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NOTE ON THE NUMBER OF MONOIDS OF ORDER n
Vaclav KOUBEK, Vojtéch RODL

Abstract: We derive upper bounds for the number of monoids
with n elements. As a consequence, we obtain that almost all n-
element monoids are endomorphism monoids of graphs with cn 1052 n
vertices for some constant ¢ >O0.
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We recell that a semigroup S with zero O is called three-
nilpotent 1f for each triple x, y, z of elements of S, X.y.2 = O.
Anslogously, & monoid M (i.e., a semigroup with a unity 1) is
three~-nilpotent if for each triple x, y, z of elements of S dif-
ferent from 1 we have x.y.z = O.

We set

S(n) is the number of all semigroups on an n-element set X,
S;(n) is the number of all three-nilpotent semigroups on an n=-
element set X,

M(n) is the number of all monoids on an n-element set X,
Il3(n) is the number _ot all three-nilpotent monoids on an n-ele-
ment set X,

G(n) is the number of all groups on an n-element set X.

It follows immediately from the result of (3] that

2/3
(1)  G(n)&nt n°® log, D where ¢ = 2/"—(1})2/3
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The asymptotic formulas for S(n) and SB(n) were investiga-
ted by D.J. Kleitmen, B.R. Rothschild and J.H. Spencer [5]. They

proved

Theoren 1: S(m) = 55(n) (1 + o(1)) = (&, £,())(1 + 0(1))=

= (£,(t,=1) + £,(8) + £.(£,+10)(1 + o(1)),

2
where £ (t) = (:) g1+ (=) g t, is & natural number such that

fn(tn)z rn(t) for every t = 1,2,...,n. Moreover,

n
tn = n-ﬁ_ll(1 + 0(1))-
The aim of this note is to use the Theorem 1 to derive si-

milar formule for monoids. We prove:

Theorem 2: M(n+l1) = u3(n+1) (1+0(1)) = (n+1)S(n)(1+0(1)).

Theorem 2 has applications in graph theory. It is well-known
fact [ 4] that every monoid is isomorphic to the monoid of all
endomorphisms of a graph., For a monoid M denote by (M) the mi-
nimum size of a set V such that there is a graph (V,E) for which
its endomorphism monoid is isomorphic to M. The following has
been shown by L. Babai [1] and the present authors [6]:

Proposition 3: There is a constant ¢ with
d(Me&e n3/2

for any monoid M with n elements,
On the other hand we showed (thereby disproving conjecture

of L. Babai and J. NeSet#il - see [6]):

Proposition 4: There exists a constant ¢>0 such that for
every natural number n there exists a three-nilpotent monoid M

with n elements such that
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$ (02 on Vilog, n

and there exists a constant 4 such that for every three-nilpo-
tent moneid M with n elements

(M) an log, n
Combining Theorem 2 and Proposition 4 we obtain

Corollary 5: For almost all monoids M with n elements

(M) &dn log, n

I remains to prove Theorem 2. For a monoid M denote by '
Gr(M) the set of all elements x of M such that x.y = 1 for some
element y of M. If M is finite, then clearly Gr(M) is & subgroup
of M and M - Gr(M) is & subsemigroup of M. Since 1€ Gr(M) we ha-
ve Gr(M)4 @. Por every x6Gr(M), the mappings f£(y) = x.y, &(y) =
= y.x map the met M - Gr(M) bijectively on itself (see [21).
Hence we obtain:

Propositiom 6: Let X be an n-element set and let k be a na-
turel number with O< k&n. Assume that the following are given

a) a subset Y of X of size k3

D) @ group G on the set Y with a set A of generators;

¢) a semigroup S on the set X - Y3

d) two mappings £,r:iAx(X - Y)—> X - Y such that for eve-
ry ec A, £(a;-), r(a,-) are bijections of X - Y into itself.

Then there exists at most one monoid M on X such that

(1) Gr(M) = G and S is & subsemigroup of M;

(11) for every a€A, x€X - Y we have a.x = £(a,x), x.a =
= r(a,x).

On the other hand every monoid is determined by &),b),c) and 4).
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Clearly,
1) there are (:) subsets Y of X of sise kj
2) there are G(k) groups G, and we can assume that
lal& log, kj
3) there are S(n - k) semigroups Sj

4) there are at most (n - l-:)!2 logak mappings £ end r, thus

m
M(n) ‘Lgl (:) G(x) S(n - k) (n - k)la logzk.

Pirst observe that the following holds:

Lemma 8: There exists n, such that for every aZa, md eve-
ry natural number k with

[_E.J Zzk>1 we have

S(n-k) . _ 1
n=1) = o {k=T)(2n-k){1+o(1))

Proef: By Theorem 1 we get that there exists n, such that

for n2 n,
'i"’(n—k) t1+(n-k-t)2
S(n-k) ¥4 t (4 + o(1)) &
S(z-1) %! (n.1 ) {1H(=1-1)%
t=1 t

1
TETEEET(TRetT)

< T t-(?n—k--‘1-2t)(kv1) (1+0(1)) <

where the second sum is taken over all t with
n-k n-k
[o-s spfal-] <+ < | 'melity ). D

Now we shall finish the proof of Theorem 2. We shall use the
following easy consequence of (1):

For a sufficiently large

(2) @(r) £ nt 20
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and henoe for any xen

(3) G(x) < k! of

Using (2),(3) end Lemma 8 we get the existence of n, such
that for nZ g,

Kal, < é: (¥)ew [(ai)1)” °%2" 24 (3) + (2) 2@n2.

%) 2log,k
B8 * (B)xt 2 [(a-i)1] 62" gtk

nNn=-

m 2log,k
nY) gy oK 825 s(n/2) .
+L§%J+1(“) n* [ (n-k)1] pra
1
£n+(3)2 a0 rpyrrey ¢
(% 210g,k
k 82X S(n-k
Oz, (2)xt 2 [(z01) !{%}If
+ = (oot L) 102" Sa/2) £ n 4 o(1)
&e )41 x - ’

Thus M(n) £ nS(n-1) (1+0(1)). Obviously, if we add the new unity
to a three-nilpotent semigroup we obtain a three-nilpotent mo-
noid and hence I;(n)z ns3(n-1).

Thus we can summarize

nfn-1) (1+0(1))le(n)?.l3(n)zn83(n-1)) = n3(n-1) (1+0(1))

and Theorem 2 is proved,
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