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COMMENTATIONES MATHEMATICAE UNVERSITATIS CAROLINAE

26,2 (1985)

ARMA MODELS WITH NONSTATIONARY WHITE NOISE
T. CIPRA, J. ANDEL

Abstract: The stationarity of ARMA (p,q) processes is in-
vestigated when the corresponding white noise is nonstationary
with a general covariance structure. The considered ARMA Proeces-
ses are generaisd from initial random variables Xyseee ,X“x( )

.Pig

(i.e. they start in a given time point denoted as t = 1) and
this framework the processes 11 seee ,x, of the finite length and

the processes 11.12,... of the infinite length are distinguish-
ed. In the latter case with the infinite length the paper confi-
nes itself to ARMA processes with so called "almost white noise™.

Key words: Nonstationary white noise, ARMA process, stati-
onarity, aimost white noise. ’ !

Clessification: 62M10, 60G10, 60G20

1. Introduction. The linear models with nomstationary whi-
te noise have been studied in several works recently. E,G, Nie-
mi [5] dealt with stationarity and some statistical properties
of ARMA processes in which the white noise -{%tl could have
nonconstant bounded variances (i.e. E €y =0, O<msvar € <M
for some constants m and M, E € 4 €, = 0 for % #u). Statisti-
cal treatment of AR processes of this type is suggested in {81,

If the nonstationary zero mean white noise may have a ge-
neral coveriance structure B €Sy the gituation is more com-
plicated, of course, and many open problems sppear in this fra-
mework., E.g. it is interesting to investigate under which ocon-
ditions the linear process using such nonstationary white noise
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is stationary. The following example shows that the existence
of a stationary process of this type is possible.

Example., Let ¢ be a random variable with E€ = O and
var ¢ = 62>0. Let us define €34 = €, €349 = &4 E3p4p =
= - ¢ for all t. The process {e,"; has the nonstationary cove-
riance structure since E €34 €544 = 6248 €341 €342 =
= - 2. On the other hand, MA(3) process {X,} defined as X, =
= ey + €4 ¥ Gt_z is stationary since X, = ¢ for all t.

In this paper, the stationarity of such processes is inves-
tigated which are generated from initial random variables X,sv.
ese ’xn&x(p,q)’ Moreover, they can have a finite length (see Sec-
tion 3) or they can be infinite (see Section 4). In the latter
case with the infinite length we confine the general nonstatio-
nary white noise to so called almost white noise introduced in
[71. However, at first it is necessany to derive the conditions
of stationarity of the process ARMA generated from initial ran-
dom variables in the classical case with a stationary white noi-
se. It is done in Section 2 generalizing Anddl s results [1]
derived for the sutoregressive case. The stationarity always

means the weak stationarity in this paper,

2. ARMA processes generated from initial random variables

and stationary white noise. Let Xy,...,X, (r = max(p,q)) be
random variables with zero mean values and & variance matrix V

and ®guqseees Sp (8 = r = q) be random variables with zero me-

an values, Let random variables X, i,...,Xp be defined by means

of the formula

(1) Xy = aX, j+e.ot .'pxt-p+ Cut Dy €4 gtela4 bq 3,°_q,
r+lctsar,
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where 819eees8 b1,....b are given numbers. Moreover, let the

’
following assu:ptions be :ulfilled:

(2) var e, = 6270, s+1& t 47T,

(3) cov(ey, eu) =0, s+14 t<cu<s?

(4) cov(Xi, €,) =0, 14t<r, s+1£u<l, t<u,

(5) coviXy, o) = alfW @2, sr1sustgr,

where dgk), kZ 0, 0« J< k+q, are constants uniquely determined
by the numbers a1,...,ap, b1,...,bq such that
(6) af¥a1, xzo,

a{®= vy, 12 324, ‘

(k) (k) (k)
Lpriea1™ Bgarea1® 997 Cppptecet Gy Syt o Xp *

(k)
+ 05 Xy oteset °p xt+1-p' kZO0

(cik), kz0, 1£1i<p are other constants also determined unique-

1y by 8,..0,8 b1,...,bq). The system (1)-(5) can be consider-

’
ed as the systim of prescriptions which one uses generating the
given process, Although it may look complicated it has simple
forms in special cases (see Remark 2).

Remark 1, The constants cik) and d(k) can be calculated re-
cursively from (1). It is not difficult to show that

of®) = o, 1£14p,

o{k) = okt 4 ofkNa  1214p,

GI(Dk) - cgk'”a

p’
alk) o (k=1 og gL,
dék) k=1) , ok=1),

=
-1 k-1
all) . glk=1) c§ )bd_k, k+1 & £ keq-1,
q.
If a_=0 and b_#0 then the previous sequence Xyseee ,IT forms
so called process ARMA(p,q) of the finite length gonerated from

k k-1
dk»% = 4 0
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the initial random variables X,,...,X, and the stationary white
noise.

Remark 2. Let us consider some special cases of the previ-

ous model:

(1) AR(p): the variables 11.....Ip. €piarees €y are gi-
ven fulfilling (2)-(4) (the assumption (5) has no sense in this
case) so that the situation is equivalent to the one considered
in [1]) for the autoregressive case;

(11) MA(q): the variables x,.....xq. €q1se004 Cq are givea
fulfilling (2)-(4) and

cov(Xy, &) = 6'2,

cov(xt, e“) - bt_“62, 12u<ct<Lq;

(1ii) ARMA(1,1): the variables Xys Egoeey €T are given
fulfilling (2)-(4) and

cov(Xy, €) = 62,

One can prove the following extension of (4) and (5):
Lemma 1, It holds

(7) ocov(Xy, €,)= 0, 14t £T, s+14u<T, t<u,

(8) cov(Xy, e,)= di(:;“) 62, 14447, s+14u&T, tZu.

Proof. The formula (7) is obvious. As the formula (8) is
concerned, it is obvious for u>r since then one can write

(t=u) (t-u) (t-u)
(9) Xy= &4+ d3 Cpqteest Aoy Cuogt O1 Kyaiteset
+ O(t-u)x“ .
P ~p

Generally (8) can be proved by means of the induction with re-
spect to t. For t<r (8) follows directly from the aasumption
(5). Let (8) hold for some tZr., We shall show that then it
holds also for t+1.
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(t+1=u)
t+1-u

the previous discussion. Therefore let s+1< u<r, Then acoord-

If r<u<t+l then °°'(xt+1' eu) = 4 62 acoording to
ing to the induction assumption
°°'(xt+1' eu)- cov( Bipro zu)+ by cov( 2y eu)+...+

+ chov( €t+1-q' L qoov(lt. 6“)'0-...+upcov(x,‘+1 )

"Pozu
-cov(st“ R eu)+ by cov( €; 1€ Feoot bqoov(st+1 _q,eu) +

(t=u) ~2 (t+1=p~u) .2
+oagde 7T 6%t ‘pdtﬂ-p-u g“,

where possibly d{k)- 0 for k<0, Thanks to the definitien of the
coefficients dgk) and to the properties of €4 we can further

iy

write
cov(Xy q08y)= Cov(€p o s Bryy ¥ DyCOVIEL g go€pyq)tece
coo® DgoOV(Ryy o qus Gret )t 8100VIZ i goBryq) Heeot
+ 8,00v(Xy, o pourEret)

(t+1=u) _2
= cov(Xy, o urSre1) = Ggpqn 6 s

where the last equality follows from the discussion in the be-
ginning of the proof (if t+r+2-u>T then we can imagine that we
have infinite sequence 65”....,‘5!. ©pyqoeeo in our disposal).

Lemma 2, The sequence 11,...,1.! is stationary if and only
ir
(10)  var(X;,e..,X;) = var(Xy,eee,Xyq).

Proof. Let (10) hold. We shall show by means of the induc-
tion that then
(1) var(X;,...,X;) = var(lz....,xhn). r€h<£T-1
(hence the stationarity will follow for h = T-1)., The case hsr
corresponds directly to (10). Let (11) hold for some r<h&£7T-2,
Then (11) will be proved for h+l if we show that
(12) m:v(l’h+1 .xj) = oov(xh+2,xj+1). 1<£3<het,
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We have due to (1)
cov(Zy.q ,XJ)- ﬁcuv(xk,lj)h.d apoov(xkﬂ_p,xj) +
+ cov(gy 4 ,Ij)+ b1oov(€h.xj)+...+ chov(eh”_q,xd),
cov(XyypeXg4q) = 8100v(Xy 40X 5 q)%eeet 8 0OV(Ey p 00Xy q)*
+ cov(By oK 4490+ Bycovley g X5 q)4eeet Docovley 00Xy q)e
Pirst we shall prove (12) for 1£ j<h, According to Lemma 1 it
holds
(13) cov(ek,xj)- cov(e, . ,xj+1), htl-q£k£h+l, 1€ J£h,
Further it holds directly according to the induction assumption
(14) cov(xk,xj)- cov(Xy .4 ,x:m), h+l-p£k<h, 1£3§4hn,
Prom (13) and (14) it follows (12) for 1£ j£h, For j=h+! we can
make use of the fact that
(15) °°v(°k'xh+1)" cov(€y Xp,o), hH1-g£k£ htl
(see again Lemma 1) and
(16) cov(xk,xh+1)- cov(xk+1 Xp4p)s BH1-p€k£n
(see (12) proved for 1< j<h). From (15) and (16) it follows (12)

for j= h+1, It concludes the proof since the inverse implicati-

on is obvious.

Let us introduce the following three matrices of the type

rXr
o 1 [ P 0o o0
0o 0 1... o 0
M= .



0 vee 0O
0 T

A= | . ’
0 eee 00 )
0 e 0 B2(DE DY)

N,
/? eee O 4] \
Z =| 0 ... O 62bq s
2 %)
0 «. 0 6%+ var)

O v
.
.
L]

2 (1) (3-1)
0 65(by+bydy ‘...t b, )

where in the last row of M there are the coefficients ap,...
eess8q preceded by r-p zeros if r>p and similarly for the last

column of Z.

Lemma 3. The sequence 11,...,XT is stationary if and only
if the matrix V = var(x1....,xr) satisfies the equation
(17) Vo= uvM” + M2 + 2 + A,

Proof. One can write

12 11 o]
: - M S + :
X, X, 0
Xri X, Crat Dy EpteeetBobrg g/ "

The variance matrices of the random vectors on both sides of

this equation must be equal so that
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var(X,,eee X yy) = MM+ MZ + Z2M + A

(the covariance matrix 2 can be calculated due to Lemma 1),

Now the assertion of Lemma 3 is obvious according to Lemma 2.

Let us consider an ARMA process of the form
(18) !t- 3“!‘_1""..4’ a.th_pﬁ' €t+ b1 st_1+o-o+ bq Et_q,
~-<t < oo,
where Sy is a stationaty white noise with the variance 62.
The well known condition of stationarity of (18) has the forms

8ll roots of the polynomial
P 1_
(19) 2%- 842" '~eoo- 8

are less than one in the absolute value (let us refer to it as
to the condition of AR-regularity).

If the process Yt is stationary then it is not difficult
to show that the equality (17) in which X, is replaced by Y,
must hold. Prom this fact several conclusions can be drawn.
PFirstly, the autocovariances of the stationary ARMA(p,q) pro-
cess 11,...,XT of the finite length are equal to the correspon-
ding autocovariances of the stationary ARMA(p,q) process (18).
Purther under the condition of AR-regularity the equation (17)
has the unique solution of the form
(20) v -:__ﬁo MMz + 2" + A MK
(the convergence of the infinite sum in (20) follows from Per-
ron’s formula and from the fact that the matrix M has r-p gero
eigenvalues and the remaining p eigenvalues are the roots of
the polynomial (19), see [1], Section XIII.1, for the sutoreg-
ressive case). The solution (20) is positive definite since due
to its uniqueness it must be V = var(!,....,!r) and
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var(¥,,...,Y,) is positive definite (the process Y, is non-de-
torministic and therefore all finite variance matrices of it

are regular).

Remark 3., In the autoregressive case the explicit ferm of
the inverse matrix V"1 expressed by meang of the numbers 845000
ceesBy is given in [ 1), Section XIII.2. On the other hand, the
formula (20) can be recommended thanks to the rapid convergence

of the infinite sum in it.

Pinally one can extend all preceding considerations to the
case of ARMA process 11 ,12.... 0of the infinite length. If the as-
sumptions (2)-(5) hold for the infinite sequence Egr1r Egeprece
eand the initinl random variables X,,... X, conclusions of this
section stay valid for 11 ,12,... o

3. ARMA processes of finite length generated from initial
random variables and nonstationery white noise. Now we shall de-

al with the process ARMA of the finite length when the zerd mean
sequence ¢, a+1 < t 4T, loses the properties of the stationary
white noise for r<+t £T. Therefore let the assumptions (2) and

(3) be replaced by

(21) var €, =62>0, st14t<r,

(22) ocov( ey, €,)= 0, s+l &t 4r, t<u<r,
(23) E = var( @p,qseees ) 18 regular.

Theorem 4. Let the assumptions (4),(5),(21)-(23) be valid.
Further let the variance matrix V of (X;,... .xr)' be the soluti-~
on of (17). Then the sequence X;,... +Xp generated according to

(1) is stationary if and only if €_,q4eee, Eq 13 the stationa-
s+ T
ry white noise.
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Remark 4. In the autoregressive case (q=0) the assumpti-
ons (5),(21) and (22) are omitted.

2roof. If €,.44000, €p 18 the stationary white noise then
the sequence x,,...,xr is stationary according to Lemma 3.

On the contrary let Xypoee .IT be stationary. Then we want
to show that
(24) B =621,
where I is the unit matrix, There exists a lower triangular mat-
rix ¥ = (fij) with positive numbers on its diagonal such that

E = 6°PP°
since E is positive definite (so called Cholesky decomposition).
Let us define the random variables %, ise.., '6“,! by means of the
formula
(25) (Bpppreees €)= P (€ pyreney B0
Then var( ’ér+1""’ 'é'm) = 62 I so that the sequence Cgpqr0ee
coss Bpy Epypreces 'é'T forms a stationary white noise. Therefo-
re the sequence Isﬂ seee ,xr, i’r+1 gese ,'f,! generated by means of
(1) replacing Epp1reees Sp by %’rﬂ""' 'e"T is stationary ac-
cording to Lemma 3.

We shall prove that P = I (then (24) will hold), Pirst we

can write
X p1= Cppqt Dy Epte. ot bqer+1_q+ aX teoot apxrn_p
= f11gr+1+ b-‘ €r+---+ bq€P+1"q+ a1xr+000+ apxr+1_p,
~ ~
Trr1=™ Brag® Dybptecet Doryq g BXpteet Bk pe
Hence 1t holds obviously var X _ .~ var ’i'rﬂ' £$1 62 _ g2, Since
Pl
var X, 4= ver X = var X , it must be 4= 1 (consequently it
~ ad
is €r+1- €r+1 and xr+1- xr+1)o
Further it is
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(1) : a1 1 1
Lryo= re2t 417 Epgqt 4T pteeet d¢(1+% €r~+1-q+ °1( )xr"'"'
(1) z (1 1
st op Erp® Tp Epat (fpr af) € e &fVeniis

+ d“) (2 + e$1)xr+...+ cl(,”x

q+tl “r+l-q r+1-p?
3 (1) (1) (1) [$))
xﬁ%’ gl‘+2+ d1 6r+1+ d2 evr+o-.+ d.q+1 er+1_q+ 01 Ir+..-
eeet p xrﬂ_p.

Hence 1% holds cov(X,, 54X,q) - eov(fﬁa,’fﬁ‘)-(fmd' dg‘)) 62 -
- d$1) 62 = 12162. Since cov(xﬂz,xﬁﬁ- cov(xrﬂ .g.)-

~ lad
= cov(X 1K, )= cov(X 5, ,1) 1t must be f,,= O. Comparing the

variances of xﬁa and ’fr+2 one will find analogously that ‘22' '
= 1 ete. (it is possible to proceed by means of the imduction).

One of the practical interpretations of Theorem 4 is the
following: when we generate an ARMA process on the computer by
means of (1) under the condition of AR-regularity using initial
random variables with the variance matrix (20) we cannot obtain
the stationary process if the random shocks generated by the com-

puter do not form a white noise.

4. ARMA prodesses of infinite length generated from initial
random variasbles and nonstationary white noise. It is interest-

ing from the theoretical point of view to generalize the consi-
derations from Section 3 to ARMA processes 11 .12,... of the in-
finite length. In order that the previous methodology could be
used we confine ourselves to such nonstationary white noise pro-

cess < €490+« Which was called by Tjéstheim and Thomas

1
[7) almost white noise. It means that there exists a (stationa~

ry) white noise ’érn, ’é"r+2"" (1.e. E€;= 0, var ’ét- 62> 0,
cov(%,, €)= 0 for t+u) such that ¢.=BE,, t= r+1,r42,...,
where B is a linear bounded operator with a bounded inverse B'1
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defined on Hilbert space H generated in the usual way by the pro-

-~
cess €r+2"" .

On the bagis of the general theory given in [2] one can ob-

G’r+1 ’

tain various necessary and sufficient conditions for the process
€19 Eppprece wi th zero mean values to be the almost white noi-
se, e.g.

(I) there exist constants 'k.l and k, such that it holds for

an arbitrary natural n and arbitrary numbers ’{1 secey ?'n
6 S 425E(% e x, 5
(26) k2 FISECE ¥y o) R Zr

or another condition is following

(II) the infinite matrix (so called Gramm matrix)
(27) A = (cov( e’r‘.‘j. €r+k))' Jgk = 1.2'0-'

forms the bounded linear operator with the bounded inverse in

the space 12.

The simple example of the almost white noise is the process
of uncorrelated random variables with zero means and variances
lying between two positive constants (i.e. 0<m< var €L € M) men-
tioned in Section 1. The verification of the condition (I) is
trivial in this case, More complicated example is the zero mean
process ..4y €,.,5s¢ee such that the variance matrix of each
of its ,ﬁnite parts has all eigenvalues lying between two posi-
tive constants O< m< M. Then according to [6, 1£.2,1] it is

re-g 'X';i % 9‘11.;1;[;‘&,,1 1‘3 £ “5‘;_'4 F1 W3V Ery08ryy) £

2
s?\.mu_,rzﬂ ’)’35“* ’Tj'
where A, (resp, Apay) 1# the minimel (resp, maximal) eigen-

value of var( e . i,eeey ©py,) 50 that the condition (I) is ful-
filled.
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Tjéstheim and Thomas [ 7] showed that the almost white noise
is the special case of so called UBLS (uniformly bounded lineer-

ly stationary) processes which present the natural generalizati-
on of the stationary processes (see also [4]). These authors al-
8o give some simple examples of the almost white noise processes.
According to [3] the operator from the definition of the almost
white noise can be determined by meens of the infinite lower tri-
angular matrix B = (bij) such that

(28) A =62 BB,

the process ©.,qs €pyprees defined explicitly by means of

€

~
r+1 = P11 ©

r+1!

(29) 4 2
€ri2 = Doy Opyq * D Ere2s

is the corresponding stationary white noise with the variance 6’2.

Now Theorem 4 cen be generalized in the following way.

Theorem 5. Let Cael? €s+2"“ be a zero meen process such
that the assumptions (5),(21) and

(30) cov( ey, €,)=0, s+l£t<&r, t<u,
(31) cov(xt, €,)=0, 1€¥4r, s+1&u, t<u

are fulfilled and €ri1r Ergoreee is the almost white noise. Fur-
ther let the variance matrix V of (x,.... ,xr)  be the solution
of (17). Then the sequence X,,X,,... generated according to (1)
is stationary if and only if €444, €,40see+ 18 the stationary
white noise.

Proof is enalogous to the one of Theorem 4 using (29) in-
stead of (25).
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12)

31

[4)

[51

L6l

n

[el
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