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COMMENTATIONES MATHEMATICAE UNVERSITATIS CAROLINAE 

26,2 (1985) 

NOTE ON A PAPER OF McMORRIS AND SHIER 
Heinz-Jürgen VOSS 

Afcstraot: F. R. MoMORRIS and D. R. SHIKR C3] proTed: 
A grapn G issplit iff 0 oan he represented as an interseotion 
graph of a set of distinot subtrees of K^n • Thej gifa a 
method for oonstruoting this interseotion graph* Hare an im~ 
proTed oonstruotion with minimum n is desoxibed. 

Keywords: Chordal graphs, split graphs, interseotion graphs* 

Classification: 09C75 

Only finite connected simple graphs are to ha considered. 

For the terminology see Dl and T3J • 

A graph 0 is said to he represented on a tree T if and only 

if 6 is Isomorphic to the intersection graph of a sat of 

distinot subtrees of T . 

A graph & » (7,E) is split if and only if there is a par­

tition of the Tertex set as 7 « I UK , where I is an indepen­

dent set and K is oomplete. Furthermore, the partition 7 » I U K 

oan he ohosen so that K is a maximum olique [23 • Henoeforth we 

shall assume that K has been ohosen in this manner* 

InTestigating ohordal graphs F« R# MoMORRIS and £• R« SHIKR 

prored [33 : 

Theorem 1. A graph & « (7,B) is split if and only if & 

oan he represented on lCj n for some n • 
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In their proof F. IU MoMOHRIS and D* It. SHMR P3 oonstrmttad 

a representation on t^ n for a giTen split graph. They olaia 

that their method of oonatmotion prorides a representation 

of Q on ILj using the smallest possible n . This ia not trmt 

and I shall giTt the oorrtoted method. 

Before deaeribing it we define: if A 9 B are tats imam 

P(A) g|» l*/U£k} , whtre 0€F(A) ami 

BUP(A) i n {I/X • BUM , M€F(A)} . fhe tnbgrapa of # lm-

daoed by H ia denoted by OfjHJ , Let I(x) denote the set tf 

all neighbours of the Ttrttx xeT • If I£T then VT(x) ggj 

H(x)AI • For real $ lat f"e.7 demote the smallest imttger ^f • 

C o n s t r n o t i o n • Suppoat 0 » (TPS) is split, watra 

T » I UK and I » £xif ... , xy J • First, label the ami 

Tertloes (of degree 1) in T g*» Kj ̂ r by the integers 

1, • • • , r and the Ttrtex of degree r by 0 • Define the smttrtt 

*(3tj:) t oorrtsponding to Tertex x^ , by T(xi) -» { i } , for all 

1aiar « Htxt, lat L , initially empty, denote a eollettitm 

of ambatta mad A , alto initially empty, a att tf addititmml 

Ttrtlots of ff • Fox taoh y«I , wt oomtult L tt tat if mil 

mtmbtrt of Iz(y)UP(A) art in the litt L • If mot,ohoote omt 

of the mtmbtrt M not in L , define tnbtree f(y) ggj TplUlOj] 

and add M to tat litt L . If all mtmbers of I . r(y)U?(A) art 

in tht litt L wt add a maw tad Ttrttx oL tt tat tmrrtmt f 

(Joining it to Ttrttx 0) mad define f(y) • fplzCr)U{09et}J# 

ft add oC to the list A and Vz(y)U{ot} to tat list L • 

This procedure is repeated for all Tertioes y d • tfpon 

oompletion, the prooess yields a £j and a set of distinot 

sttbtrees that represent 0 • a 

Applying my oonstrootion to K4 and l£ (obtained from E^ 
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toy omitting an edge) I Hare in tooth oases a ^ n with an n 

which is smaller than the one of F. H. MoMCRRIS and D. R. SHIER* 

Theorem 2. For eTery split graph a » (irfB) , T » IUK , 

the Construction proTides a representation of G on K̂  

with minimal n • If m denotes the maximum number of Tertioes 

of K haTing the same neighbourhood IU(y) in I then the 

minimal n » III + ^log2 ml • 

For the simple proof we need the following obTious lemma. 

Lemma 3. Let S^ , •. • , Sy and T-j, • • • , Tfl be the 

subtrees of K̂  containing precisely 1 Tertex or * 2 

Tertioes, respeotiTely. Then 

i) in the intersection graph G# the subtrees S1, ••• , S„ 

form a ILp and the subgraph of G*induced by 

TA , ... , Ts is a Ks ; 

ii) if S i (l£ii£r) oonsists of the "central" Tertex 

(of degree n ) of K^ then S.̂  is joined to all 

Tj (1 i J £ s) by edges; i. e. the subgraph of G*in-

duoed toy S 1 f ^ f ... , T8 is a Ks+1 • 

Proof of Theorem 2> Let G • (v
fB) toe split with partition 

V m IUK suoh that K is of maximum possible order. Let 

I » { x 1 , x 2 , ... f x r} and K » {y1 , y2 , ••• , y8} • 

Let X| , ... , Xr , Y..| , ••• , T s be a representation of G 

on K.J suoh that xi*-*Xi and Ji**'*-! • By Lemma 3 

and the maximality of K each subtree X± oonsists of an end 

Tertex of K̂  • Let the Tertioes of Kj be denoted by 

0, 1, ... f n so that 0 is the "oentral" Tertex of Kj and 

X1 * {ij for 1 -£i£r • 

The subtree Y. contains the Tertex i of B^ n O-ii-sr) 

iff (x-jiyp^E • Thus the subtree T^ [{0f1^...fr}] of Y. 
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indmeed hy -£0, 1, ... , r} is uniquely determined. 

Let m he an integer defined as follows: there are m Tertioes 

y , ••• , y™ € K haTing the same neighbourhood in X and there 
1 m 

are no m+1 suoh Tertioes in X • Let X , ... , X denote 

the oorresponding suhtrees. Then X t{0t...frj] • ... 

... - Xa[{0,...,r}] . 

Since X , ••• , Im are painrise distinct subtrees they 

oontain some of the Tertioes r+1 , ... , n • With these Terti­

oes a set NI(y1)UP({r+1 , ••• , n}) of 23a~r suhtrees of 

1L| n with fixed Nj(y1) oan he formed^ Consequently, the 

minimal n has to he ohosen n » r + Tlogp m«l • Q 

In a further paper I shall inrestigate intersection graphs 

of a set 3 of distinct suhtrees of a tree T , where no element 

of S is contained in an other element of S • 
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