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MULTI-PHASE FREE BOUNDARY PROBLEM FOR THE EQUATIONS
OF MOTION OF GENERAL FLUIDS
Atusi TANI

Abstract The nonstationary multi-phase free boundary problem for the equations
of motion of general fluids is investigated. The proof is given by the
well-known theory of parabolic system in Holder spaces. .
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1. Introdyction. There are many famous and interesting problems in hydro-
dynamics, whose outstanding feature is somewhat paradoxical fact that the
boundary of the flow is itself not given. While there is a great variety of
problems with free boundaries, some of which were already investigated in
Newton's day, it seems to the present author that they do study just a little
from both a real physical and a strict mathematical point of view.

The one-phase free boundary problems for incompressible viscous fluids
are discussed by Solonnikov [5] and Beale [1,2] and those for compressible
ones, by Tani [7] and Secchi-Valli [3].

But concerning the multi-phase free boundary problems both for incom-
pressible and compressible viscous fluids there is only one result [8,9], as
far as the author knows until now.

In this paper, we confine ourselves to the multi-phase free boundary
problem for the system of differential equations of motion of compressible

viscous isotropic Newtonian fluids, say general fluids.

Notation. For a domain Q in RS; any non-negative integer n and

a e (0,1), we define:
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Using local coordinates, it is not difficult to define such spaces for functions
defined on the boundary of Q. The same notations will be used for the spaces
of vector functions, whose norms are supposed to be equal to the sum of the
norms of all its components. For the HYlder exponent a=1, notations such as
lgli?l are used. By C’T;E((O,w)X(O,m)), we mean the set of all functions
q(p,8) which are defined on (0,#)x(0,»), n-times partially differentiable

and their n-th order derivatives are locally Lipschitz continuous there.

2. Statement of the problem. It is natural and plausible, to the present
author, that the movement of one fluid acts upon those of others and the move-
ment necessarily accompanies heat change and vice versa, so that we consider
the multi-phase free boundary problem arising from the movement of a finite
number, say n, of nonmiscible general fluids.

Let 90 [resp. ﬂl,nz,-'-,ﬂn]. be a bounded or unbounded domain in R3
[resp. ﬂo] with a boundary FO [resp. rl,rz,---,rn]; the distances between
Pj and Pk (j,k=0,1,---,n;jfk) be supposed to be positive; the exterior
be assumed to be rigid. We set

Un

im?

boundary ro
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nj if there is no ke{1,2,+++,n}-{j} such that Q. )nk,

“ {Qj-ktgzin.ﬂk if there are ké€(1,2,---,n}-{j} such that ﬂjaﬂk.
Denoting by w.(t), the domain of the fluid at time t which initially occupies
”j (j=0,1,+--,n), then our problem consists of finding the domain w; (t)
and the function (o(J) (J) (J) defined on w.(t) (j=0,1,...,n) satxsfying
the system of differential equations: !

[D_Dt_] (3,G), Gy, ) ,

@ DRy, Ly 50, (26,
p (60 Dy 5D L. ( Mg (341 () gy (245, ) ;)
in 0= oer | xeu, (1), t€(0,D} (T>0),
the initial conditions .

D L) Gy L) ) )
) W w3600, =g ey,

the boundary conditions
NE NNE L BN e ) c PRI c D I¢ D PR
&) () 2oG) | Dol ey = cUNge 000G (1)

on Suu TN aw
for Vj,j'€10,1,+++,n} (j#j') satisfying am am \ # ﬂ,
™ ,T

(4) v(o) =0 (non-slip condition), 6(0) =9, on Ty Tgx [0,T],

and the equations
(s o 9FE0 ) 6y 20 on %, Al o (F B).

Here p(j)=p(j)(x,t) is the density, (J)‘V(J)(X t)= (v(J) ()) (J)) is the

velocity of the fluid at time t at the point x=(x1,x2,x3) f(J -f(’)(x t)
is a vector of external forces and e(J)—e(J)(x t) is the absolute temperature.

(6)]

The pressure p( ), the entropy S )), the coefficients of viscosity u
and u'(J), and the coefficient of heat conduction n()) are given functions
of the variables D(J] and e(l) satisfying the conditions -(J) Me)

s) (=350 /3000y 50, 2,3 43 () 50, 0= (3/3%,8/3%,,3/5%); [—] G,
5(3) 2 3

= 3/3t *(V(J)'V) P(J) =[- (J)+u'(3)(v-v(3))]l +2u(J) 3 ;I is the identity

matrix of order 3; D(J)=D(J)(v(3)) is a matrix with elements D(J) =

= 3ov 3 7ax + 2w fax, D, i,k=1,2,3;000:p0) 23 (j) (J),am () is the
boundary of m (t); aw —{(x t)]xéaw (t), te[o, T]) F{J (x t) 15 such as

o, (t)r\3w ,(t; =(x£R ’F(J i )(x t) = 0}: n( -n(J)(x t) is a unit normal
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vector at x€ auj(t)n 3mj,(t) pointing into the interior of w,/(t) (n(j')-
)iy I

Throughout this paper we assume that the compatibility conditions are
valid even if they are not written down explicitly.

Our main result is the following:

Theoren. Suppose (‘L)To,l' eee I‘%Ec‘z (z€(0,1)), dis(T I‘k)>0 (7,k=0,
1eeensgak) (8) (003,007,060 et (o) % P45 ) x a0 <pfis

(j)(z) ¢o (j), 0<§0( )<0('7)(z) <e( ('7) _(‘7), (‘7} _('7) are constants)

(J)|(L)

(§=0,1,+++,n) (&) £9& 8128 x (0,71, 2 lDrDIf <o (Gm0,1,
r+|s =-1 ’RT
) o )
ceea) () u@, @818 e R (0,0 x (0,201, 2 T #5011 20
u(‘”, g("), s(‘};)>a (§=0,1,+=,n) (v) eeeci*:'““/g(ro -
e > 3

Then there exists a umiquc solutton (p(j) (j) (j)) (§=0,1,+++,n) of (1)~
(5), which belongs to B'* (i)« cz*“’““/za?’“) cEreIe/2 g3 (g<o(P ¢
F(J)qeanatant, D<e('7) (J)-corwtant) for some T'e€ (0,T) (§=0,1,++,n).

3. sketch of the proof of Theorem. Since we have already proved in (8] the

analogous theorem for two-phase free boundary problem of general fluids in
detail and the same arguements are applicable in the present case, we give
here only the sketch of the proof of the above theorem.

1°. First of all, we transform the equations (1) by the characteristic trans-
formation Hi’tt :(x,t)»(xo,to) which is defined by the relation
’o
X=X+ 0 0(’)(1: ,t)dr = x(x,,t ;v(J)) (G(J)(x >t )_nx,t v())(x,t))
0 0 0’0 0°"0 X.,t
0 0’0
into the form
22D Wy 50,
0 v J
(D_3 () (6))
L e AdE S SN (L )
ET ;0 Xé))
(3) , 53,

N¢) N¢))
w7y +29 . oe(uD . (V)) -
Y6) RiaY¢))

6 - V. :P
(6 (e)

(a3 o(3) _3 40, (3D G)y , () Lo(3)2
pre Sg(j) 3toe v;(j) (= v‘(j)e )ru (v";(j] v *
i) =(3)5. 6)) (3)25(3) (3 x6))
2 D;;(J')(v ).D‘;(J‘)(v )+8 s sﬁ(j)v;}(j) v

(3=0,1,++,m).
Here (a(j),é(j))(xo,tc);ﬂ:’t 03,000 x,0), q(j)=(3x(xo,to.vm)/3xo)'1,
ol
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* = = (3)q ;= ) 3/% 3/9
7 (vo(j),fvv(i),z'vo(i),3) G779, = /0%y (,3/0%y ,0/0%, o),

JG)y ix wi L cG) g s0)y (i ke
D:’(j)(v ) is a matrix with elements Z(V‘.,(j}’kvi + \‘,(j),ivk ) (i,k=1,2,
3).

Integrating the equations (6)1, we can reduce our problem to the initial-

boundary value problem for the parabolic system (6)2 3 with
: . t ’
(6) PN ) [Fo 6))
3 'XO"O) =3, (xo) exp[-);0 7‘7(5) v (xo,r)d'\']
and with the initial-boundary conditions

) @80 x,00 = v 0 on wy ez, m,
5(3). A3 () (") .31,GY
O YR I ?)o“( j("o) D ‘}( B O DY
® g ‘”’oJ [ lq(; )VFSJ )|
(3, (), () ("),G"1,G9
Gy, G k) 3G
~— v L) — — (V (51,87 )
5‘3(])‘”’0{”1 ;U Iq(] )3,_.(()3 ) +GN

on  [3u;n 3, 1%(0,T]  for Vj,j'e€ {0,1,+++,n} (j#j') satisfying
Bwjn ij, £9,

©) @ .o, 5@ =8, on Ty

where $0) - -p) (”vo(,-)-‘?mlr . ZuU)DG(ﬂ Dy, £ x) =D (x),0,

n(j)(xo) =n(j)(x°.0).

(6)v(9) can be written in a shorter form
_a_% w(J') -ﬁj)(xo.to.w(j);s)w(ﬁ */éi) (xo’to’"(j)) in Q'f-j)

G

>

)
w {t 3080,

w(°)-(o,§e-eg°)) on Ty

I I
8 (et @y | W) - [ 807 e Wl | WG
lq())“ ) (XOH lq(] 1,0 )(xo)‘

=¢(x0,to,w(j),w(j')) on (3 duy,] % [0,T],
here W2 D 5D 50y, (W x0,17, P trgrtgw Pty and

(10)

B(j) (xo,to,w(j)ﬁ) are matrices with elements 2nd and 1st order differential
operators respectively.

2°. We consider a linearlized initial-boundary value problem of (10):
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3 w(3) A4 (3 j) (J’) : (3)
3(‘.—0-“ =a (xo,t 7)W /5 N t Y in QT R

w3
\t0=0 o,
(11) w(® ={D’ae _sgo)) on Toom
) I I
( B(J)(xo,to’wm;;) w() . B(J')(xo,to,w(J');{;) wih =
‘0((3)(“(1))“(3)(,(0)‘ @(J')(w(]'))“(J')(XO)

= 00 teow ) w0y o (Buynaug,] % (0,11
Here w(j)(jxo 1,+++,n) are assumed to belong to the set

G ,{(w(f)) N(n))GCZHz :*Q/Z(Q(O))xu-xc'*“ 1+¢l/2(0‘1('1v,))l e
0

”w(n I 58) <M§J) s I%VW(J) ! (a)—(]) < M?(-J) (j=0,1,+++,n)}

' Q-E Xg:Qp

@l i”., 1, Iog o} (”l“’) )
2r+|s|=0 %o

a positive number M;J) determmed later.

We note the two facts:

for any positive number MEJ) and

(a) The system of differential equations (11) is uniformly parabolic in the
sense of Petrowsky (modulo of parabolicity &) for a suitably chosen T.
(b) When we consider the same problem as (11) in RSE {x =(x0’1,x0’2,x0'3)|
x0’3>0}, the complementing condition holds (see [6,8]).
(b) garantees the possibility for the construction of the regularizer of (11)
in the half space Rf, from which, together with the partition of unity,
follows the solvability of auxiliary linearized problem (11):

There exists a unique solution W(J)E Cimélmlz(ﬁ'.?)) of (11) satisfying

the estimates

”"(j)l‘éi§) <1cD @ u®) 2¢O M)y a2 1o/,

a2 loon D@ e O ) 2P, Oy,

x 'G(J) -

6)) ¢)) T o) )
where C and C increase monotonically in T and M13 and C2 —>0
as '\‘-)0 (3=0,1, -'-,n) If we choose the constant M(J) and To in such a
way that M;J) >C(J) (T, M&J)) +M for any positive number M .nd for such

M(J) [C(J)(T“u( homr %2, 1~u/2)_M£J) and Cg))(To'Mgl))MgJ)éM’
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by T for simplicity.

then Hx(ﬂco),---,w(n))éGTo. We denote TO

3°. Next we construct the sequence ("m(*o’to)} of successive approximate
solutions as follows:
¥o(Xgrtg) = 0 -
um(xo,to) is defined as a solution W~ of (11) assuming W= (w

"(n)) = wm_lé GT

Then the result in 2°implies that Yo (m=0,1,2,+++) are well defined and

cee

0)

belong to GT' Applying the estimates (12) to the equation concerning
wn- "n-l’ we obtain

(13) lwy = wpq Ml < CoCm MM lllwy g - wo il

n . no_. n .
Aiwlil = 7% "W(J)" _(_%;?), M, = ZMP), M, = ZMgJ)) where C,»0 as T-»0.
j=0 Qr j=0 j=0

Therefore the sequence {wm(xo,to)} converges to w(xo,t uniformly if we

S (
choose T'€ (0,T] so as to satisfy C3(T',M1,M2) <1. Then V= (v EERIYS n))

LIRS ANCEICICNR vg=(v§°’,--~,v(§"’)). B=wy+8y (0= (0(7, -0y,
a(xo,to) apo(xo) exp[-[ 0 vdt] is our desired solution of (6)(9). The
0

uniqueness of the solution follows from the uniqueness of the solution of (10),
which is proved by the fact that two solutions supposed to exist satisfy the
inequality analogous to (13).

4°. The unique solution of the original free boundary problem (1)~(5) can be
obtained by the formulae

6P v xn, 6D, o) =

Xooty s s
“X?t 0(6(])(X0,t0), V(J)(xoato)n e(J)(xorto)» w]) (3=0,1,+++,n). -

The positivity and boundedness of p and @ are obvious from our construction
method.
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