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COMMENTATIONES MATHEMATICAE UNVERSITATIS CAROLINAE

26,2 (1985)

A SIMPLE GEOMETRIC PROOF OF A THEOREM ON M,
Jiri TOMA

Abstract: The congruence lattice of a 2-dimensional vector
space over a finite field has length two. A complete description
of all sublattices of these congruence lattices which are sgain
congruence lattices of finite algebras is given.

Key words: Congruence lattice, finite algebra,vector space
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Classification: 06B10, 06B15

It is a well-known fact that the congruence lattice of the
2-dimensional vector space A= (A,F) over GI'(pk) is isomorphio
to lln, the lattice of .length two with n = pk + 1 non-trivial e-
lements. In a fixed coordinate system in A the non-triviel con-
gruences are described as follows:

(1) any xeGP(pk) defines a congruence (a,b)~s (c,d) 1ff o = a+

+fxand d = b + £ for some feGl‘(pk).

giving thus pk congruences; the last one is defined by
(2) (a,b)rvw (c,d) i b = d.

The next idea how to construot finite algebras with congru-
ence lattices of length two was to add a new set G of operations
to A in order to damage some of the congruences of A . Algeb-
ras B = (A,FUG) have obviously congruence lattices of length
not greater than two. This idea was disproved by Quackenbush in

[1]l. As a consequence of a more general theorem on congruence
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permutable varieties he proved that the number of non-trivial
congruences of 73 1is sgain some prime-power plus one, provided
it is at least three. Here we shall give an elementary geomet-
ric proof of this result. Moreover, our method allows to charac-
terize completely the congruence lattices of algebras obtained
by adding further operations to the 2-dimensional vector spaces
over finite fields, as pointed out e.g. by P. Pudlék, P. P4lfy

and H, Kurzweil.

Theorem. Let A= (A,F) be the 2-dimensional vector space
over GF(pk) and G a set of operations on A. If the congruence
lattice of the algebra B = (A,PUG) is isomorphic to M , mZ3,
then there is a divisor 1 of k such that m = p‘1 + 1, Conversely,
if 1 is a divisor of k, then there is a set H of operations on
A such that the congruence lattice of the algebra ¥= (A,FUH)

is isomorphic to M 1..°
P+l

Proof. Suppose B has at least three non-trivial congru-

ences P, Q, R, and choose a coordinate system in (A,F) such that
P =gy Q =nvy, R =y (cf. (1) and (2)). Set
K = {x €GF(p*): ~v, is & congruence of By,

We prove that K is a subfield of G.F(pk). We have 0,1 K by
the choice of the coordinate system. Let x, -y be elements of K
and let us consider Pigs. 1 and 2., The horizontel, vertical and
cross full lines correspond to blocks of "/, , ~ and ~4
resp., the dashed and dotted lines correspond to blocks of ~g
and Ny, resp.

We say that two points M,Ne A are 1-joined iff there exist

U,Ve A such that Vr\/oolrvx UNO Vo~ NrVwU.

y
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/ .
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/ m ‘ Vv
Fig. 1

Now consider the least equivalence relation S generated by all
1-joined couples., If M, N is such a couple and g is & un&ry o=
peration from the clone generated by PuUG, then g(M), g(N) are
also 1-joined, hence S is a congruence of J3 . But if M, N are
1-joined and M = (a,b), then there is f e GP(pX) such that U =
= (a+fx,b+f), V = (a+fx,b) and N = (a+fx+fy,b+t), therefore
Mr\axﬂ,n. By reversing the whole process we get also Nx+y£s,
hence x + ye K.

To prove that K is closed under multiplication, suppose
X,y 40 and use Pig. 2 in the same way. This simple figure was
suggested by Peter P4lty.

'/ ket
M /v
Pig. 2

We say that M, N are 2-joined iff there are U,V&A such that

VoM ~y U ~y v r\Jy LI U, and let T be the least equi-
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valence relation generated by all 2-joined couples. By the sa-
me argument as above, T is a congruence of J3 . If M, N are 2-
joined, then there is fe& GP(pX) such that U = (a+fx,b+f), V =
= (agfx - £,b) and N = (a+fx~! xy,b+fy~'), hence TE gy . Con-
versely, auppose “NI)'N and M = (a,b), N = (c,d). Then we can
take £ = (d-b)y and U, V as above to get that M, N are 2-join-
ed. It proves T "\’xy’ hence xy €K.
It follows that K is a subfield of GP(p¥), therefore |K| =

- p1 for some divisor 1 of k. Now ~vyy XEK, and N, are all
non-trivial congruences of J3 , hence m = pl + 1,

“To prove the converse, the following lemma will be used.
It is stated in a more general way than necessary, since the
complete description of preserving mappings contained in it is

of interest by itself.

Lemma., Suppose that K is a subfield of Gr(pk).

Let g:X—>
—>» X be a mapping preserving all equivalence relations Nogs
xeK u{o0}. Then g is of the form

(3) &, 4,v(8s0) = (ec(a) +u,0c(b) + V),

where o¢ is a linear map of the vector space GF(pk) over K, and

u,veGF(pX) are arbitrary.

Proof. A straightforward verification shows that any map-
ping g,  Preserves all equivalences v, X€Ku {oo}-

To prove all preserving mappings are of this form, take a
basis @yse00,8, of the space Gl’(pk) over K, and set A, = (0,0),
Ay = (a.i.O). We shall show that any mapping g:X —» X preserving
~sys XEK v{oo} , is uniquely determined by its values in the
points Ay, 1 = 0,1,...,q.

The following simple observation will be frequently used:
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if A, B, Z are elements of X, x,yeKu{coy are diffe-
(4) rent, and A ~ 2 rv?, then the values of g in A, B de-
termine the value in Z.
This is obvious, for g(Z) has to be the unique point in the in-
tersection of the block of ~ 5 through g(A) and the block of
ry through g(®B).

Let Y, denote the set of all aeGF(pk) which can be expres-
sed as linear combinations (over K) of ay ‘s with at most r non-
zero coefficients, and set Xr = er !rgx. Now we have
(O,O)No(o,xai)f\/_x-1(31,0), (0,0) v, (x8,,0) N/ 1 (0,x8,), and
(ze;,0) No(xai,yad)mw(o,yaj). Using (4) in these three cases,
we conclude that the values of g in X, are determined by g(4,),
1 = 0,000,Qe

Next we show that the values of g in X, (r=1) determine
the ones in X.,4. Let 2 x;8,€Y and j4I. Then

(0,0)No(o, % xiai-n-xnj)rv_xﬂ(aj, ‘IE xiai) and

(0,0) Noa( ‘{. xiai+xad,0)m_1(o, ? xiai-rxaj). It };_' yi84 is
another point of Y, and k¢ J, then

( % xiai+xaj,0)rv°( Ex: x;8,+x84, ? yiay+yay)ng (0, % y384+78)
Further applications of (4) prove that g is determined in X4
by its values in xr.

The obvious induction on r gives that g is uniquely deter-
mined by the values g(A;), 1 = 0,...,q.

Now set g(A)) = (u ,v). Since g preserves ~/,, , we have
g(Ay) = (uy,v) for some u;€ GP(pk), i =1,...,9. Denote by oC
the linear map of G?(pk) over K defined by oc(ai) = ug. Then g
and 8¢,u.v have the same values in the points Ai’ i = 0,e009Qy
hence g = Q,u.v by the previous part of the proof. O3
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BEnd of the proof of Theorem. Let 1 be a divisor of k and
K the subfield of Gr(pk) of cardinality pl. Consider the set H
of all mappings of the form 3‘{,0.0' The congruence lattice of
the algebra €= (A,PUH) is a subset of -(Nx:xc.(n'(pk) v {oc0ii.
All equivalences ~. ., xcK u{co} are congruences of € by the
lemma. Now, if x¢K u{00} , there is & linear mapping oC of
GP(p¥) over K with oc(x) = oc(1) = 1. Then B, 0,00 (xs1)) =
= (1,1) and gd'o'o((o,o)) = (0,0), hence the least congruence
of ¢ containing ~_ contains elso ~v; and is thersfore equal
to XxX.

It proves that all non-trivial congruences of € are of the
form ~vp, X€EK v {00} , hence the congruence lattice of ¥ is

isomorphic to M ; . [
p+1

Note. A reader familiar with the graphical compositions
defined in [2] recognized that Figs. 1 and 2 defined two speci-

al graphicel compositions and that we used the easier part of
the concrete characterization of congruence lattices given the-
rein, namely that any congruence lattice is closed under the
results of all graphical compositions.
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