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COMMENTATIONES MATHEMATIQUE UNVERSITATIS CAROLINAE 

26.2 (1965) 

SURJECTIVITY THEOREMS FOR MULTI-VALUED MAPPINGS 
OF ACCRETIVE TYPE 
Claudio H. MORALES 

ABSTRACT. Let X be a Banach space and T a m-accretive mapping defined 

X 
on a subset D of X which takes values in 2 . Suppose the dual space 

* -

X is uniformly convex and suppose, in addition, T is ̂ -expansive on 

D(i.e., lu-vl £ 4>(8x-yll) for all x, y € D, u e T(x) and v c T(y)). 

Then it is shown that T maps D onto X. A number of related surjectivity 

results are obtained for a more general class of Banach space by assuming, 

among other conditions, that T is continuous. Also included is an ex­

tension of Delading's domain invariance theorem to multi-valued mappings. 

Key words and phrases: m-accretive mapping, surjectivity 

AMS(MOS) SUBJECT CLASSIFICATIONS (1980): PRIMARY 47H10 

Let X be a (real) Banach space and let B(x) denote the family of 

all nonempty, bounded and closed subsets of X supplied with the Hausdorff 

X* 
metric H. Let J:X->2 be the duality mapping defined by 

J(x)«{J£X*:<x, j > -1 j l2«l* l2Jf. 

A mapping T:D<=X-*8(X) is said to be strongly accretive if there exists a 

constant ce(0,l) such that If x.yeD, ueT(x), veT(y): 

(1) <u-v,j>2clx-yl 
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for some jeJ(x-y). This is a well-known class of mappings which has been 

studied in various contexts by several authors (e.g., C33, C53, C63, C93, 

Cl23). Particularly, we note that any mapping of the form I-T, where I 

is the Identity and T a single valued contraction mapping (i.e., a mapping 

with Lipschitz constant 1-c) trivially satisfies (1). If the condition (1) 

holds for c»0, then T is said to be accretive and, if in addition the 

range of I4rT is precisely X for all r > 0, then T is said to be 

a-accretive. 

Following Kato C83» we may formulate (1) in a more geometric fashion. 

A mapping T from D to 8(X) is strongly accretive if and only if for 

some constant k<l and for each x,y€D, u€T(x), veT(y): 

(2) (X-k)i.x-y»£B (X-l) (x-y)+u-vll 

for all X>k; while T is accretive if and only if (2) holds for k-1. 

The purpose of this paper is to obtain a number of results involving 

accretive operators which are intimately connected with the theory of ordinary 

differential equations in Banach spaces. In fact we are able to present new 

surjectivity theorems for multivalued mappings which are defined in a 

portion of the Banach space X with no explicit assumption on 

the continuity of the operator T. Among our results we show 

that within the framework of spaces X whose dual spaces X* are uniformly 

convex, if D is a subset of X and T:D+2 is m-accretive and ^-expan­

sive (in the sense described below), then T is surjective. This fact 

represents a substantial generalization of corollary 3 and Theorem 4 of 

Kartsatos D3, who assumes that T is a single-valued mapping, and in the 

first instance that T is defined in the whole space, while in the second T 

satisfies the assumption where T-p does not attain its infimum on the 

boundary of an open subset of D for each pcX. Also, in contrast to our 

approach, Kartsatos derives his results from an existence theory for dif-
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Along with the surjectivity problems, we derive some domain invariance 

theorems which represent extensions of known results to the multi-valued 

case. Finally, we derive a new theorem concerning the existence of zeros 

for continuous and ̂ -accretive mappings (in the sense of til) under a 

standard boundary —"^.tion. 

Throughout this paper we use D and 3D to donote, respectively, th» 

closure and boundary of a subset D of the space X. We also use IAt to 

denote inf{HxlhxeA}, Acx and B(xQ;r) to denote the open ball of radius 

r about xQ. 

4- + + * 

Let 4>:3R -> B# be a function which is continuous on IR with 
X 

<K0)*0 and <j>(r)>0 for r>0 . A mapping T:DcX+2 i s said to be <fr-ex-

pansive on D if for every x,ycD, ucT(x) and vcT(y): 

(3) llu-vll^(llx-yll). 

TkcoKem 1. Let X be a Banack bpacc ttfttô e dual 6pacc X* AJ> uniioKmly 
X 

convex and leX V be a *ub*eX oi X. Suppo*^ T:V + 2 <U a m-occAettve 

and <b-^xpan6tv^ mapping on V ioft voklck tun tni $U) > 0. Tken T map* 
X ->• oo 

V onto X. 

Before proving Theorem 1, we need the following lemma which is an 

extension of Lemma 2.5 of Kato C83 to multi-valued mappings and include 

its proof for the sake of completeness. 

Lemma* LeX X* be unliomly convex and let T:V c X •* 2 be m-accKttlve on 

V. Suppo6^ tk^h.^ ^xu>tl> a -aeqaence {x } In V 4acn that x + x € X and 

a bounded -Aeqaence (a > in X ioK wkick a € T (x ) . Tkcn x € V and 

a-iabaeqaence oi {a } conveKgu weakly to u e T(x). 

Proof. From the fact that X* is uniformly convex, we may derive that the 
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mapping J is single-valued and uniformly continuous on bounded subsets , 

of X (see Lemma 1.2 of £61). 

For every y € D, the accretiveness of T implies that 

(4) <v - un, J(y - xn)> >- 0 

for all v e T(y). Since X is reflexive, there exists a subsequence 

{u } of {u } so that u -* u e X as k -• « ('»-*•" denotes weak 

convergence). Since y - x -*- y - x as k -*- «, J ( y - x ) -»• J(y - x) 
nk °k 

and by (4) we obtain 

<v - u, J(y - x)> £ 0. 

By choosing a - 1 in Lemma 1.1 of (.83, we yield 

(5) ly - xl <. ly - x + v - ul. 

Since the mapping (I + T) is single-valued and defined from X onto 

D, we select y e D for which x + u € (I + T)(y) and for a suitable 

v € T(y) we have x + u - y + v, which implies with (5) that x » y 

and u e T(x). 

Proof of Theorem 1. Let 0 < n < lim inf $(r) and let uQ € X. Now, 
r -> oo 

we choose a bounded neighborhood N such that u* £ N c X and 

iu - uQl <- n/2 for all u € N. Let x € T (N). Then there exists 

u € N such that u € T(x). By choosing xQ € T~ 0 0 , (3) implies 

<fr(Ix - x0DiS BU - uQl £ n/2. 

Therefore the assumptions on <t> imply that the set {fix - xQR:x € T~ (N)} 

is bounded, i.e., T" (N) is bounded. On the other hand, the family 

{T + XI:X > 0} converges uniformly in the sense of definition 5.3 of 

Browdez £43. Therefore, Theorem 5.1 of C43, implies that R(T), the range 
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of T is dense in X. To complete the proof, observe that if u € R(T) 

so that u -*• u, then u e T(x ) for some x € D. The fact that T is 
n n n n 

^-expansive implies x **> x e X. Therefore, by the previous lemma, x € D 

and u e T(x), proving R(T) is closed. 

Next, we prove a surjectivity theorem for a general Banach space under 

the restriction that the operator T has to be defined in the whole space. 

We first need the following result which appears to be new in the context 

of multi-valued mappings. 

Tfaonw 2. LeX X be a Banach &pa^ and leX T:X -> 8(X) be a continuous 

^tl^lativ^ to H) and accA^tiv^ mapping. Thzn T 16 m-accAetivt. 

Proof. Let z € X and c c (0,1). Define the mapping T :X -*- B(X) by 

T (x) • ex + T(z)-z. Then T is, clearly, strongly accretive on X 

(with k »» 1 - c in (2)). We shall now show that the set 

E(z) - (x c X: tx € T (x) for some t < 0} 

is bounded. Let tx c T (x) for some t < 0 and select u € T (x) such 
z z 

that tx • u. Then by choosing X - « l - t in(2)we have 

(c - t) Axil £ B-tx + u - v8 

- Ivl 

for all V € T2(0). Since T (0) is bounded and t < 0, it follows that 

UxB <. lT8«»l/b. 

Therefore E(z) is bounded. Now, we choose r > 0 so that the closure 

of E(z) is contained in the open ball B(0;r). This means that the map­

ping T satisfies the following condition: 

tx i T (x) for x € 3B(0;r) and t < 0. 
z 

Therefore, Theorem 1 of Cl4l, implies the existence of x e D such that 
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0 c Tz(x) i.e., z € (cj + T)(x). 

Thtoiem 3. Let X be a Banack spaw and IzX T.*X -*• B(X) be a continuous 

and accAeXive mapping, wkick is also $~^xpansiv^ on X lot wkick 

tan ini $[h.) > 0* Tkcn T maps X onto X. 
/t -*• • 

Proof. Following the argument given in the proof of Theorem 1, it can 

be shown that for each uQ e X there exists a neighborhood N of u-

such that T~ (N) is bounded, and since T is m-accretive, by Theorem 2, 

we can once again apply Theorem 5.1 of Browder C43 to conclude that R(T) 

is dense in X. 

We now prove that R(T) is a closed set. Let u e R(T) such that 

u -> u as n -*• «. Choose x € X for which u € T(x ). Since T is 
n n n n 

(̂ -expansive we have 

Hu - u l - (llx - x II), 
n m n m 

which implies that {x } is a Cauchy sequence and thus x -*• x as n •*• ». 

Since T is continuous, lim H(T(x ), T(x)) « 0 and therefore Lemma 2 of 
n 

n -*• » 

ill (see also £141) implies that u £ T(x). Hence R(T) is closed, proving 

that R(T) - X. 

ConoWvuj U Let X be a Banack space and l^X T;X -*• B(X) be a continuous 

and strongly accA^Xiv^ mapping. Tfan T maps X onto X. 

Proof. It Is easily seen that (1) implies that T is 4>-expansive on X, 

and hence Theorem 3 completes the proof. 

In the following two results, we restricted the Banach space X, while 

we relax the assumptions of boundedness and closedness of T(x) for each x. 
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we f i r s t begin with a domain invariance theorem for m-accretive mappings. 

TktoKw 4. Let X be. a Banack Apace. {OK which each nonempty bounded 

doted convex 6ub&et ha& the. {Ixed point pKopexty {OK nonexpanslve kel{~ 

mapping*. Suppose, T:V c X + 2 lb m-accKetlve and <J>-expansive, on V* 

Then T(G) l& open wke.ne.veA G c V l& open In X. 

Proof. Let B(x Q ; r ) c D for some xQ e D and r > 0. Se l ec t vQ € T(xQ) 

and define T:D-xQ -> 2X by T(x) » T(x + xQ) - vQ. Then lT(0)I - 0 and 

i f x € 3B(0;r) , 

0 » IT(0)1 < <Kr) 

-« 4><Ux + xQ - xQll) 

S l u - vll 

for a l l u c T(x + xQ) and v € T (x Q ) . In p a r t i c u l a r , i f we choose v • v~ 

we have 

$ (r ) -S llu - vQll for a l l u € T(x + x Q ) . 

Therefore, 

I T(0)| < • (n) s- | T(x)| . 

Since T is also m-accretive, we may apply Theorem 2 of Cl3l to conclude 

that B(0;<j>(r)) c R(T), i.e, B(vQ;4i(r)) c T(B(xQ;r)). The openness of 

T(G) is an immediate consequence of the latter conclusion. 

Theorem 4 represents the multi-valued version of Theorem 3 of the 

author Cl3l. 
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Tktotitm 5. Lex X be a& in TktoKtm 4 and Itt P be an unboundtd &ub4>tt 
X 

o& X ^o* viklck T:p -*- 2 X4 m-accAeXcve and $-txpan&lvt on P with 
$(*) -• ». Then T mapA P onto X. 

Proof. Let B(x~;r) be a closed ball for some fixed xQ c D and r > 0. 

~ X 
As before, we choose vQ €-T(xQ) and we define T:D - xfl •*• 2 by 

T(x) »- T(x + xQ) - vQ. Then 

lT(0)l < <j»(r) <. lT(x)i 

for a l l x e 3B(0;r). Therefore, Theorem 2 of --133 implies that 

B(vQ;<J>(r)) c T(D) for each r > 0. Since <J>(r) "*• °° as r ->• « and vQ i s 

a fixed element of X, T(D) - X. 

Theorem 6 below improves Theorem 10.5 of Browder C4l, who assumes (for 

single value T) that T i s locally uniformly continuous. 

Theorem 6. Ltt X be a Banach *pact and Itt T:X -• B(X) be a conttnuoua 

acc/te£tve mapping on X. Suppose T X6 locally bounded, l.t., tack point 

xQ O{ X hoi a ntlgkbonhood N 6uck that T~ (W) X* bounded *.n X. Tktn 

tht hangt oi£ T it> dtnht In X. 

We f irst show a proposition that wil l be used in the proof of Theorem 6. 

VKopohition. Ltt X be a Banack &pact, V an optn &ub&tt oi X and 

TiV •*• B(X) a continuous and strongly accKttivt mapping on P. Suppo&t thtKt 

txi&t y P and K > 0 6uck that 
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(6) |T(x0)| <*<|T(x)| io/L x c 3P. 

Thm BlO;i) <= R(T). 

Proof. Without loss of generality we may assume that x Q • 0 in (6). 

We first consider a z 6 B(0; (r - | T(0)| )/2 and define Tz:D -• B(X) 

by T (x) = T(x) - z. We shall show that tx i T (x) for x e 3D and z z 

t < 0. To see this, suppose tx € T (x) where x e 3D and t < 0. 

By using X • 1 - t in (2) we have 

(1 - t - k)llxll < l-tx + Tz(x) - Tz(0)l 

< IT (0)1. z 

Since 1 - k > 0, i t follows that lltxll < IT (0)1. On the other hand, 
z 

since x e 3D and Bzll < (r - lT (0) l ) /2 , (6) implies 

|T 2 (0 ) | s |T(0) I + llzll 

< Itx + zB - llzll 

£ Itxl, 

which is a contradiction. Hence, by Theorem 1 of Ci4ll, we derive that 

z € T(D). To complete the proof, we fix Izl < r and let 

E - (t e CO,13: tz € R(T)} 

Since by the above argument E *- 0, we may follow the proof of Theorem 3 

of Kirk-Schoneberg ClOl to show that 1 e E, i.e., z € R(T) (see also 

C133, Theorem 2 ) . 
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Proof of Theorem 6. Let wQ c R(T). Then the assumption on T implies 

the existence of an open ball B(w0;6) so that T (B(w ;6)) is bounded. 

Let v c R(T) such that llwQ - vJ < 6/5. Then the set 

F «- {x c X: y £ T(x) for some y e B(v ; 36/4)} ? 

is bounded. Thus for r sufficiently large F is contained in the open 

ball B • B(0;r) with F n 3B = 0 . Since vQ e R(T), there exists 

xQ c F such that v £ T(xQ) with 

(7) 0 * IT(XQ) - vQl< 36/4 -í IT(x) - v ł for x є* ӘB. 

We now select n
n
 £ N so that 3r < nfi6 and define a mapping 

T :B •* B(X) by T (x) - T(x) - vrt + (l/n)x. Then for n > nA and x e 3B, 
n n u u 

lTn(xQ)l <. (l/n)llxQll < 36/4 - r/nQ * n 

and thus (7) yields 

I Tn(x0)i < n ^ I Tn(x)| for x c 9B 

which implies, by the previous proposition, that B(0;n) <= R(T ). This 

means, if HzII < n and n >. nA, there exists x £ T(x ) for which 
U n n 

z - u - vA + (l/n)x . Therefore u ->• z + vn as n -»• », implying 
n U n n u 

B(v ;n) c R(T) and since n - 36/4 - r/n , B(w ;6/5) c R(T). Hence 

R(T) is open in X and thus R(T) is dense in X. 
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Now, we derive a corollary which is an extension of the density 

portion of Theorem 3 of Kirk-Schoneberg C9l to multi-valued mapping. 

CoKolZaKy 2. LeX X be, a Banach Apace and T:X -• B(X) a continuous 

accKetive mapping Audi that lT(x)l -»• « a6 llxll -* ». Then the Kange 

o& T U> den&e In X. 

Proof. Let w e X and choose 5 sufficiently large such that the set 

E * <x c X: llyll £ 6 + Hwll for some y e T(x)} 

is nonempty and the fact that lT(x)l -*- » as llxll -> «, implies E is * 

bounded. Since T~ (B(w;6*)) c E, Theorem 6 completes the proof. 

A mapping T:D c x -• B(X) is said to be closed if T(C) is closed 

whenever C is closed in D. We also say that T is one-to-one if for 

every x,y e D such that x »- y, then T(x) n T(y) «• 0. The closedness 

(or one-to-oneness) of T holds locally if each x 6 D has a neighborhood 

N such that the restriction of T to N is globally closed (or globally 

one-to one). Similarly, T is said to be locally accretive if for 

each x e D there exists a neighborhood N so that the restriction of 

T to N is globally accretive. 

Our next result represents an extension of the domain invariance theorem 

of Deimling £"63 to the multi-valued case, by following the formulation of 

Schoneberg £163. 

TkeoKem 7. Let X be, a Banach Apace and V an open hubbet oi X. Suppose 

T.*P -• 8{X) AJ> a continuous, locally closed, locally one-to-one and locally 

accKetive mapping. Then T(V) AM open. 
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Proof. Let xQ € D and yfl € T(xQ). Since T is locally closed, locally 

one-to-one and locally accretive, there exists a closed ball B « B(xQ;r) 

where T is globally accretive, closed and one-to-one. Then the number 

6 - inf{lT(x) - yQl:llx - xQll - r} > 0. 

Let n > 0 so that n(l + r) < 6 and for 0 < c < n define the mapping 

ht:B 1- B(X) by ht(x) - c(x - xQ) + t(yQ - y) - yQ + T(x) for t 6 CO.U 

and y € B(y0;n), and also define the set 

M * (t c £0,13:0 e h (x) for some x c B}. 
c t 

It is clear that for each c > 0, M is non-empty (0 € M ). We shall now 

show that sup M • 1. To see this, let t 1 and let (t } be a r c c c n 

sequence of M for which t •*• t as n -• «>. Then, for each n, there n c n c 

exists x € B so that 0 € h. (x ). This means, we may select u € T(x ) 
n t n n n 

n " 

so that c(x - x„) + t (yft - y) - yn + u --6. Since the mapping h is, 
n u n. w u n t 

clearly, strongly accretive on B, we can conclude that 

cllx - x II ̂  Ih (x ) - h (x )| 
n m t n t m 

^ Bc(x - x ) + u - u II 
n m n m 

n m 0 

Therefore {x } converges, to say to x e B, and hence u -• u e X. 

Since T is continuous relative to the Hausdorff metric, Lemma 3 of Cl4l 
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implies that 0 c h ( x ) . Now, using the assumptions on c and y we have 

lu - yQ8 * tc»y0 - yí + clx - xQ« 

í D + cr 

< б, 

implying that llx - x
Q
ll < r. It follows that t € M . 

Suppose now that t < I. Since the point x is the unique zero of 

h in B, there exists a closed ball B. c B centered at x such that 
c 

p - inf{lhfc (x)l:x € 8B1> > 0. 
c 

Hence for some t > t , 

lht(x)l > r/2 for all x є ӘB^, 

and 

lh
t
(x)l í r/2. 

Then, by Theorem 3.2 of C9l there exists x c B. such that 0 € h (x) 

which contradicts the fact that t is the supremum of M Hence 

0 £ c(x - xQ) - y + T(x) for each c € (0,n). If c •* 0, then there 

exist x € B and u € T(x ) such that c (x - x .0 + u * y and thus 
n n n n n u n 

u -> y as n ->• «. It follows from the closedness of T on B that 
n 

y c T(x) for some x € B, which implies that B(yQ;n) «- T(D). Hence 

T(D) is open in X. 
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An operator T:D c X •+ 8(X) is said to be ^-accretive if for each 

x,y € D there exists j e J(x - y) satisfying 

(7) <u - v , j > 2. 4>(Bx - yi1)llx - yll 

+ + 
for u e T(x) and v e T(y), where ^ is a mapping from K. into IR 

which is continuous on K with <J>(0) - 0 and <J>(r) > 0 for r > 0. 

We also say that T is locally ^-accretive on D if each x e D has a 

neighborhood N such that the restriction of T to N is globally 

^-accretive. 

We should mention that the notion of ^-accretive mappings formulated 

by Browder C2l is not related to the formulation given here. Nevertheless, 

Ray and Walker C153 discuss, to some extent, a more related version of this 

concept. In fact, they show a domain invarlance theorem (see Theorem 4.1) 

which can be derived directly from Theorem 7 of this paper. 

CoKoWxAy 3. Ltt X and V ad In Theorem 7 and tat T.-P ->- B(X) be con-

tinuouA and locaHy <j>-acce*£tve on V with Urn ink $[K) > 0. Thzn T[V) 
h. -*- » 

i6 opin. 

Proof. Since T is clearly locally one-to-one and locally accretive, it 

remains to show that T is locally closed. To see this, let N be a 

neighborhood of x € D such that T is <j>-accretive on N and let C be 

a closed subset of X contained in N. Since $-accretiveness implies 

^-expansiveness, we follow the argument given in the proof of Theorem 3 in 

order to conclude that T(C) is closed. This means T is closed on N 

and thus Theorem 7 completes the proof. 

Finally, we prove a new theorem for (̂ -accretive mapping satisfying the 

well-known boundary condition (8) below. 
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ThtoKtm $. laX X 6e a Banack Apace and V an open AubAtt oi X. Sup­

pose, TiV •*• B(X) Ju a continuous and $-accAztive. mapping (utiXk $[t) ** » 

OA £ -»- «») Wrttch 60tll>6iQA hOK &0mZ Z € V 

(8) t ( x ~z ) ^ T(x) for x e 3D and t < 0. 

Then 0 e R(T). 

Proof. By t r a n s l a t i n g T and D, we may take z » 0 i n ( 8 ) . We begin by 

showing t h a t the s e t 

E » {x e D: tx e T(x) for some t < 0} 

is bounded. Let x e E, j c J(x) and let fix u £ T(0). Then there exists 

a t < 0 so that 

llxllф(llxll) s < t x - u , j > 

<. tllxll
2
 + lullxl. 

Since t < 0, 

<KAxil) -. Hull 

and the assumptions on $ conclude the boundedness of E. Because of this 

latter fact, there is no loss in generality in assuming D is bounded. 

Following the author's argument given in Theorem 1 of Cl43, we claim 

there exist x c D and t e (0,1) so that 0 c h (x), where the mapping 

h
fc
 from D into B(X) is defined by h (x) - (1 - t)x + tT(x) for each 

t e CO,13. 

- 411 -



Then the set 

M - {t c CO,13:0 c ht(x) for some x € D} 

is nonempty with sup M > 0. We shall now show that tQ - sup M belongs 

to M. Let {t } be a sequence of M with t -*• t̂  as n -• «>. Then, 

for each n, there exists x € D so that 0 e hfc (x ). This means, we 
n 

may select u e T(x ) for which (1 - t )x„ + t u - 0. By ^-accretive-n n n n n n 

ness of T, there exists 1 e J(x^ - x ) such that J n m 

<fr(-x„ - x i)«3c - x I <; <u - u , j> 
n m n m n m 

£ <(1 - t"X)xn - (1 - t"l)x , J> n n n m 

S <(1 - tn
X)(xn - x ) +• (t"

1 - tlbx ,j> 
n n m m n m 

* (1 - t " 1 ) ^ - x J 2 +• I t ^ - t ' M l x Ilx - x L n n m m n m n m 

Since 1 - t"*1 ;S 0 and {x } is bounded, 
n n 

ф(Bx - x l ) + 0 as n, m •*• < 

and thus {x } is a Cauchy sequence. Hence x -> x and u *•• u for 

some x c D and u c X. The continuity of T implies that 0 e h (x) 
c
0 

and by (8), x e D. Therefore t
Q
 c M. In order to show that t - 1, 

we may invoke details given in the proof of Theorem 1 of £14-• 
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