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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

26,1 (1985) 

CONVERGENCE OF SOLUTIONS OF GENERALIZED 
KORTEWEG-DE VRIES-BURGERS EQUATIONS TO THOSE 

OF FIRST ORDER EQUATIONS 
Piotr BILER 

Abstract: We indicate the proof of the convergence of 
solutions of generalized Korteweg-de Vries-Burgers equations 
to the solutions of the l imit f i r s t order equation when the 
parameters of the equations tend to zero. 

Key words: Generalized Korteweg-de Vries-Burgers equati­
on, propagation of nonlinear waves, convergence of so lut ions 
depending on parameters* 

Class i f icat ion: 35Q20, 35L60 

This note deals with the convergence of solut ions of one-

dimensional equations describing propagation of the nonlinear 

waves of the type 

(1) u t + f ( u ) x + QT(HU)X + eBu » 0 

as 3 , £. approach zero* These equations - generalizing the 

KdV-B equation - have been studied in [1] where, under some 

assumptions on the pseudodifferential operators H, B characte­

rizing dispersive and dissipative properties of the medium and 

on the nonlinear flux function f, several theorems on existen­

ce, uniqueness and regularity of solutions of the Cauchy pro­

blem for (1) were proved. 

This paper was presented in written form on the International 
Spring School on Evolution Equations, Dobfichovice by Prague. 
May 21-25, 1984. 
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We shall show that if the parameter cf is small compared 

to e then there exists a subsequence of the solutions of (1) 

conTerging to a solution of the limit conservation law 

(2) ut + f(u)x * 0. 

More precisely: we consider (1) where ( f ' ( u ) l £ c ( 1 + | u l ) 9 

u e IR9 Bu » - u ^ (the simplest diss ipatiTe term) and Hu(x) » 

« -au (x) + f p(£ )u( £ )e f d£ 9 a£Q and the symbol p s a t i s ­

f i e s 0 ^ p ( f ) m p ( - £ )£C(1 + 1 ^ 1 ) ^ for some <t*> < 2. Thus (1) 

i s the KdV-B equation with perturbed dispersion operator (a * *) 

and also (1) includes a c lass of the model wave equations with 

low order ( < 3 ) dispersion operator (a » 0 ) . 

Below I • I denotes the Lp( JR) norm, ll • llm the SoboleT 

space Hm( |R) norm and C denotes different inessent ia l posit iTe 

constants. 

Theorem. Let H « IR^C0,T1, T > 0 , and u^, s H —y |R be 

a sequence of solut ions of (1) with the i n i t i a l conditions un­

sat i s fy ing I u £ I 2 + l u ^ l A£ C. 

I f o » o ( s ) , S —> 0 , then there e x i s t s a subsequence {u } * 

a ivL*\ converging weakly in It (XL) to u, f (u ) —-*- f (u) (as 

distr ibut ions) and u i s a solut ion of ( 2 ) . 

I f in addition f " > 0 then uk—> u strongly in L p ( i l ) 9 1 < p*r 4. 

The proof repeats the main arguments in [ 2 1 , where simi­

lar facts haTe been proTed for the c l a s s i c a l KdY-B equation 

(Th. 4*19 Th. 5*1 ) using Tartar's compensated compactness the­

ory. 

Similarly as in 12} i t su f f i ces to show that 

(3) {u^{ i s bounded in L 4 ( a ) 9 

(4) t e O j * . ) ^ * 
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(5) WHu^i are compact in L 2 ( i l ) f 

(6) -Ce(uJ.)2if 
(7) ^ v u J > x

H u ^ are bounded in L1( 11). 

The conditions (6) and (4) follow from the energy inequa­

lity 

(8) lu(T)l| + 2& J^lUfcll^O 

obtained by taking the inner product of (1) with u and integra­

ting in t. 

Applying the multiplier uJ - 2e c u^. to (1) after some 

integrations by parts we arrive at the inequality 

(9) .}.«.} • e-o"- | - g | + eflu^ll • eV-/TL«Jl * 

£-3**£f W
2 + ̂ / / l / i§ P(? )W>^Cf )dfU 

The second integral on the right hand side of (9) is estimated 

by C • i|u H 2 using Schwarz inequality and some properties of mul­

tiplication in Sobolev spaces like Lemma 10 in C11. 

If a a 0 then the assumption cfs* O(B ) immediately imp­

lies (3). If a > 0 then a supplementary estimate is needed. Mul­

tiplying (1) by 6Hu + f(u) after rearrangements of terms and 

simple estimates we obtain 

^ c + &/J/lf'(u)lux + / lP(u)Ucd + lul^) 

from (8) and assumptions on ff Pf ?'» ff and next lul^ £. 

-SC-^ '•• This allows to estimate the first term on the right 

hand side of (9) by expressions like 

° T T 

- g - c~2/0 l u ^ l , s j ^ ' u u
x ^ 2 * I , i n a l l y '3> i n t h e c a s e a > 0 

i s also a consequence of (9) as 

do) t\*\l**£-£l*Jil*e. 
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(5) and then (7) follow from (10) and <f« o ( 6 3 ) -

observing that |Hul2 «£C • IIu II2. 

Remark. A similar result on convergence of solutions of 

(1) in L 2 ( K + 1 ) with special nonlinearity u2Ku%9 K 6 IN, holds 

i f Sm 0 ( e 2 ) . To see this , i t suffices to multiply (1) by 

</Hu + u2K+1/(2K + 1) , integrate and recall (8). 
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