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COMMENTATIONES MATHEMATICAE UNVERSITATIS CAROLINAE 

26,2 (1985) 

ON AFFINE KAC-MOODY LIE ALGEBRAS 
Thomas N. VOUGIOUKLIS 

Abstract: In this paper we deal with affine Kac-Moody 
Lie algebras of type D £ ', n Z 4. We give a method of compute^ 
tion of the eigenvalues needed for the realization of the ba­
sic representation that appeared in C3H. 

Key words; Affine Kac-Moody Lie algebras, graded Lie 
algebras• 

Classifications 17B65, 17B70 

1. Introduction. In the paper C31 there is given a con­

struction of the basic representation of Euclidean algebras* 

This is a generalization of the construction in 151. In the 

main result of the paper [31 Theorem 4.1 one needs some con­

stants Ai,, The aim of this paper is to give a method to 

compute those constants for the affine Kac-Moody Lie algebras 
Dn » n~ ** A,lso w e g i v e BA ^P^P1*8-*® gradation of Lie al­

gebras of type D n # 
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2. Fix n>4. Let (E.,). . ., - be the standard basis of 
ij i,j=1,...,2n 

the space of 2n*2n complex matrices, so that the matrix E.. 

is 1 in the ij-entry and 0 in all the other entries. 

We fpcus our attention on the basic representation of the affine 

Kac-Moody Lie algebra g(A) of type D
R

1
 * (n>4) , see KAC [2] and 

MOODY [6]. In this case we have 

(1) g - o(2n,C) , (x|y) - trxy . 

So from the classical Lie algebras with symmetric Cartan matrices, 

see [2], we consider the Lie algebras of type D
n
 (n>4). We know 

that g consists of all 2n*2n complex matrices X such that 

XIJ+J^X « 0 where 
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It is easy to see that the above elements satisfy the following 

relations 

l>i , f j ] - S i jhi [h± , hj] = 0 

[hl , e . ]= a i j 8 j [h± , f-3 = -a i : j f j 

where the (n+1)*(n+1) matrix 

(i,j«0,...,n) 

2 0 - 1 0 

0 2 - 1 0 

-1 -1 2 -1 

0 0 - 1 2 

A - (a..) 

2 - 1 0 0 

-1 2 -1 -1 

0 - 1 2 0 

0 - 1 0 2 

be the generalized Cartan matrix corresponding to the Dynkin 

diagram 

> . . . — < ^ 

^ of Dj^" , see [2] 

We know [2] , that a Lie algebra g is said to be a graded modh 

Lie algebra if it can be written in the form 

h-1 
£ ** • £* (direct sum) 
3 i=0 3 i 

with the property 
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<3> fci ' STj] c g(i+j)modh • 

Prom now on for i 6 X we set Ji+n 2Z ~ <f i
 s o w e n a v e 

h-1 
£ . © g *- © £ 

i=0 x i€ZS/h 2Z x 

An element x of <J. is said to be of degree i . 

In our case we take the Coxeter number t3] for g as h i.e. 

h = 2(n-1). 

L e t" s denote by K the number defined in the following way 

к « к Лff к<n 

к » к-1 if к>n 

к 6 : 

PROPOSITION 1 

A Lie algebra g of type D is a graded modh where the 

1-principal Z/hX- gradation of g is given by setting 

(4) degE. . =- (j^-ijmodh 

PROOF 

It is a simple calculation, observing that all the elements 

e , e- ,..., e have degrees 1. 

So the elements e. , f̂  , h. , i = 0,1,...,n , defined by (2), 

are the Chevalley generators for a complex Lie algebra cj
-
* (A) , 

which we quotient by its largest 2
n
 -graded ideal intersecting 

trivially the span of h ,. *., h and we take the Kac-Moody Lie 

algebra tf (A) of type D* (n>4) . The images of e. , f. , h. 

(i=0,1,.., ,n) in <f(A) will be denoted by the same letters. 
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3. We set 

n 
e - Eei 

i-=0 

This is a 1-cyclic element of cf studied by KOSTANT in [4] . 

Note that [3] a cyclic element is conjugate to a multiple of-

any other cyclic element by an automorphism of </(A) defined by 

e^ , • &ie± ' fi * > ^i fi ' * B 0,1,...,n. 

Although there is not known any natural normalization of the 

cyclic element in general, we give the following normalization % 

in case D R
1 J : 

Note that 

we 

j=2 

so putting 0..--1, j = 2 , . . . , n - 2 and P0"Pl"Pn-l"^n"1 / , , / 2 

obtain the simplest, for real ^ i ' s ' re la t ion 

( P i e i ) h + 1 - <-'>"%*!> 

Froia now on we take the normalized A c y c l i c element 

(5) E ^te± where &0-&1-en_1*-V"1/"''5 ' frj-l#j-2,...,n-2 

Remark The 1-cyclic element E satisfies the following obvious 

relations: 

(6) E h + 1 - (-1)n E 

(7) E2*"1-- (-l)n V ( n " H ) " 1 for * € N J K< §; 

391 -



Let S be the centralizer of E in J . Then, see Lemme 6.4B 

in [4] , S is a Cartan subalgebra of J . It is clear that 

in our case a basis for S is the set 

{ E , E , . . . , E , E } 

where E0 - E 1 n -E n # n + 1 +E n 1 +E n ( 2 n "E n + l f 1 -E f t + 1 f 2n^2niTi^2nin^ 

The element E^ has degE_ *- n-1 and satisfies the r e l a t i o n o J o 

E£ m 4I+(-1) n~ 14E h 

We need a basis T. , i=1,...,n such that 

ffilVj> - 6 i j 

By virtue of (7) such a basis is the following one : 

For n -= 2x 

, T. - i E2 1"1 , 
I - Æ 

тн+i+1 = T и-i ' 1 = 1 ' - - - ' 

U - ^-в - •P = _—- E + — L p 2 к - 1 

* + 1 2/2 E° Æ 

For n • 2x+1 

, т » _ L E 2 І - 1 

I - Æ 
Ф SБ — Ф , S 

' xx+i+1 ^x-i+1 , Ł 

1 т . •» — L E 
* + 1 2/2 ° 

A
8
-

5
1 , . . . , X 

According to [3] the subspace cf of the elements of g of 

degree 0 is the linear span of the projections of all the root 

spaces of g with respect to S . Our problem is to choose n 

root vectors A- ,..., A , with respect to S , corresponding to 

the roots &* ,..., B such that their projections on $ 

form a basis of this space, then to compute the constants X.. 

defined by 

X
ij *

 &
i

( T
j

)
 ' l-J-1. •••*•»* 
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Note that if we decompose the vectors A
1
 ,...,A with respect 

to the 1-principal gradation -

kjL
 s
 2^A

±
. , i«1,...,n , j Є Ж/h 

then the elements 

A
ii ' T

K where i,K-*1,...,n ? j»0r--.fh-1 

form a basis of cf . 

Dslng the above notation we obtain the following proposition for 

D
( 1 )
 . 

n 

PROPOSITION 2 

The constants X.. belong to the h-roots of the real numbers 

T
v ' T

u
 s u c h t n a t 

(8) (adT^) (adT
v
)A

io
 - T

v
A

i o
 , (adT

u
)

2
A

i o
 =

 V i o 

where V»1,...,K-1 and u*-K
f
K+l for n -= 2K , 

v-sl,..., H and u** K+1 for n * 2H+1 . 

PROOF 

From relation (7) we obtain that adT and adT. have 

opposite eigenvalues with eigenvectors which are transpose to 

each other. That means that those eigenvectors have the same 

projections on cf
0
 . 

On the other hand from the relation 

(adT
v
)A

ij
 - e

i
( T

v
) A

i j + v 

the transformation adT shifts the gradation by v. Therefore 

we have for the projection A, on $ the relation 

(adT
h
_

v
) (adT

v
)A

io
 - P

i
(T

v
)P

i
(Vv

) A
io 
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According to KAC [2] an automorphism o of order h of 

the Lie algebra cf is given by o(x) «• e x , x € j , , where 

e is a primitive h-root of unity. So we have 

Therefore if e is a primitive h-root of x • IB̂  (T )0i(Tn ) 

then we can take 

e V - 3±(TV) , eh"v *- Pi(Th^v) . Q.B.D. 

4. In order to compute the *j-*"*s we can take an integer v<n 

such that (v,h) « 1 and then we can try to find n different 

T *s . The eigenvector A. corresponding to such an x will 

be defined by 

h-1 

(9) A± - J2 (adT )jA. 

In the special case of v -= 1 we have the following : 

a) For A 1 Q - E l 1 - E 2 n # 2 n and A n o = E ^ ' V l ,n+1 

we have x « -1 . So 

h-1 

A i - | r 0
( a d T v ) J A i o ' x i j • e j 

where i-*1 or n and e be an h-primitive root of -1 . 

b) For i»2,...,n-1 we set 

(10) A ± o e diag(0,xi2,...,xjL n-(J,0,0,-Xj^ n-1,... r*--*i2'
0-

Then from relation (8) we obtain that T'S are the eigenvalues 

of the matrix 
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2 -1 
-1 2 
0 -1 
0 0 

0 0 

-1 0 

2 -1 

-1 2 

and for some eigenvector 

2 -1 
-1 2 J 

(xi2,...,xin-1) we get the 

corresponding 
*io from (10). 

The author acknowledges Professor V.G.Kac for his advice and 

stimulating discussions. 
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