vil + (£(0)-£(v)).(2(u)- 1+1)" = |85, 2
< 2(2(u)-2(v))=(L(u)-1+1)""
(here we/have used the inequality f£(v) £ f£(u) which is an
obvious consequence of the inclusion (v,f(v)) € K(B(zo,r),so)c
C 8, + K) and thus
flu-v < &~ 'r(L(u)-£(v)). (£(u)-1+1)"" £ &~ 'r(£(u)-1).(£(u)-1+1)""g
<o lre(e s
The proof will be complete if, for given A> 0, we are
able to find positive a such that
/A = a'r &(8-&1)'1 and A€ = ar 1(6 +1).
But this is easy: given A > 0, set a = Ag r(€ +1)"

In [BREZIS, BROWDER] there is shown that theorem B below
implies theorem D.

Theorem B ([BREZIS. BROWDER], Theorem 4). Let S be a closed
subset of a Banach space X and 8, in X S. Let 0<&r <« d(zo,s)
and 8, in S. Then there exists a point 5 in SN K(B(zo,r),so)
such that

SN(s +K)NB(s,d) = {s}
for all § < d(z,8) - r, where K = K(B(z-8,),7)).

Now we show that

Theorem D implies theorem B. By theorem D applied to the

get SN K(D,so) rather than to S (where D = B(zo,r) and € > O
is arbitrary) there is s in S r\K(D,ao) such that SN K(D,s) =
= {8}. By lemma 1 (with t, = 1) we have

(s + K)N B(s,d(e,B(zo,r)) C K(D,s).
Since d(s,B(zo,r)) = 8-z \) -r>,d(s°,S) - r, we have also
(s +K)N B(a,d(zo.s)—r) < K(D,s) and hence

5 N (s + K) N B(s,d(z,8)-r) = {a}.

We have shown, in fact, that theorem D implies the follow-
ing apter form of theorem B.

Theorem B°. Under the hypotheses of theorem B, there
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exists a point 8 in SN K(B(zo.r).so) such that
SN (s + K) N B(s,d(z,5)-7) = {s}.

Let us remember the Caristi fixed point theorem:

Theorem C ( [CARISTI], [CARISTI, KIRK]). Let (X,d) be
a complete metric space, f & real l.s.c. function on X bounded
below and T:X—» X & mapping such that d(x,Tx) £ £(x) - £(Tx)
for all x in X. Then T has a fixed point.

The equivalence of theorems C and E is evident (see also
(BREZIS, BROWDER]).

Let us mention also a refinement of Krasnoselskil-ZabreIxo
renorming theorem [KRASNOSELSKII, ZABREIRO] as stated in
[DANES]).

Theorem KZD. Let X be a Banach space, S a closed set in X
and 2z, @ point in X\ S, Let 0 < § < 1. Then there exists an
equivalent norm | . | on X such that the | .|-distance of %,
from S is attained at & point of S and at most at two points
of S (in this case the sum of these two points equals Zzo), and
such that

SIS N PN PR PR I T

In [DANES ) we have shown that theorem D is equivalent to
theorem KZD. Summarizing, we may state the following

CLAIM. Theorems D, GD, KZD, B, B’, E and C are mutually
equivalent. ’

Concluding remark. The manuscript of this paper has
circulated since Dec. 1978. Originally, we have not intended
to publish it. As the number of papers in which the same (or
related) results are derived by one of the equivalent theorems
considered in this paper is increasing, we have decided to
publish the manuscript. In the meanwhile, J.-P. Penot sent me
his preprint "The drop theorem, the petal theorem and Ekeland ‘s
variational principle” (Sept. 1984) where he also proves among
others the basic implication theorem D =ptheorem E. Unfortunately,
& common publication is impossible because he has sent his pre-

print for publication.
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