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COMMENTATIONES MATHEMATICAE UNVERSITATIS CAROLINAE 

26,2 (1965) 

A GENERALIZATION OF THE THEOREM OF MAULDIN 
Marek BALCERZAK 

Abftracts For a perfect Polish space X and a -5'..ideal 3 
of subsets of I, let <p(X-J) denote the family of all real-Ta~ 
lued functions on X continuous almost eTerywhere with respect 
to2. We shall proTe that the Baire order of $(X,3) is &>i for 

& general class of C-ideals 3, thus generalizing the Mauldin's 
result for X * [0,13 and the sets of Lebesgue measure zero for 
3. 

Key words. Baire classes of functions, e-ideals of sets. 

Classifications 26A21 

Let X be a perfect Polish space, ffe consider 6*-ideale of 

subsets of X* It is assumed that each tf-ideal oontains all 

singletons -ix\ and does not contain any nonempty open subset 

of X. For a fixed 6"-ideal 3» lot $(X,3) denote the family of 

all real-Talued functions defined on X which are continuous al­

most eTerywhere with respect to 3. Suppose that a 6* -ideal 30 

is such that the following conditions holds 

(I) there is a compact subset XQ of X which does not be­

long to 3Q; 

(II) for each countable subset A of X, there 10 a Qj* eet 

belonging to 30 such that A£B. 

It is proTed that the Baire order of $(X,3) ie O^ for each 

6-ideal 3 included in 3 . Maul din [8J obtained this result in 
o 

the case when X is the unit interral and 3 « 3Q is the 6̂ -ideal 
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of all sets of the lebtsgut measure zero. Our proof is based on 

tht atthod prtttnttd in t8]. fa alto ute topological propertiee 

concerning tf-ideals (for instance, a generalization of the Gan-

tor-Bendixton Theorem is pro Ted) . The main result of this note 

can ha applied to the tf-ideal constructed by Mycielski in [10]. 

Let X be a set and lot $ be a family of real-Talued func­

tions defined on X. We define § 0 » $ and, for each ordinal 

ot > 09 lot $ be the family of all point wise limits of sequen­

ces taken from J^^ $** • Th# *i*** uncountable ordinal will be 

denoted by oXj. Ob0erre that $ * $ <y +1 aaA $&> i8 ***o 

smallest subfamily of WT which contains $ and which is eloaod 

with rtspect to pointwise limits of sequences. The Baire order 

of $ li i firot ordinal oC 0uoh that $oC * S^vi* *
or example, 

if $ denotes the family of all real-Talued functions defined 

on the unit interral, than the Baire order of $ is c^ £11J. 

How, let X be a perfect Polish space. Consider those tf-i-

deals of subsets of X which contain all singletons {x} and do 

not contain any nonempty open subeet of I. For a fixed #-ideal 

J, let $ * $ (X,3) be the family of all real-Talued functions 

on X who00 set of points of discontinuity belong© to 3* Hotloo 

that the Baire order of $ (X9J) i0 alwaya posltlTO because the 

oharaoteristic function of any countable dense subset of X be­

longs to $t(X90) \$ 0(X 93) (we write $ (1,30 inotoad of 

( $ ( 1 , ^ ) ) ^ ) . The problems connected with the Baire order of 

$(X93) ware studied by Mauldin in [6j,T7J ,[8] ,19]. It is known 

that the order of §(X93) equal a 1 If 3 denotee the t^-ideal of 

all sets of the firot category L2]. Mauldin in [8J proTed that 

if X is the unit interral and J denotes the 0-ideal of all 

sete of the Labesgue measuro sero- than the order of §(X,3) 
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-*•• <->i. Several generalizations of this result were obtained in 

t7]* Another generalization will he presented in this paper. 

Maul din in [6] gave the following characterization of the 

generalized Baire classes: 

Theorem 1. If oo is an ordinal f 0< oc < a>.- f then a functi­

on f is in $(Xf3) if and only if there is a function g in the 

Baire class oc such that the set ixtt(x)4-g(x)| is a subset of 

an f$» set belonging to 3. 

The Baire order of $ (Xf3) treated as a function of J la 

monotonic in the following senses 

Proposition 1. If 3 and 1 are ^-ideals of subsets of X 

and 3 S 1 , then the order of <J>(X,J) is not greater than the 

order of $(X f3). 

Proof. Let oC be the order of §(X f3). Observe that it is 

enough, to demonstrate the inclusion 

*cc+1<-#> * **».?>• 

It odiously holds If oC -__6>̂ . Let oc < 6>^. If f belongs to 

§ 1(X 9^) 9 thenf by Theorem 1f there exists a function g in 

the Baire class oc • 1 suoh that the set -txsf(x)-*-g(x)} Is a sub­

set of an f# set belonging to 3 • Of course, g belongs to 

$4,4.1 (X ,3). Thenf from the definition of ct It follows that g 

belongs to $^(1,3) • Hence, by Theorem 1f there exists a func­

tion h In the Baire class OG suoh that the set {x:g(x)-#h(x)£ 

is a subset of an f^ set belonging to Cf • Slnoe 3 £. "L $ the 

set {x*f(x)4- b(x)l is a subset of an % set belonging to £ • 

Hence9 by Theorem 1, the function f belongs to $rfQ-tCP* 

The main result of this note is: 

Theorem 2. Let 3 0 be a 6"-ideal of subsets of X suoh that 
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the following conditions holds 

(I) thtrt is a compact tubsat I Q of X which doet not he-

long to D 0| 

(II) for each countable subset JL of X, there is a 0^ set 

B belonging to JQ such that A c B. 

Then the Baire order of $(X,3) is CO.| for each 6-ideal 3 in­

cluded in 3Q« 

Remark. Considering X equal to the unit interral and ?9 7 

equal to the 6-ideal of sets of the Lebesgue measure zero, we 

get the theorem of Maul din [8]. 

In Tirtue of Proposition 19 we shall proTe Theorem 2 If we 

only Terify that the order of $(X,30) Is o.j. The argument of 

this faot will be based on the method presented in [83* 

The proof of Maul din begins with a construction of a fami­

ly which consists of perfeot sets A suoh that If an open set V 

intersects A, then the set Y n A has posit ITS measure. We shall 

generalise that property. 

Let ^ be a 6T-ideal of subsets of X. 

Definition 1 (compare 143). A closed nonempty subset A 

of X will be called ~l-perfect if and only if, for each open 

set V suoh that V intersects A, we haTe V n A e> ̂  • 

Remark. Since ^ does not contain any nonempty open sub­

set of I, the set X Is ^-perfect. 

Definition 2 (compare 1 1 0 1 ) . If A is a subset of X9 then 

let A**' denote the set of all points x of X suoh that, for 

eaoh neighbourhood V of z, we haTe V n A # ^ • 

Let us quote from 1103 a few properties of the operation 
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( i ) A\r' i s closed and included in the closure of A; 
( i i ) <AG»>0> mkQ), 

( i i i ) A\ A#> G £ . 

Proposition 2. A nonempty subset A of X is ^-perfect if 

and only if A - k&K 

Proof. Assume that A is ^-perfect. Then, immediately 

from the definitions it follows that AcAV', Since A is closed, 

therefore, by (i)f we have A^'S A. Conversely, assume that A » 

« KSOK Then, by (i)f the set A is closed. Let an open set V in­

tersect A. Consider a point which belongs to VnA. Then it be­

longs to A and from Definition 2 it follows that VnA 4 ̂  # Thus 

A is ^f—perfect. 

Proposition 3. For each closed subset A of I, there is a 

unique decomposition A « BuC into disjoint sets such that B is 

empty or ^ -perfect, and C € % . 

Proof. If A e 1 , then we put B « 0, C « Af and A « BuC 

is the required unique decomposition. If A + ^ f then we put 

B « A # \ C * A\B. In virtue of (iii)f we have C € ̂  . Since 

A e* ̂  » therefore B ^ . Hence B is nonempty and it follows 

from (ii) that BM' « B. Thus, in virtue of Proposition 2f the 

set B is ^-perfect. Now, assume that A « B ' U C ' where B'f C* 

are disjoint, B ' is ^-perfect and c'e ^ . If x€B # and V is 

any neighbourhood of xf then VnB' ^ . Hence VnA 4 * and 

xe hSo'. Thus B's B. If xec', then there is a neighbou hood V 

of x such that VnB* « 0 since B', c' are disjoint and B ' is clo­

sed. How, VnB' • 0 implies VnA * VnC # and then VnA c J> • 
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Hence xeC. So, we have B Q Bf C £ C. Since BuC » B u C and 

B n C « 0 » B n C ' t there must be B * B % C » C'. 

Remarks. Martin in [5] explored topologies generated by 

the operation of the derived set. Notice that kS*' is suoh an 

operation. Then A u A ^ is a closure operation and it generates 

a topology which we denote by tf (comp. U3,[53,110]). ?ro« C5J, 

Th. 1, it follows that if X G A O } implies xc(As{x])W, then 

the derived set of A in the topology (f coincides with iSr . We 

have assumed that {x} e ̂  for each xeXf therefore the above-

mentioned condition holds. Thus, Proposition 2 means that Im­

perfect sets are identical with perfect sets in the topology 3? • 

Proposition 3 is a kind of generalization of the Cantor-Bendix-

son Theorem. Similar results were obtained in £13 (Satz II) and 

UKTh. 1.3). 

How, suppose that 3Q and ZQ fulfil all the hypotheses of 

Theorem 2. Since XQ is closed and XQ £ ?Q, therefore by Proposi­

tion 3, there is ex ̂ -perfect set X^ Q XQ. Of course, X # is OOSJ-

pact. Let 

Observe that 0* g. 30 and 3* is a 6 -ideal of subsets of the per­

fect Polish space X^ • 

Lemma 1 (compare C91, Th. 2). The Baire order of $(X^, 3*) 

is not greater than the Baire order of $(X,30). 

Proof. Suppose that the order of $(X#, 3J ) is greater 

than the order of ^( X , ^ ) . Thus, the order of $ (X,X) equals 

a countable ordinal oo . Let f belong to $ e*,+1 (**3P • *tt#n» 

by Theorem 1, there is a function g defined on X* whioh is in 
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the Baire class oC + 1, such that the set 

A - -ix:f(x)*g(x)$ 

is a subset of a set B which is of type fg with respect to X^ 

and belongs to 3* . Let it § be extensions of f, g, respective­

ly, to the whole Xt such that f(x) « g(x) - 0 for xeX\X* . Then 

g belongs to the Baire class cC * 1 and we have {xsf (x):£g(x)} « 

» A. As above, k£B and one can easily check that B is an Fg* set 

with respect to X, belonging to 3Q. Thus, by Theorem 1t f belongs 

to ^^^(X, 3 0). Hence i is in ^ ( X , 3Q) by the definition of 

cC • It can be shown by transfinite induction that, for all y t 

0 £ T < <»1f if a function is in §r(X, ^ 0 ) , then its restricti­

on to Xy is in $ (X^ t J* ). Therefore the function f, which 

is the restriction of f to X^ t belongs to ^^(X , 3f )• Sot it 

follows that $^(1^, 3* ) • ^ac+itX* » 3o** T h i a contradicts 

the assumption that the order of $ (X# , 3* ) is greater than o£ • 

Now, in virtu% of Lemma 1, it is enough to prove that the 

Baire order of $&„. , 3* ) equals CJ^» Thus, we shall consider 

«C* , 3* instead of X, 30, respectively. For simplicity, we shall 

preserve the notation X, 0 . We shall only add the assumption 

that X is compact. Observe that the condition (II) is still true. 

Lemma 2. For each F^ Subset D of X such that D <$. C70 there 

is a set D^ included in D such that D^ is jf -perfect and nowhere o 0 0 ' 

dense in D. 

Proof. Let A be a countable subset of D, dense in D. Since 

the condition (II) holds, there is a G^ set B & 3 0 such that 

A £B. Let B * DXB. The set E is of type Fg> , of the first cate-
00 

gory in D, and E # 0Q. Let E »JU Bn where Bn are closed and 
nowhere dense in D. Then there exists E $ 3 . In virtue of 

UQ o 
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Proposition 3» there exists a set J>Q which is contained in ##0 

•*-*& 30~perfect. The set BQ just fulfils the conclusion. 

Lemma 3* For each CL-perfect set Pf for each nonempty 

«et V open with respect to Pt and for each closed set F con-* 

tained in P and nowhere dense in Pt there is a set D included 

in V \ F which is I; -perfect and nowhere dense in P. 

Proof. It is enough to apply Lemma 2 to the set D * Y N ?
0 . 

The following lemma can he proved toy using Lemma 3 and re­

peating Mauldin's construction tsee [83, the proof of Lemma 1). 

Lemma 4» Let P be an 30~perfact set. There is a double 

sequence "SF-jJ^ j_a.j of disjoint subsets of ? such that 

(a) each F - is 30-perfect and nowhere dense in P* 

(b) if n is a natural number and V is a nonempty set open 

with respect to P, then there is some k such that F . is a sub­

set of V. 

The next part of the proof of Theorem 2 is analogous to that 

of C83. Instead of the unit interval one considers the space X; 

moreover, the notations A(A) * 0f A(A)>0 are to be replaced 

by A 6. 3 Q t A 4 3 # respectively (here A(A) means the Lebesgue 

measure of A). 

In such a way we obtain the following lemma (compare L83, 

Lemma 4): 

Lemma 5* There is an F6<^ set H included in X and a Borel 

measurable function f from H onto the set JT of all irrational 

numbers between 0 and 1t such that if z € Jf , then t (Szh) is 

not a subset of an F«- set belonging to X . 
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The further two theorems play the same role as Theorems 1 

and 2 in [8]. 

The countable product of identical sets whioh are all equal 

to X will he denoted by X , Assume that X Is equipped with 

the Tyohonoff topology. Jotioe that X forms a Polish spa.ee. 

Theorem 3. There Its a Borel measurable mapping h from X 

onto X0** such that if tSX °f then h~
1(-£t}) is not a subset of 

an Jg set belonging to jf0. 

Proof. Let f be a function described in Lemma 5. Sinoe 

X ° is a Polish spacef there exists a continuous mapping g o f / 
o 

onte X (see C3], p. 353, Th. 1). Consider x a cX and put 
o 

g(f(x)) i f X 6 І 

i f xєX\H. 

r g(f(x)) 
n(x) - 4 

l (x f X f t t x f t f . . . ) 
**Q »-© • O 

The mapping h has the required properties. 

Theorem 4* There exists a transfinite sequence of "unirer-

sal functions" W^l 0<<*«a,
 s u c n

 ****** for eaeh oc , 0<<* < o>-j, 

we have 

(1) u^ is a Borel measurable function onlxl into the 

unit interred I, 

(2) if f is a function in the Baire class oc , which maps 

X into I, then the set of all x, such that U^ (x,y) • f (y) for 

eaeh y in X, is not * subset of an F^ set belonging to 3
Q
. 

Proof (cf. HU,p.339). Sinoe X is compact and I is separable, 

then the space of all continuous functions on X into I with the 

topology generated by the uniform convergence is separable (see 

[33,p.120
f
Th.2). Let-vS

n
T
nm
-j be a countable dense subset of this 

space. Choose an arbitrary sequence -fx^^i of distinct points 
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of X. f o r ( x f y ) € X x X f l e t 

Sn(y) if x - xn 

0 otherwise. ».<•*». ţ v 
Let h - (h.| thg -J-Wf...) he a mapping described in Theorem 3* for 

each ordinal oC f 0 £ oc «: CO., and for each (xfy)eXxX, let 

UdC+1*x,y* " l i m ^P Uoc(hn(x),y)* 

I f oc i s a l imi t ordinal , then l e t ^Tn^nU ^ e a n increasing 

sequence of ordinals l e s s than oC which converges to oC f and 

l e t 

Using t rans f in i t e induction, one shows that the sequence 

-tUdC/}0<oC<6; has properties ( 1 ) f ( 2 ) ( see C8]f the proof of Th.2). 

How, the l a s t part of the proof of Theorem 2 can be given. 

Suppose that the order of $ (X f 3 ) i s o c < <y1# Let U^ be de­

fined as above and l e t 

f (x ) - lim (1 - U , ( x , x ) ) n , x e X . 
m,~>oo <** 

Since O^U^ (xfx)£ 1 f the equation f(x) » U^ (xfx) never holds. 

By Theorem 4, (D f the function f is Borel measurable. So, f be­

longs to ^^(X, J 0). In virtue of Theorem 1f there is a functi­

on g in the Baire class oc such that the set A of all x for 

which f(x)4-g(x) is a subset of an $g set belonging to 0Q. In 

virtue of Theorem 4, (2)f the set B of all xf such that 

Uoc (x»3r) * £(y) for eacil y in Xf is not a subset of an P^ set 

belonging to JQ. Hence there is a point x which belongs to 

B\A. Then we have UoC(x<)fy) » g(y) for each y in Xf and f(xQ) » 

- g(x0). In particular, for y - xQf we obtain f(xQ) » U^ (x0,x0). 

This is a contradiction. The proof of Theorem 2 has been comp-
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Example. Consider X « €0,1} and assume that -fO,1J, X 

are equipped with the discrete and the Tyohonoff topologies, 

respectively. The space X is homeomorphic to the Cantor set and 

so, X is a compact and perfect Polish space. Mycielski in [10] 

defined a 6 -ideal Cf of subsets of X such that the condition 

(II) is fulfilled. Since X is compact, the condition (I) also 

holds. Hence, by Theorem 2, the Baire order of (£(X,J ) is CO^ 

for each & -ideal J included in CL. Let -*> be a measure on 

40,1} such that V(-tOr) - V({1*) » 1/2 and let <u, denote the 

product measure on X generated by )) , Mycielski showed that the­

re exists a decomposition of X into two disjoint sets: one of 

them belongs to 0 0 and the other is of the measure fx zero and 

of the first category. Let 

3^--{At (i. (A) - 0}. 

Since ^ is a finite regular Borel measure which has no atoms, 

the Baire order of $(1,3^) is co^ (see 193, Th. 7)» According 

to Proposition 1, the order of $(X,Cf) is O^ for each 6T-ideal 

3 included in CL • 

Problems. Can the condition (I) in Theorem 2 be omitted? 

Observe that it is possible if we add the assumption that X is 

locally compact. Indeed, then we put as X a compact set which 

is a closure of an open nonempty set. The next question is: does 

the converse of Theorem 2 hold in this case? Saying precisely, 

let J be a 6-ideal of a locally compact perfect Polish space 

X and suppose that the order of $(X,3) is O^. We ask whether 

a ff -ideal CL exists such that 3 is Included in jL and the o o 
condition (II) holds. 
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