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A GENERALIZATION OF THE THEOREM OF MAULDIN
Marek BALCERZAK

Abstract: For a perfect Polish space X and a &-ideal 7
of subseis of X, let £(x,.‘)‘) denote the family of all real-va-
lued functions on X continuous almost everywhere with respect

toJ. We shall prove that the Baire order of $(X,J) is @&, for

a general class of 6 -ideals J, thus generalizing the Meuldin’s
result for X = [0,1] and the sets of Lebesgue measure zero for

Key words: Baire classes of funttions, 6-ideals of sets.
Classitication: 26A21

Let X be a perfect Polish space, We consider 6 -ideals of
subsets of X. It is assumed that each &-ideal contains all
singletons {x} and does not contain any nonempty open subset
of X. Por a fixed 6-ideal J, let H(X,J) denote the family of
all real-valued functions defined on X wkioch are continuous al-
most everywhere with respect to J. Suppose that a 6 -ideal o
is such that the following conditions hold:

(I) there is a compact subset Xo of X whioch does not be-
long to Jg3

(II) for each countable subset A of X, there is s Gy set
belonging to J, such that ACSB.

It is proved that the Baire order of $(X,J) is @, for each
6-ideal J included in J . Meuldin [8] obtained this result in
the case when X is the unit interval end J = J  is the 6-ideal
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of all sets of the Lebesgue measure zero., Our proof is based on
the method presented in [8]. We also use topological properties
concerning 6-ideals (for instance, a gemeralization of the Can-
tor-Bendixson Theorem is proved). The main result of this note

can be applied to the €-ideal constructed by Mycielski in [10].

Let X be & set and let & be a family of real-valued func-
tions defined on X. We define éo = $ and, for each ordinal
& > 0, let d> be the family of all pointwise limits of sequen-
ces taken from a,y " Qa,. + The first uncountable ordinal will be
denoted by @,. Observe that 901 = me and 47&,1 is the

smallest subfamily of RX which contains Q and which is elosed
with respect to pointwise limits of sequences. The Baire order
of § 1s a first ordinal o« such that § = ¢w+1' For example,
if O denotes the family of &ll real-valued functions defined
on the unit interval, then the Baire order of O is 122 £11].
Now, let X be a perfect Polish space. Consider those &-1i-
deals of subsets of X which contain all singletons {x} and do
not contain any nonempty open subset of X. For & fixed 6 -ideal
J, let &= $(X,3) be the family of.all real-valued functions
. on X whose set of points of discontinuity belongs to J. Notice
that the Baire order of §(X,J) is always positive because the
characteristic funoction of any countable dense subset of X be-
longs to &,(X,)\ QO(I,J) (we write QW(IJ) instead of
($(x,7)) ). The problems connected with the Baire order of
$ (X,3) were studied by Meuldin in [6],[7],(8],[9]. It is known
that the order of §(X,7) equals 1 1f J denotes the 6-ideal of
all sets of the first category [2]. Mauldin in [8] proved that
if X is the unit interval and J denotes the 6-ideal of all

sets of the Lebesgue measure sero. then the order of § (X,))
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is 0". Several generalizations of this result were obtained in
1{7). Another generalization will be presented in this paper.

Mauldin in [6] gave the following characterization of the
generalized Baire classes:

Theorem 1. If o is an ordinal, 0< o < w,, then a functi-
on £ is in $(X,J) if end only if there is a function g in the
Baire class ¢ such that the set {x:f(x)+ g(x)} is a subset of
an P, set belonging to J.

The Baire order of @ (X,)) treated as a function of J is
monotonic in the following sense: .

Propesition 1. If J and 7 are 6-ideals of subsets of X
and J e ? , then the order of $(X,}) is not greater than the

order of Q(I,’J).

Proof. Let ot be the order of ¢ (X,7). Observe that it is

enough to demonstirate the inclusion
P 1 (TP & B (X, P

It ouvieusly holds if of = 4. Let X < &4+ If I belongs to
) «+1(Xs), then, by Theorem 1, there exists a function g in
the Baire class o + 1 such that the set {x:f(x)#g(x)} is a sub-
set of an ¥y set belonging to } . Of course, g belongs to
Q‘“ (X,3)e Then, from the definition of o it follows that g
belongs to d_(X,7). Hence, by Theorem 1, there exists a func-
tion h in the Baire olass o« such that the set {x:1g(x)* h(x)}
is a subset of an Py set belonging to J . Since J ¢ s the
set {x:2(x)+ h(x)} 1s & subset of an Py set belonging to J} «
Hence, by Theorem 1, the function £ belongs to & ¢(x.;).

The main result of this note is:

Theorem 2. Let 90 be a G -ideal of subsets of X such that
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the following conditions hold:

(I) there is a compact subset xo of X which does not be-
long to J3

(II) for each countable subset A of X, there is a Gd" set
B belonging to Jo such that AcC B,
Then the Baire order of $(X,J) is @; for each 6-ideal J in-
. oluded in J.

Remark. Considering X equal to the unit interval and U, %
equal to the G -ideal of sets of the Lebesgue measure zero, we
get the theorem of Mauldin [8].

In virtue of Proposition 1, we shall prove Theorem 2 if we
only verify that the order of $(X,J) is ;. The argument of
this faot will be based on the method presented in [8].

The proof of Mauldin begins with a construction of a fami-
ly which consists of perfeot sets A such that if an open set V
intersects A, then the set VA A has positive measure. We shall
generalize that property.

Let } be a 6-1deal of subsets of X.

Definition 1 (compare [4]). A closed nonempty subset A
of X will be called }-ger!ect if and only if, for each open
set V such that V intersects A, we have VnA ¢ ;.

Remark. Since g does not contain any nonempty open sub-
set of X, the set X is }—pertoct.

Definition 2 (compare [10]). If A is @ subset of X, then
1ot AP dencte the set of all points x of X such that, for
each neighbourhood V of x, we have VnA & } .

Let us quote from [10] a few proverties of the operation
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L(}):
(1) AP 14 closed and included in the closure of A3
(11) W@PHDP . P,
(111) analPey |

Proposition 2, A nonempty subset A of X is 7-pcrtoct it
and only if A = oGP,

Proof. Assume that A is 7} -perfect., Then, immediately
from the definitions it follows that Ac A{?). Since A is closed,
therefore, by (i), we have Lq)s A. Conversely, assume that A =
= Aq). Then, by (i), the set A is closed. Let an open set V in-
tersect A. Consider a point which belongs to Vn A. Then it be-
longs to A and from Definition 2 it follows that VnA ¢ J . Thus
A is }-perfect.

Proposition 3. For each closed subset A of X, there is a
unique decomposition A = BuC into disjoint sets such that B is
empty or 7 -perfect, and C € } .

Proof. IfAe} , then we put B = §, C = A, and A = BuC
is the required unique decomposition. If A & } s then we put
B =4, ¢ = A\B. In virtue of (1i1), we have C € . . Since
A& ;} » therefore B & ;L . Hence B is nonempty and it follows
from (ii) that B{#) - B. Thus, in virtue of Proposition 2, the
set B is }-perfect. Now, assume that A = B'UC’ where B', C”
ere disjoint, B is 7J-perfect and C'¢ } . If xeB  and V is
eny neighbourhood of x, then VAB ' 7 . Hence VAA 4 ¥ end
xe AP, Thue B’ B. It x€C’, then there is a neighbou “100d V
of x such that VnB = ¢ gince B, C~ are disjoint and B is clo-
sed. Now, VnB ' = § implies VAA = VnC’ end then VAA ¢ } .
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Hence x€C. So, we have B'C B, C < C. Since BUC = B'UC” and
BAC = § = BN C’, there must be B=B", C = C”,

Remarks., Martin in [5] explored topologies generated by
the operation of the derived set. Notice that AG) is such an
operation. Then AuA(}) is & closure operation and it generates
a topology which we denote by J° (comp. L11,[51,[10]). Prom [5],
Th. 1, it follows that if xe A(? implies xc(a~§x3)F), then
the derived set of A in the topology J° coincides with AF), We
have assumed that {x} € ] for each xeX, therefore the above-
mentioned oondition holds. Thus, Proposition 2 means that - <
perfect sets are identical with perfect sets in the topology 7°.
Proposition 3 is & kind of generalization of the Cantor-Bendix-
son Theorem. Similar results were obtained in [1] (Satz II) and
[4)(Th. 1.3).

Now, suppose that 30 and X, fulfil all the hypotheses of
Theorem 2, Since xo is closed and xo ¢ :Io. therefore by Proposi-
tion 3, there is & ’Jo-perfect set X, < X . Of course, Xy 1is com=
pact., Let

I3 ={AnX, a6 73,
Observe that 35 c J, and 3¥ 1s a 6-ideal of subsets of the per-
fect Polish space X, .

Lemme 1 (compere [9], Th., 2)., The Baire order of ¢x,, 3’:)
is not greater than the Baire order of $(X,J,)).

Proof. Suppose that the order of ¢ (X, J5 ) is greater
than the order of ¢ (x,3,). Thus, the order of §(X,J)) equals
a countable ordinal o . Let f belong %0 P 4q(XeB)e Then,
by Theorem 1, there is a function g defined on X, which is in

- 214 -



the Baire class o + 1, such that the set

A = {x:12(x)=+ g(x)}
is & subset of a set B which is of type Fy with respect to 'I*
and belongs to 27: . Let 2, £ be extensions of £, g, respective-
1y, to the whole X, such that £(x) = 2(x) = 0 for xe X\ X* . Then
£ belongs to the Baire class o 4 1 and we have {x:f(x)+ &(x)? =
= A. As above, AC B and one cen easily check that B is an Fg set
with respect to X, belonging to ‘Jo. Thus, by Theorem 1, K3 belongs
to § 41X, J,). Hence f is in ® (Xy J,) by the definition of
o « It can be shown by transfinite induction that, for all o,
0£7%y <w,, if a function is in $ (X, 7 ), then its restricti-
on to X, is in @T(X* . J: ). Therefore the function f, which
1s the restriction of f to X, , belongs to 3 (X, X ). So, it
follows that & (X., 3F) = & ,4(X, ,3%). This contradicts
the essumption that the order of & (X, , :7’: ) is greater than oC .

Now, in virt® of Lemma 1, it is enough to prove that the
Baire order of &(X, , U: ) equals @,. Thus, we shall consider
X, ’.‘Jg instead of X, "70’ regpectively. For simplicity, we shall
preserve the notation X, ’Jo. We shall only add thé assumption
that X is compact, Observe that the conditiomn (II) is still true.

Lemma 2, For each Fy subset D of X such that D 4 J, there
is a get D, included in D such thet D, is Jo-perfect and nowhere

dense in D.

Procf. Let A be a countable subset of D, dense in D, Since
the condition (II) holds, there is a Gy set Be '.7° such that
AcB, Let E = D\ B, The set E is of type Fy , of the f’irst cate-
gory in D, end E ¢ J,. Let E = J, E_ where E_ are closed snd
nowhere dense in D, Then there exists Eno¢ Jgoe In virtue of
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Proposition 3, there exists a set Do which is contained in Ego

and jo-porfoct. The set Do Just fulftils the conclusion.

Lemma 3. PTor each :Jo-perfcct set P, for each nonempty
set V open with respect to P, and for each closed set Po cop”
tained in P end nowhere dense in P, there is & set D/ included
in VNP, which is Jo-perfect and nowhere dense in P,

Proof. It is enough to apply Lemma 2 to the set D = V\Fo.

The following lemma can be proved by using Lemma 3 and re-
peating Mauldin’s construotion {see [81, the proof of Lemma 1).

Lemma 4, Let P be an f}o-perfeet set, There is a double
sequence {!nk}(:,ku‘l of disjoint subsets of P such that

(a) each Py 18 'Jo-perfect and nowhere dense in Pj

(b) 1f n is a natural number and V -18 a nonempty set open
with respect to P, then there is some k such that F , is a sub-
set of V.

The next part of the proof of Theorem 2 is analogous to that
of [8]. Instead of the unit interval one considers the space Xj
moreover, the notations A(A) = 0, A(A)>0 are to be replaced
by Ae J,, A& 70; respectively (here A (A) means the Lebesgue

measure of A).

In suoh a way we obtain the following lemmae (compare [8],

Lemma 4):

Lemma 5. There is an Fg - set H included in X and a Borel
measurable function f from H onto the set N of all irrational
numbers between O and 1, such that if z € N' , then =1523) 18
not a subset of an F~ set belonging to ']o.
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The further two theorems play the same role as Theorems 1
and 2 in [8].

The countable product of identical sets which are all eqal
to X will be denoted by I%. Assume that x% is equipped with

W

the Tychonoff topology. Notice that X ° forms a Polish space.

Theorem 3. There is a Borel measurable mapping h from X
o,

onto X0 guch that 12 t6X ©, then h~'({}) is not & subset of
an Pg set belonging to J,.

Proof. Let f be a funotion described in Lemma 5. Since

W,

X% is a Polish space, there exists a continuous mapping g of X'
)

onto X ° (mee £3]), p. 353, Th. 1). Consider xoex and put

e(2(x)) if xeH
h(x) = {
(xo,zo,xo,...) it xeX\ H,
The mapping h has the required properties.

Theorem 4, There exists & transfinite sequence of "univer-
sal functions® {U_} 0<acay such that, for each o« , 0 <& < &y,
we have

(1) U, 4is e Borel measurable function on Xx X into the
unit interval I,

(2) 42 £ is a function in the Baire class o , which mape
I into I, then the set of all x, such that U, (x,y) = £(y) for

each y in X, is not & subset of an Fs set belonging to do.

Proef (cf.[11},p.339). Since X is compact and I is separable,
then the space of all continuous functions om X into I with the
topology generated by the uniform convergence is separable (see
[3],p.120,Th.2), Let {sx&nﬂ be a countable dense subset of this
space., Choose an arbitrary sequence { xn?:ﬂ of distinect points
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of X. Por (x,y)e XxX, let

s (y) it x =X
Uo(x,y) = { oy n
0 otherwise,

Let h = (hy .hz,h3....) be a mapping described in Theorem 3. For
each ordinal o0 , 0 £ ot < @, and for each (x,y)e XxX, let

U et (x,y) = lhm_*s;p U, (h,(x),y).

If ot is & limit ordinal, then let {7 ip., be an increasing
sequence of ordinals less than o¢ which converges to o< , and
let

Uy (x,y) = I%Qs:p Uyn(hy(x),y).
Using transfinite induction, one shows that the sequence
4['{14}0<‘,r_<(‘,1 has properties (1),(2) (see [8], the proof of Th.2).

Now, the last part of the proof of Theorem 2 can be given.
Suppose that the order of (X, ’Jo) is ot < w,. Let U, be Ge-
fined as above and let

n
2(x) -”3_1:!00 (1 -0 (x,x))", xe€X.

Since 02U (x,x) <1, the equation f(x) = U, (x,x) never holds.
By Theorem 4, (1), the function f is Borel measurable. So, f be-
longs to &, (X, J ). In virtue of Theorem 1, there is & functi-
on g in the Baire class o¢ such that the set A of all x for
which £(x)+ g(x) is a subset of an Pg set belonging to Jge In
virtue of Theorem 4, (2), the set B of all x, such that

Uy (x,¥) = 8(y) for each y in X, is not a subset of an Fgy set
belonging to jo‘ Hence there is a point x, which belongs to

B\ A, Then we have U, (x,,y) = g(y) for each y in X, and f(x,) =
= g(x,). In particular, for y = x,, we obtain f(x)) = U, (x,,x.).

This is a contradiction. The proof of Theorem 2 has been comp-
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Example, Consider X = {0,1§w° and assume that {0,1}, X
are equipped with the discrete and the Tychonoff topologies,
respectively. The space X is homeomorphic to the Cantor set and
so, X is a compact and perfect Polish space. Mycielski in [10]
defined a 6 -ideal :’o of subsets of X such that the condition
(II) is fulfilled. Since X is compact, the condition (I) also
holds. Hence, by Theorem 2, the Baire order of $(X,J) is w,
for each 6-ideal J included in :’o' Let » be a measure on
10,1} such that »({0}) = »({13) = /2 end let W denote the
product measure on X generated by » . Mycielski showed that the-
re exists & decomposition of X into two disjoint seta: one of
them belongs to ’J° and the other is of the measure M zero and
of the first category. Let¢

Jpu = 1Az @w(a) = 0},

Since w is a finite regular Borel measure which has no atoms,
the Baire order of & (X, U(u,) is @, (see [9], Th. 7). According
%o Proposition 1, the order of &(X,J) is @, for each 6-ideal
J 1inoluded in 76" .

Problems. Can the condition (I) in‘ Theorem 2 be omitted?
Observe that it is possible if we add the assumption that X is
locally compact. Indeed, then we put as Zo a compact set which
is a closure of an open nonempty set. The next question is: does
the converse of'Theorem 2 hold in this case? Saying precisely,
let J be a G-ideal of a locally compact perfect Polish space
X and suppose that the order of §(X,J) is w,. We ask whether
8 G-ideal J  exists such that J is included in J  and the
condition (II) holds.
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