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SOME CLASS OF UNIFORMLY NON-SQUARE
ORLICZ-BOCHNER SPACES
H. HUDZIK

Abstract: It is proved that if X is a uniformly nen-square
normed space, $ is a uniformly convex Orlicit function satisty-
ing the rospeotivc condition A, and w is a non—-nogaﬂvo and

6 ~finite measure, then the Orlicz-Boehnor |£nco 12 (ar X) 18 w-
niformly non-square. It is proved also that the assumptions @&
bout X and partially about  are necessary,
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0. Introdusction. (7T, =,M4) is s meesure space with moR~me-
gative and & -finite measure, R denotes the real lime, R, =
= [0,+0), (X, 11 ) is a normed space. We assume for simpliei-
ty that all atoms are of measure one. A mapping $:R—> R, is
called an Orlicz function if it is convex, even, and vanishing

only at zero. By F(w,X) we denote the space of all equivalense
classes of strongly 2. -measurable functions £:2—> X.
Let ¢ be an Orlicz funotion. We define on F(w ,X) the com-
vex modular I (for definition see [9]1) by
I(e) = [ooMemam.

The Orlicz-Bochner space IA’((A.,I) is defined by
13(@w,X) = {feP(@,X): I(kf) < 0O for some k>0%+

This space is a normed space under the so-called Luxemburg nerm
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Ifly = inf {r>0: I(x/r)< 1} -

Ve say an Orlics function $ 1is uniformly comvex (see [8])
if for every ac (0,1) there exists p(a) & (0,1) such that

o (ugem) op(e) (4 (u) + @ (au)}

for every ueR, If $ is & uniformly convex Orlics function, then
the inequality

 (gbm Iop(®) (5 (u) + @ (Vu)}

holds for all ucR and 0<b<a (see [11).

A normed space (X, A1) is called uniformly non-square if
there existas € > O such that for every x,y€IX satisfying
max (1xl,ly1) €1 we have min (FE3XL,AZGTN) £1 - € (see [5)).

1. Results

Theorem 1,1. Let & be a uniformly convex Orlies fumctiom
satisfying the respective condition Az' i.e. there exists a con
stant K,a> 0 such that the inequality $(2u)< X §(u) holds:

(1) for all ucR if & is an infinite measure that is not
purely atomio,

(i1) for ueR satistying |ulz a if w is sn atomless and
finite measure,

(111) for ueR satisfying lul< a if & is & purely atomie
measure.

Let X be & uniformly non-square mormed space. Then the Or-
liez~Bochner space I.g(p.,x) is uniformly non-square.

Proof. It follows from the respective conditieon A, for §
that for every © c (0,1) there exists d'(€ )¢ (0,1) such that fer
every relﬁ(p.x) the inequality I(f)£1 - € dimplies Itl. €1 -
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- d(e) (mee [31,06],18)).
Pirst, we shall prove the imequality

(M OEID +UEFTD £ < LS Az + dUyD}

for all x,ycX (with an absolute comstant «< ¢ (0,1))., Let € >0
be the © in the definition of X being uniformly non-square and
let x,ye X. We have

min (R%II.I%IDéU - €) max (Ixi,lyl).

Without loss of generality we may assume that lyll < Ixl and
ix+yl & Ax-yli. Thus, we have Ix+yl22(1 - ) ixl. We shall consi-
der two cases.

I. WxWzlyl/~/T =& . Then, we h'un

BABIY « 9((1 - e)lxl) € (Vi —gAxlilal) .
¢ Y=L ipzl) + DAID .

II. Yyl <€ V1 - ¢ Ixl. Then, by uniform convexity of & , we
have

BN < ¢ ¢xbplxly, 1=V =2) spux) + dayn .

Denoting 6 = max (V1 =¢, 1-p( V1 ~ €)) and applying the trian-
gle inequality for the norm f+] and convexity of ¢ to the temm
FAFFI), we get the inequality (1) with o= (&8+ 1)/2,

Now, let f,g¢ 1.4’((«.,1) and max (Afly Jely)é1. Then
max (I(f£),I(g)) £1. Applying the inequality (1), we have for any

te?
(- E(M) ) . g K 5 BBy < L £PCR2(RIN) +

+ ¢(he(e)f) .

Integrating this inequality both-side over T, we get
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1(3K) + I(SE‘) £ oG(I(2) + I(g)) 2 -
Thus, we have
nin (1£38), 1(X5K)) & o -

Henoce, we obtain
min (15E1, 1E55EI €1 =001 - ),
and the preef is fimished.

Theorem 1,2, If the Orlios-Bochner spece L"(gh,x) is uniform-
ly non-square, then 9 is an Orlios function satisfying the res-

pective condition A2 and X is & uniformly non-square normed space.

Proof. If ® does not satisfy the respective comdition A,,
then the space L¥( @»X) contains en isometric copy of 1%(see e.g.
[31,(41,(7] and(11]) and mo LQ(‘w,x) is net s uniformly nom-square,
because 1% is not, too (see [21),

If X is not uniformly non-square, then for every € > O thers
exist x,y€ X such that max (Bxl,iyl) <1 and min (Ix+yl,Iix-yl) >
>2(1 - ). Let u;>0 and A € = be such that d(u))(d) « 1, and
let ‘

f = VX0 8 =W T,
We have max (Ml{g, lglg )41 and min (nr+gt\4, o I2-gly )> 2(1 w€).
Thus, the space x9(¢w,x) is not uniformly non-square.

Remarks, Theorem 1.1 and inequality (1) are some genepali-
zations of Theorem 15 [10] and of Lemma 14 [10], respectively, in

the case n=2, Note that the method of the proof of the inequality
(1) 1s new,

An example of uniform}y comvex Orlics fumction is & (u) =
= \ulP, where 1<p< 00 . Then p(a) = 1-21-P (1+aP), Moreover, if
® and ¥ are two Orlios functions and if st least one of them
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is uniformly convex, then the Orliecz fumctions § o¥ and $.¥
are also uniformly comvex (see [3)). The function § o ¥ may be
uniformly convex even if mo function ¢, ¥ 1is uniformly comvex.

Question. Does Theorem 1.1 hold umder the weaker assump-
tiom @ (u/2) £ 6 d(u)/2 for all ueR with an absolute comstant
6 ¢ (0,1) instead of the assumption of uniform convexity of @ ?

This weaker ocondition is necessary in order that 1® ((u »X)
be uniformly non-squere.
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