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COMMENTATIONES MATHEMATIQUE UNVERSITATIS CAROLINAE 

26,2 (1985) 

ARMA MODELS WITH NONSTATIONARY WHITE NOISE 
T. CIPRA, J. ANDEL 

Abstract: The stationarity of ARMA. ( p , q ) prootsses is in-
vtstigatad whan tht corrtaponding whita noiae ia nonstationary 
with a gantral oovarianca atructurt. The oonaidtrtd ARMA proooa-
ata ax* generated from initial random variablta "-i»^MX a a i(Tj a ) 

(i. t. thty start in a givtn timt point dtnottd as t - 1 ) and in 
thia framework tht proctssts I1,...,XT of tht finitt ltngth and 

tht pro etas as I ^ , ! . - , , . . . of tht infinitt ltngth art distinguish­
ed. In tht lattar cast with tht infinitt ltngth tht paptr confi-
nta itatlf to ARMA proctssts with 00 calltd "almoat whita noioo". 

Kty wordat Nonstationary whitt no1st, ARMA prootss, stati­
onarity, alsoat whitt noiat. 

Classification: 62M10, 60G10, 60G20 

1* Introduction. Tht linear modtla with nonatationary whi­

tt noiat havt been atuditd In stvtral works rtctntly. E.G. Hit-

mi 151 dtalt with stationarity and 00110 statistical pro partita 

of ARMA proctasts In which the whitt noiat -t^^\ oould havt 

nonoonatant boundtd variancta (i.t. Be^ * 0, 0<m^var 6 ^ M 

for aomt constants m and Mt B S» . |&u - 0 for t * - u ) . Statisti­

cal trtatmtnt of AR processes of this typo ia suggested in t8]. 

If tht nonstationary zoro moan whitt noist may havt a gt-

ntral oovarianca structurt S e . t € u , the situation la mora com­

plicated, of courst, and many open problems appear In this fra­

mework. E.g. it ia interesting to investigate under which oon-

ditiona the linear proceas uaing 0uoh nonstationary white noise 
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ia stationary. The following example shows that the existence 

of a stationary prooess of this type is po«0ible. 

.Example. Let & be a random variable with B e « 0 and 

var e • tf ?»0. Let uo define fc^ • e , Z$t+<\ m & t Gjt+z m 

« - £ for all t. The prooeas {s^\ has the nonstationary cova-

riance atructure einee S e^ t ^2t+1 " ° *** B e3t+1 63t+2 * 

• - 6 2. On the other hand, MA(3) proceeo iXt\ defined as I t « 

* £+ + ^t-1 + et-2 ls » t a t i o n a ry »ino0 1^ - e for all t. 

In this paper, the stationarity of such processes is inves­

tigated which are generated from initial random variables I-j ,»r. 

•••,Xmax(p a)* M o r t o V 0 r» t3aty 0<m **•• R '----Ate length (000 Sec­

tion 3) or they can be infinite (000 Section 4). In the latter 

case with the Infinite length we confine the general nonstatio­

nary white noise to 00 called almost white noise introduced in 

L71. However, at first it is necessary to derive the conditions 

of stationarity of the process ARMA generated from initial ran­

dom variables in the classical case with a stationary white noi­

se. It is dona in Section 2 generalizing Andel 0 results C1J 

derived for the autoregressive case. The stationarity alwayo 

means the weak stationarity in this paper. 

2. ARMA processes generated from initial random variables 

and stationary white nolae. Let Ilt...,Ir (r « max(p»q)) be 

random variables with zero mean values and a variance matrix V 
&2ld ^9+1 »•••» ̂ T (d « r - q) be random variables with zero me­

an values. Let random variable© Xr+1,. • • ,IT be defined by raeana 

of the formula 

<1> x t - * i x t - i + - - - + a
P

x t - P
+ e t + b i e t - i + - - - + \ e ^ , 

r • l £ t . £ T f 
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where a. t . . . t a , fc<jte..tb are given numbers. Moreover, l e t the 

following assumptions be f u l f i l l e d : 

(2) var e t • 6 2 ; > 0 t s+1-eit^T. 

(3) c o v ( ^ t , S u ) • 0 , s + 1 ^ t < u ^ T 

(4) cov(X t , e u ) * 0 t 1 . 6 t . £ r t s+1-*u.4T t t ^ u , 

(5) c o v ( X t , « u ) = 4 - u U ) ^ 2 » s + 1 ^ u ^ t ^ r t 

(k) where d!j ' , k2 .0 t 0 6 j ^ k + q t are constants uniquely determined 

by the numbers a . | t . . . t a . b - t . . . , b such that 

(6) d<k )» 1, k r o , 

d j 0 ) « b^ 1 * j * q f 

Xt+k+1- S+k+1+ d i k ) *t+k+— + 4+J et+1-q+ c i k > X t + 

+ 4k ) x t . 2
+—+ cpk ) lt+i-p*k r o 

(ci t kZO t 1 s . y i £ p are other constants also determined unique­

ly by a-jt...ta , b . j t . . . t b ). The system (1)-(5) can be consider­

ed as the system of prescriptions which one uses generating the 

given process. Although it may look complicated it has simple 

forms in special cases (see Remark 2). 

fk) (\c) 
Remark 1. The constants c£ ' and di ' can be calculated re­

cursively from (1). It is not difficult to show that 

4k ) - 4k71) + °i(k-1)*i. i ^ ^ p - 1 . 
c

P
k ) - c i ( k - 1 ) V 

d(k) . d(k-Df o^J^k-1, 

d j k ) " d j k " 1 ) + ci k" 1 )Vk» *+1«i;)-;-+<i-1. 
Jk) Jk-1)», 
^+4 - ci b-* q 
If a 4->0 and b ^ O then the previous sequence X1t...,Xm forms 

so called process ARMA(ptq) of the finite length generated from 
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the initial random variables X*j,...fXr and the stationary white 

noise. 

Remark 2. Let us consider some special eases of the previ­

ous models 

(*) AR(p)< the variables X.̂  f •.. fX f ^ f •. • f € ^ are gi­

ven fulfilling (2)-(4) (the assumption (5) has no sense In this 

case) so that the situation Is equivalent to the one considered 

in L13 for the autoregressive case; 

(**) M-Kq)* the variables X.j f• • • fX f e-j »•.., €,j are given 

fulfilling (2)-(4) and 

cov(Xt, e t) - €>
2
f 

cov(Xt, e u ) •
 Dt- U » 1s6u'<;^^<li 

(iijL) ARMA(1ft1): the variables X-j f S 1 f.. # f tf are given 

fulfilling (2)-(4) and 

cov(X1f €-j) m 6f2. 

One can prove the following extension of (4) and (5): 

Lemma 1> It holds 

(7) oov(Xtt €u )» 0 f 1*4t-*T f s+1-6u.£Tf t«-fuf 

(8) cov(Xtf e u )« d ^ u
u ) ^ 2 t 1<-*t*Tf s + l i u ^ l , t £ u . 

Proof. The formula (7) i s obvious. As the formula (8) i s 

concerned, i t i s obvious for u? r since then one can write 

(9) Xt- V d$*-»> ^ t_1+ . . .+ d<*ji V q + c1^-«)Iu_l+...+ 

+ 4t-u)lu-p-
Generally (8) can be proved by means of the induction with re­

spect to t. ?or X£r (8) follows directly from the assumption 

(5). Let (8) hold for some t r r . We shall show that then it 

holds also for t+1. 
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If r<tt£t+1 then ooT(Xt+1 f eu) « d.̂ *** ~u) 6T 2 according to 

the previous disoussion. fherefore let s+1-^u-^r. Then accord­

ing to the induction assumption 

coT(xt+1f e u ) - COT( © t+1§ eu)+ ^OOTC e t , eu )+. . .+ 

+ \ c ° v ( € t + 1 - q » V * *1°°TtXt» ^ u ) + - ^ + V ° v ( X t + 1 - p f V 

«coT(fct+1f6u)+ h1coT(€ t f€u)+...+ »qoov(^t+1-q*eu) + 

+ a1d^)6^..+ apd (:t l^)^ f 

where possibly d£k)« 0 for k<0. fhanks to the definition of the 

coefficients d!j and to the properties of 6 t we can further 

write 

o o r t t ^ t V c o v ( e t+r+2-u'^+1 ) + V o v ( e t+r+1-it» er+l)+ ' -* 

. . . + ^cov(e t + r + 2 « q . u » ^ )+ *icov<It+r+1-*»er+l) + # # # + 

+ %ooT(X t+r+2-p-ufi5r+1) 

- c o T d ^ ^ , ^ ) - d ( * ^ ) 6 - 2
f 

where the last equality follows from the discussion in the be­

ginning of the proof (if t+r+2-u>f then we oan imagine that we 

have infinite sequence £$+it.*.»
&ft fc-p+v* i» our disposal). 

Lemma 2. fhe sequence X1f...fX-g is stationary if and only 

if 

(10) Tar(X1f...fXr) - Tarttg....,!^). 

Proof. Let (10) hold. We shall show by means of the induc­

tion that then 

(11) Tara-p...,!^) - •ar(X29...9]^|+1)9 r£h£f-1 

(hence the stationarity will follow for h * f-1). fhe case h«r 

corresponds directly to (10). Let (11) hold for some r-̂ h-erf-2. 

Then (11) will be pro Ted for h+1 if we show that 

(12) COT(Xh^fX;)) « OOYO^^tXj^). 1-*J*h+1. 

- 289 -



We have due to (1) 

cov(Xk + 1fXJ)- a.,c©v(Xk,Xj)+...+ apcov(Xk+1-p.>XJ) + 

+ cov(eh + 1 ,x ; ) )+ b 1 c o v ( e h , x j ) + . . . + b q c o v ( e h + 1 ^ , x 3 ) , 

cov(X k + 2 ,X j + 1 ) - a 1 cov(X k + 1 ,X J + 1 )+ . . .+ a p cov(X k + 2 - p ,X j + 1 )+ 

+ cov(6 h + 2 f X j + 1 )+ b 1 cov(6 h + 1 t Xj. + 1 )+ . . .+ b q cov(€ h + 2 - . q ,X 3 + 1 ) . 

f i r s t we shal l prove (12) for 1-6 j -£h . According to Lemma 1 i t 

holds 

(13) cov(ek,X.j)« c o v ( e k + 1 , 1 ^ ) , h+1-q^k-^h+1 t 1-*3-*h. 

further i t holds direct ly according to the induction assumption 

(14) cov(X k f X i ) - cov(Xk+1 f X j + 1 ) , h+1-p-*k-*h, 1 ^ j ^ h . 

Prom (13) and ( H ) i t follows (12) for 1 £ j * h . Por 3«h+1 we can 

make use of the fact that 

(15) covte^-X-^)* cov(6 k f X h + 2 ) , h+1-q^k*6h+1 

(see again Lemma 1) and 

(16) cov(Xk fXh + 1)» cov(X k + 1 ,X h + 2 ) , h+1-p-fk-^h 

(see (12) proved for 1 * j . 4 h ) . from (15) and (16) i t follows (12) 

for j» h+1. I t concludes the proof s ince the inverse impl icat i ­

on i s obvious. 

Let us introduce the following three matrices of the type 

r x r 

/ O 1 0 . . . 0 0 \ 

[ 0 0 1 . . . 0 0 \ 

V 0 1 

0 . . . 0 ap a p ^ . . . * ^ »., . . . a,-, a.t ' 
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\ 

o ... 

0 ... 

0 ..< 

0 ... 

0 

0 

0 б
2
(1+Ъ^+...+Ъ

2
}^ 

0 

0 « \ 

• 2oy>łVÍ"> 

\ 

O ... O 62(b1+v4
1)+...+ b t d ^ 1 ) ) 1 2 1 

where in the last row of M there are the coefficients a .... 

...fa.- preceded hy r-p zeros if r>p and similarly for the last 

column of Z. 

Lemma 3. The sequence X-jt...tXm is stationary if and only 

if the matrix V » var(X-j,•.. tX r) satisfies the equation 

(17) V - M7M# + MZ + Z V + A . 

Proof. One can write 

Liw1 

"T+ľ *r+1 + b1 er+-^+bqer+1-q 

The variance matrices of the random vectors on both sides of 

this equation must be equal so that 
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Y a r O g , . . . , ! ^ . , ) « MVM + MZ + Z M + A 

(the oovariance matrix Z can be calculated due to Lemma 1 ) , 

Vow the asser t ion of Lemma 3 l e obvious according to Lemma 2 . 

Let ua con aider an ARMA process of the form 

(18) I t - a 1 Y t - 1 + . . . + apY t - p+ e t + b, € t . 1 + . . . + b q e t _ q 9 

- 00-< t < 0 0 , 

where &+ is a stationaty white noise with the variance 6 . 

The well known condition of etationarity of (18) has the forms 

all roots of the polynomial 

(19) »p- a1a5
P" -...- a 

are lees than one In the absolute value (let us refer to it as 

to the condition of AR-regular!ty). 

If the process Yt is stationary then it le not difficult 

to show that the equality (17) in which X t le replaced by Yt 

must hold. From this fact several conclusions can be drawn. 

Firstly, the autocovariancee of the stationary ARMA(p9q) pro­

cess Xl9...yXm of the finite length are equal to the correspon­

ding autocovariancee of the stationary ARMA(p9q) process (18). 

Further under the condition of AR-regularity the equation (17) 

has the unique solution of the form 

(20) V - 2L Mk(MZ + Z V + A ) M ' k 

k* o 

(the convergence of the i n f i n i t e sum in (20) follows from Per­

ron's formula and from the fact that the matrix M has r-p zero 

t igtnvalues and the remaining p eigenvalue0 are the roots of 

the polynomial (19)» see [13 , Section XIII. 1, for the autoreg-

reesive case ) . The solu t ion (20) I0 posi t ive def in i te since due 

to i t s uniqueness i t must be V • var (Y 1 9 . . . 9 Y r ) and 
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Tar(y.j ,...,Yr) is positiTe definite (the process T^ is aoa-de-

terministic and therefore all finite Tariance matrices of it 

are regular). 

Remark 3. In the autoregressiTe case the explicit feam of 

the inverse matrix V" expressed by means of the numbers a . . . . . . 

• ••»a is given in C 13 , Section XIII.2. On the other hand, the 

formula (20) can be recommended thanks to the rapid convergence 

of the infinite sum in it. 

Finally one can extend all preceding considerations to the 

case of ARMA process X-pXg,... of the infinite length. If the as­

sumptions (2)-(5) hold for the infinite sequence £ .j, £fl+2»
### 

and the initial random Tariables X1v...,X7 conclusions of this 

section stay valid for X-j.X^,... • 

3» ARMA processes of finite length generated from initial 

random Tariables and nonstationary white noise. How we shall de­

al with the process ARMA of the finite length when the zero mean 

sequence e^, a+1-£t-6Tf loses the properties of the stationary 

white noise for r < t ^ f . Therefore let the assumptions (2) and 

(3) be replaced by 

(21) Tar 6 t « 6
2 > 0 , s+1-6t-*r, 

(22) OOT( ett £u)» 0, s+1«--t-^rf t<u*4T, 

(23) E m Tar( e . ^ , . . . , &$) is regular. 

Theorem 4. I«et the assumptions (4) ,(5) ,(21)-(23) be Talid. 

Further let the Tariance matrix V of (X^,...,Xr)' be the soluti­

on of (17). Then the sequence X1V...,X^ generated according to 

(1) is stationary if and only if £fl+«jf.t
 e $ is the stationa­

ry white noise. 
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Remark 4. In the auto regressive case (q-*0) the assumpti­

ons (5)f(21) and (22) are omitted. 

Proof. If £ s + 1 f... f £,-» is the stationary white noise then 

the sequence X . | f . . . f X « is stationary according to Lemma 3* 

On the contrary let X1f...fX,-, be stationary. (Then we want 

to show that 

(24) B « S 2 I, 

where I is the unit matrix. There exists a lower triangular mat­

rix P • (f-y) with positive numbers on its diagonal such that 

E - 62Pf * 

since E is positive definite (so called Choleaky decomposition). 

Let us define the random variables ^:r4.1t...f ̂ m by means of the 

formula 

(25) ( &.P4./I t••• § ̂ j) » * ( ̂ r+1 »••• 9 ̂ j) • 

Then var( ^ .^-j ••••» £»p) « 6 I so that the sequence ^a+1t«»» 

...f 6rt ^r+1»»*»t ̂ 5 forms a stationary white noise. Therefo­
re rsj 

re the sequence Xe+1f...fXrf Xr+.j,.. • fX-., generated by means of 

(1) replacing fc^,..., € f by i^-,,..., ̂  is stationary ac­

cording to Lemma 3* 

We shall prove that P « I (then (24) will hold). First we 

can write 

V l « €r+1+ V r + ^ + VWl-q + a l V " - + apXr+1-p 

- * 1 l W H + - + bqS+1-q+ ^ V - - * + V W p > 

V l - gr+1 + b l V - + Vr+1-q+ ' i V - * VWl-p* 
Henoe it holds obviously var Xr+1- var ^ ^ . - j - ff-i # 2 - £2

# since 
var Xŷ -j-t var Xr- var X ^ i t must be f.,.,- 1 (consequently i t 
is €,+-,• ^ a n d X ^ - X ^ ) . 

further i t i s 
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Zr+2" er+2+ ^ £r+1 + ^ ' V ' ^ dq+1 «r+1-q+ " I ^ V — 

— + cp1>Ir+1-p° '22 W <-21 + d10)> W 4 1 > e r + — + 

+ * $ «r+1-q+ ° i ( 1 ) V - " + Cp1>xr+1-P. 

^r+2" gr+2+ d11)*r+1 + 4 1 ) & r + ' - + dq+1 6r+1-q+ ' l ^ V — 
+ o ( 1 ) I • •• + °p Ar+1-p. 

Hence i t holds eov(Xr+2,Xr+1) - cov(l r + 2 , ' l r + .)-(f 2 1+ d } 1 ) ) £ 2 " 

- q 1 ) 6 2 - ^ l 6 * ' S i n c e oov(xr+2»xr+1 )" C0Vtx
r+1»Xr)" 

* cov(Xp+1 »Xr)- covCXĵ g tXr+1) i t must be f21« 0« Oomparimg the 

variances of Xp+2 and Xr+2 one will find analogously that f22» 

• 1 e t c ( i t i s possible to proceed by means of the imduction). 

One of the practical interpretations of Theorem 4 ie the 

following: when we generate an ARMA process on the computer by 

means of (1) under the condition of AR-regularity using in i t ia l 

random variables with the variance matrix (20) we cannot obtain 

the stationary process i f the random shocks generated by the com­

puter do not form a white noise. 

4. ARMA processes of infinite length generated from in i t i a l 

random variables and nonstationary white noise. I t i s interest­

ing from the theoretical point of view to generalize the consi­

derations from Section 3 to ARMA processes X-j-X-***** of the In­

finite length. In order that the previous methodology could be 

used we confine ourselves to such nonstationary white noise pro­

cess ^.y+1* er+2***# w 5 l i o n w a 8 <>a--lfc& *>y TJifstheim and Thomas 

L73 almost white noise. I t means that there exists a (stationa­

ry) white noise *€T+<\ • ^r+2 f , #* (*••• E ^ t* °» var ? t « 6 2 .>0 f 

cov(^ t > %u)m 0 for t * u ) such that zt~ B %%f t» r+1 t r+2 t # . . t 

where B i s a linear bounded operator with a bounded inverse B~ 
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defined on Hilbert space H generated in the usual way by the pro-

cess ^r+i» r+2**** * 

On the basis of the general theory given in [.23 one can ob­

tain various necessary and sufficient conditions for the process 

€ 4 , kr+2»**# *•* *k zero m e a n values to be the almost white noi­

se, e.g. 

(I) there exist constants k^ and k2 such that it holds for 

an arbitrary natural n and arbitrary numbers "jf-j,..., #_ 

(26) ki jS. tfj"'^ ̂  W * ̂ Y j i 
or another condition is following 

(II) the infinite matrix (so called Gramm matrix) 

(27) A * ( cov(S i p + . j f €r+k))t dt-c « 1,2M.. 

forms the bounded linear operator with the bounded inverse in 

the space /(L. 

The simple example of the almost white noise is the process 

of uncorrelated random variables with zero means and variances 

lying between two positive constants (i.e. 0< m£ var €±£ M) men­

tioned in Section 1. The verification of the condition (I) is 

trivial in this case. More complicated example is the zero mean 

process er+«j, ̂ r +2
,** # s u c h that the variance matrix of each 

of its finite parts has all eigenvalues lying between two posi­

tive constants 0<ra<M. Then according to C6f 1f.2.1J it is 

where A m i n (reap. Xm&x) is the minimal (resp. maximal) eigen­

value of van e^ 1 > #.. f & m ) 8 0 that the condition (I) is ful­

filled. 
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Tj^stheim and Thomas L7] showed that the almost white noise 

is the special case of so called UBLS (uniformly hounded linear­

ly stationary) processes which present the natural generalizati­

on of the stationary processes (see also t4l). These authors al­

so give some simple examples of the almost white noise processes. 

According to [3] the operator from the definition of the almost 

white noise can be determined by means of the infinite lower tri­

angular matrix B • (by) such that 

(28) A -*62 B B \ 

the process ^p+i» Sp+2**** de*--*-ed e x p l i c i t l y by means of 

er+1 * b11 ^r+1 * 

(29) ^ = "h P + h e er+2 * *21 er+1 * b22 er+2» 

is the corresponding stationary white noise with the variance tf2. 

Now Theorem 4 can be generalized in the following way. 

Theorem 5. Let 9.s+1, ^a+2*mmm b e a zero meG& process such 

that the assumptions (5),(21) and 

(30) cov( e t, fu)» 0, s+1-*t-*r, t<u, 

(31) cov(Xt, eu)« 0, 1-gt.sr, a+1-*uf %< u 

are fulfilled and e r + 1, e ^ f . is the almost white noise. Fur­

ther let the variance matrix V of (X 1 t... fX r)' be the solution 

of (17). Then the sequence X^X^,... generated according to (1) 

is stationary if and only if e B + 1, %+2**" is the s*ati°:aary 

white noise. 

Proof is analogous to the one of Theorem 4 using (29) in­

stead of (25). 
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