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SOLVABILITY OF EVOLUTION PROBLEMS FOR VISCOUS
INCOMPRESSIBLE FLOW IN DOMAINS WITH NON-COMPACT
BOUNDARIES
V. A. SOLONNIKOV

-

Abstract: One considers the question of solvability of
initial-boundary value problems for the Stokes and Navier-Sto-
kes equations in unbounded domains with non-compact boundaries
assuming that the initial data and the external forces are not
square integrable over the whole domein. For the linear problem
the sketch of the proof of the existence theorem is given. '

Key words: Stokes equation, Navier-Stokes equation, initi.
al boun&ary value problems.

Classification: 35Q10, 76D05

We are concerned here with initial-boundary value problems
for the Stokes and Navier-Stokes equations in domains Q. < R%,
n = 2,3, with geveral "exits to the infinity", i.e., in domeains

of the form
Q = QUG V.. UG, .Q.C" ={xe L : lx\éRo§

where Gi' i=1,...,m are digjoint unbounded domains. It is
assumed that for arbitrary i = 1,...,m, a sequence of bounded
domains Gik' k =1,2,... exists exhausting the "exit" G:L as

k —> co and possessing the following properties:

1) Gypeq 2 Gy
ii) The domaine @, = G\ Gy o (k=1,2,...,G; = @)

This paper was presented on the International Spring School «
Evolution Equations, D@b¥ichovice by Prague, Nay 21-25. 1984
(invited paper).
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as well as fL, = -Qou Gy Vee. UG, are connected and
alet (0N, Q) —> 0 as £ — .

(111) Let ¥(x) be a divergence free vector field (i.e.
] 3
V . 'I‘I = u1 teoot un
3x,

tegrable with its first derivatives, vanishing on GGJ n o

and satisfying the condition [ 2;&-5’ d5 = O where X; is a

section of Gy (for instance, = = awjg n a“-’u_1). Por eve-

ry kZ1 a divergence free vector field ?(x) exists such that

= 0) defined in GJ, locally square in-

U\aejnan =0, ¥(x) = Wx) for xe Gy, 4, Tx) = 0 for
X €GN\ Gy, the operator ijzi?**ff is linear and

1) NTN . <v BN, VT, «bv WV
¢ ! @ 3 Dyx sy Dy

ou
where I\TI\\mjk is L,-norm of ® in Wy VT = -{——i‘-}

ax.‘l 1,j=1,ec0pn
and b is a positive constant independent of i?, J, k.

The vector field T? = Pakﬁ’ satisfies the relations

V-?: 0 (xe mjlg.
(2)
? \ba)dk (g a(l)dk_1 = \bojkn a@dk_«" v \awjk\ a@ak_1. 0

and can be represented in the form
(3) T-%¢ + 7V

where § 1is & smooth function, 0 £ §(x)41, §(x) =1 for
xeGJk_“ l§(x) = 0 for x€ Gj\ ij, and

W VT--F.9 =p (xewy), ?\ 0

=
aojk
(as far as the problems (2),(4) are concerned, see [1 - 41).
The function ® satisfies the necessary condition f gudx -
@
= - ?o ?dS = 0.
a&)ikl\ a&)éb_;

- 112 =



Example 1. Gy is & cylinder: x" = (x,x)e 6", x> xg.
Let Gy = G'x(xg,xg + k], then @y = G x (zg +k - 1.x§ + k],

and the estimates (1) are obvious.

Example 2. Gy 1s a cone; -l—:T eg, lx\>R° (g is a domain
on a unit sphere in R®). We define Gyy @8 {xe Gyy By< 1x]l &
£2KR 1, so that oy a{stj:Zk'1 R,<|x|42" R . The func-
tion g in (3) can be chosen in such a way that [V{| &

40, R;12'k. The problem (4) is solvable, and

(5) Nvdy opc @ %2 10 Vo

with a constant 02 independent of k. Making use of the Fried-
richs inequality

- k
W00 %0 Ro? IV o (?lawjkn ag =0
we easily obtain -

na‘nwjksumajk + W“wjf“ +05 0, Cy) RN o

-1,k
N — quuwdk + VTN oy ¥ O1%e 2 na’l\mJk é

-1,-k
&(Cq + C,Cq) RT'2 ﬂ?lmjk + (lVa’l\m:jk P
a0 + c1c3(1 +Cy)1 ﬂVﬁ’uwjk.
Example 3. Gy ={x€ m3;o<x3<1, Ix 1= Vx% + x§>Ro§.

. -1
We teke Gy, = {xeG R < |x 1&2%r ¢, Wy = {xeGj:ZK

<\x'l§2kR°§ and define g(x') in such a way that lVg(x')lé

R°<

gc1R;12"k. In the present case the estimate (5) is replaced by
k
(RAd g €02 R Nod @y, O the other hand, the const-

ant in the Friedrichs inequality is independent of k, since
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o% -
“?n“’jk ¢ n 313n 1 ?law kna.(). o

Hence, (1) follows.

The less elementary examples are presented in [3,4].
We now pass on to the definition of some functional spaces. We
introduce the following notations:

' : an arbitrary bounded subdomain of £ . Wée' (Q’'): the S.L.
Sobolev space consisting of vector fields that are square inte-
grable in Q! together with their generalized derivatives up to

> a 2 y1/2
the order £ ; W& “wzl(n_‘) a <|a.\§:2 ID ifllg-,) /2,

q : the set of positive numbers Qe k = 0,1,ees such that

(6) Uyl & Qo Yepp & 30512 Gy s
2 : the set of positive numbers Wy i=1,.00,m k =1,2,...
such that

Wy S gy By 31'2’ £>o0,

(n . .2
Ry g5 %y 8 8;, £=0,...,k1.
The constants a4, a.;. are positive and independent of k, £ a4,
8, >1.
Wi ( £
> (Q,q), W5 (5,3¢): the spaces of vector fields
?ewz”- loc(ﬂ‘) equipped with the norms
’

| & = -1 iR V2,
kg ’(ksgpo ag |w2z (ﬂk))

wi(Q,q )
kg = (22 =T R 2,
" @, [ Wy’ TR e, )

For f = 0, we denote these spaces by Lz(Q_,q;) and éga(ﬂ_,ac),
respectively.
We o'bserve that ’w'£ (Q, e )CW2 (Q2,q) with Qe =1+
m

+ .24 g- ae'ij’ since
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m A
N2 ).é 1202 + .S S e

W, i

) AT T vk, €
2 2{@y 4

m S
1+.3X = .. IR .
£ E 2070 Mg, 00

Next, we introduce some spaces of vector fields depending both
on x end on t €(0,T). Let Qp = Q=< (0,T), QT’ = Q'x (0,1),

Qp = &1 (0,1, agd = @y 3% (0,1 By Ly(Qp,q ) and
%Z(QT,M ) we mean the spaces of vector fields icha.loc(QT)

with finite norms

. -1 2 1/2
l\uan(QT,m) = (sﬂt:p E I\Tllle(QkT))

and
\ - 2 2 , -1 2

respectively. The following spaces play a basic role in subse-

1/2

quent considerations.

Dg'VZ(QT'): the space of vector fields with the norm given by

the formula
2 _ T @ 2 an
“mng,1/2(qé) = J;!d'x _[thj; l“?o(x't) - ?o(x.t—h)l ;‘? =
T ® ‘
(8) = fn,dx fo at fu \2(x,t) - x,t-h)|2 %121..,
s [oax [T 02 &

where 30(1,17) = ¥x,t) for t>0, i?o(x,t) = 0 for t<O0.

Dl’”z (Q,E): the space of vector fields with the norm
(9) Wl ) ={na’n2 L
Dy *'2(ag) p3+1/2(qp)
T 2 1/2
-
+ fo LV Vi, 9 dxdt} .

The boundedness of the norm (8) or (9) means that @(x,0) = O
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in a certain sense., For T = co these norms can be expressed in

terms of the Fourier transform of ?0 that is defined by
©
ﬁ’(x,g) - fo e itE @, (s,t)at, 1if the integral in the right-

hand side is convergen:t. The norms (8) and (9) are equivalent to
0 2 2 1/2

¢ [Taf [ 1§V IEx§)1% ax ag)'/2 ana

[L’:dg fn,(lg | l?(x,g N2+ 1V P)ax dg_] 1/2 respectively.

Moreover, it can be easily verified that for all 6 £ O the norm
© 26t © 2 dh

[fo e at j;vdzj‘; L 2(x,8) - By(x, -0 %

+ fo"’e-“* at [,(61%x, 012 + [V, 0)12) ax]'/?
is equivalent to
a0 [ [Pag [, (sl W2+ 17,0012 ax]'/2

2, © st
where 8 = 6 + ig and A(x,s) ='j; e 8% q(x,t)at is the Laplace
transform of ¥ with respect to t.
Following the above scheme, we define D2'1/2(QT,Q ) and
502'1/2(01\,38) as the spdces of vector fields equipped with

the norms
[§5q] =[ sup - 'NTM 1/2
20*'2(ap,q ) o o ngﬂ/?(akq_‘))}
and
(4l = [max (Ruy? ,
29:1/2(qy,2¢) [ 02+1/2(quy)
-1 2 1/2
sup 2, N2 0,1/2 )
e T p0/ (Q%k)]

respectively. The spaces D;'T/a(QT,q ) and 9 ;'1/2(0.3,39 ) are
defined in an analogous way.

Let § € L(2.a ). We say that Te3'/2(q ,a) it
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Wx,t) = F(x) F(t) + F(x,t) where 76D2'1/2(QT.(1) and $(t)
is a fixed smooth function such that 0 & Q(t)é‘l, $(t) =0
for tZ1, P(t) =1 for 0&t £1/2, and we set

(Tg) 2 172

= (P8 + W
232 (ag,a) 2 2(qg,a ) 7 L,(%q )

This expression is equivalent to the norm

f_:dt ,&,_dxfo”\ﬁ*g,(x.t) - %(x,t-h)la 1—;‘%)1/2 where

a‘?(x,t) = W(x,t) for t>0 and W_(x,t) = F(x) (%) for t<O.
It ¥ 6 Wy(D,q), then D}'/2(qp,q ) 1s the set of a1l ¥ =
=30 +¥, 7e*"/2(qp,q), and

172,

= + \g13,

LELRIRP™ 21172
D?. (QToq ) DO’ (QT.Q ) WZ(D-’,Q\ )

The sets 93'1/2(QT,96) and Q%»J/Z)(QT.OG) are defined for
TFe ‘562(51..9:) and @s w;(n.m as the sets of W =
= F@ () + T with PeD/2(qy,0e) or TeD)r1/2(qq,%)

regpectively, and
- - 2 2 1/2
‘u“a:g"/z(om.n) ‘mmgf/a(%.m 130, 0,00""

= (WP
« W;(Q,w)

Bu il
21212 (qp,2¢)

a2 ag,00)
We now turn to the initial-boundery value problem
'iq 7 of)

2 ov
F-vive Vpnf-é'g_ ,5;},

?lt=0 = ¢(x)’ ?lxeag_ =0,

V.¥?= 0, (x,t)e QT’
(1)

(12) fié?.'ﬁ’as = oy(t), J = 1,e..,mele

This problem as well as a similar problem for the full Ne-
vier-Stokes equations is studied in the bouk [5]1 by O.A. Lady-
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zhenskaya both for bounded and for unbounded domains. The solu-
tions are found in classes of vector fields whose elements have
a finite "energy integral" (so thaet in particular V ¢ L2(QT))
and satisfy the homogeneous conditions (12), but these conditi-
ons are not written explicitly. It was J. Heywood who introdu-
ced the conditions (12) into the formulation of the problem and
who found the solutions of (11),(12) with arbitrary OCj(t) in a
rather particular class of domeins [6]. This class was conside-
rably extended in [7 - 9, 3, 11.

In the present paper we study the problem (11),(12) in a ge-
nerelized (i.e. weak) formulation, but unlike [5 - 9, 11, we do
not require the boundedness of the "energy integral". For the
case of cylindrical QL = @ % [R the linear and non-linear evolu-
tion problems of viscous flow are studied in a certain class
of vector fields with an infinite "energy integral" by O.A. La~
dyzhenskaya, H. True and the present author [10]. In the paper
[11] devoted to & linearized evolution problem, the class D1’1/2
is used.

By a weak solution of (11),(12) we mean a divergence free
vector field ?(x,t) that is locally square integrable in Qp, as
well as its first derivatives ?xi and that satisfies the condi-
tions (12), the homogeneous boundary conditions leean_ = 0 and
the integral identity

foT Jo Ry + v IR VT axat -
T ¥ >
= [ [ @A, Ty Ay Jaxat + [o @@ R (x,00ax

where @ = @My +eeet ¢ M, YV vﬁ=a§§:—1 9x, ox
Y A j 3

(13)

and ;Z is an arbitrary divergence free vector field with a com-
pact support, possessing the derivatives Fi’t, 71:{6 L,(Qq) and
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vanishing for x € 3l and for t = T.

Theorem 1. Suppose that T <co end that
i) Fe W;(Q,%). is a divergence free vector field,

Flan = O

11) PTe £,(Qpe), ;€ L£,(Qp,%),

iii) there exists a divergence free vector field

ge D 1'1/2(%,&) venishing for x ¢ 0l and satisfying the
conditions

fs- Z.Wds = ot (8) - P(t) fii@’.‘r?ds

r
(it means in particular that the compatibility condition
oy(0) = fzé‘gy.'ﬁ’ dS holds).

If the constant a{ in (7) satisfies the condition
1< a1'<1 +d , then the problem (11),(12) has a unique weak so-
lution ¥ e @%’1/2((%,18) and

1> £ o(m) (121 "z” A
‘ @2 (ap,2) L, (Qqeae)  FT1 DR (qp,me)
(14)

+ gt + 2l )= C(T) M,(T).
?w;m,u) D22 (ay, !

ac)
If, in addition, ¥j € D V2 (qp,9e), Fe Wia,20),
2, € £L,(Qp,2e), v-ecwg’"/z(%,m, then ¥ € £, (Qq, %),

Ive 3)053/2(%,06). and

—
I, Mg, (agra) * \\V?Iéﬁo 124 *)é01(T)( 1Tl (40 *
vg

Z ll?ll (F3| (A
* 3°g0:1/2(qq,3e) e W2(Q,2)  L,(apae) |

(15)  yyel

=C M ).
00,1 /2q, ) = 01T 2D
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An analogous existence theorem holds for the spaces
D;)'1/2(QT,Ql ). It is formulated in the same way as Theorem 1 with
obvious changes; the conditions &€ ’W;(ﬂ ,9), T e $2(Qr,ac)
should be replaced by & € W;(Q. @ ), Te L,(Qpsa ) etc, The con-
stant a, in (6) should not be too large, i.e. 1<a1(1 + d".‘,
d'1> 0.

Consider the non-linear problem

?t+(?-\7)?-vv27+ Vp=_f+' v-?ao
(16)

7\1::0 =gx, V\xeaﬂ. =0,

D [ Fe®as = (0, 3= 1t
¥

A weak solution of (16),(17) is defined as a divergence free
vector field ¥(x,t)e€ Ly 100(Qp) With V?eLz'loc(QT), vanish-
ing for x € 0L and satisfying (17) and the integral identity

fOTfn@v.?zt- (T.V)F «V+» VR V7 ax dt =
g

T -
= [ T qaat+ [[FFax
for any divergence free q"f with a compact support such that

Wy Wy Ve Lp(0p), =0 for x € 30 and for t =T,

Theorem 2., Let the domain Q. satisfy the following addi-
tional condition: for every W(x) specified in @y Possessing
the finite Dirichlet integrel and vanishing for x & 0 coid g
n 0 , the inequalities

71 b IVHI ifn =3
l"s(“’m) @5’
(18)
\ g lywit/3  \HIR23 1t n=2
l1‘6(‘*’i;j) 4y “)13’

hold with a constant b indevendent of W and j, and let the same
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inequalities hold for the domain 0 . If f‘:@’, & satisfy all

the hypotheses of Theorem 1 and % 4 £1, then the problem (16),

(17) has a unique solution Te 3)1?’1/2(QT,38) with ?té :ﬂz(QT,ae),
1

V¥ e @3%1/2(%1 ,#¢) in the interval (0,T,), T, being & non-

increasing function of M (T) + My(T) (M (T) are the same as in
(14),(15)).

The proofs of Theorems 1 and 2 and of analogous theorems in
other functional spaces are given in [4]. We restrict ourselves
to the idea of the proof of the first part of Theorem 1. First
of all, we construct a weak solution of the problem (11)},{12)
?en%’ﬂ/z(QT,ql ) with q =1 + :‘%: ;Zm:,‘ 2¢; 4. We extend the vec-
tor fields T, 7_";_, d into the half-space t <0 by zero and then
into the half-space t>T as even functions of t - T, This exten-
sion conserves the differentiability properties of ?, f;_, a. The
new unknown vector field ¥ = ¥ - & (t)J@(x) - &(x,t) is diver-

gence free, it satisfies the conditions T =0, T aAS =
XecoL 2‘3’

=0, j=1,,..,my, and the integral identity

J;wjn(-i‘.ﬁt +v VRV )axdt = wafn(?'?”Z ?;‘—’l:zi)dx‘“
(19)
- [P (8 T E A axar - > [T (30 VF: VT

+ V& V7))axdt

that is a consequence of the identity (13) written for T = co .

~-26%

Changing fv"L’ for 71},’ e and applying the Parceval ‘s identity,

we can rewrite (19) in the form

L:dg feTAry VT IF ax -
(20) .
e AT A e e

- 1271 -



o~

where U e = Uy Ny +eeot+ U %,

i,t g" ?" (gt)a(X): Z, = "gv

is the Laplace transform of
2 % .3 oY
= fi -y @ -6% -y -5;; .

Consider the following auxiliary problem:
-,
Pind a divergence free vector field ﬁ'(z)d gl;(.ﬂz) depending on
a parameter s = 6 + ig and satisfying the integral identity

(21)
- Lu”g* s§,>-7+ 7. ifxilax

KUY

for all divergence free ¥ & %;(.Qz). For 6 Z 0 the quadratic

form Q(W,¥) satisfies the condition

Re(1-1 sgn §)Q(¥,M Z (& + I§1) fﬂzm? ax +

22)
@2, vf%rvwﬁ dx ;guusnw\? +v V7% ax,

and the existence of %(2) follows from the Lax-lilgram theorem.
Moreover, u ;z(z) is a holomorphic function of s in the half-plane
Re 8>0, since §+ sg, and gi are holomorphic., Letting -qr- u&)
(1 +1 agng) and integrating with respect to ? , we obtain af-

ter elementery calculations the estimate:

‘° 3e)| 2 1v3®))2 P
~-od? L (1s]11l@¥€N2 o » 1vae)]2ys <«

(23) 4f ag f 2l::5321+c lgolzls\ *+ 0y, z l?\z) ax £

Next, we evaluate f:dg fn (lslluu)|2 + v lV’i‘x(I)\z) dx for

k «£ . To this end we insert into (21) the test function

ﬂ ’
F =Ty (0 +1seng) mere T,y =@ 1na,, T, =0in
DN, ?k+1 = Pyt a8) yn W )41+ After easy calculations,
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meking use of (1), we obtain
[oaf fo, (al@®N2 45 173D120 £

(24) £ 05 [Tag jj;ﬂ\%(lsnﬁmle + VL 9E®)2) 4 o
v og [Tag [ (HEP + 1alZ)% + 3 1812 ax,

i.e.
=05(Yk+1 - Yk) + C7 My qy
or
PA _ci_ -—_’L_—C
VS T Ten * Mg,
5t 05+1 .

where y, is the left-hand side of (24). Hence,
c

CM £=k=-1
ké C " { Qy + qk+1 teoot 05+1 qﬂ-“} +
(25) . < CE )l-k g £ C:ZM1 . {1 ‘e C§a1 s
Ot £= g4 K ° g 4+
5 . 5 5
Ceaq\ £ k-1 Cea\L-k
+a |21 +c(e)m, (2L q %CgMq,, Yk <&
o\C+1 T\c .+ k™ U8 Bk ’
5 5

provided Cga, /05+1 <1,

In virtue of (25), there exigts a subsequence of _{{f(l)}
converging weakly in the Hilbert spaces with norms (10) for ar
bitrary bounded ' c L , The limiting element ‘g satigfies the
inequality (25), i.e.

f_:dg fnk(lsl\ﬁ\z + v 1931 ax £cg 1y qp.

Moreover, making use of (21) it is not hard to show that 3 sa-
tisfies the identity (20). The inverse Laplace transform f?o of

g vanishes for t< 0 (since ;3 is & holomorphic function of s in
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the half-plane Re s8Z0), end satisfies the inequality
®an (¥ -26% 2
fo ] [we at f_%lt?o(x,t) - T.?o(x,t-h)l dax +

v [0 a Jo VR axdog uy g

and the integral identity (19).
Let us show that f?ef,bl've(am.ac). We fix @y, kz1 and
~
take M = (1 + 1 sgn§) [§k+p+1 - ﬁk-p—ﬂ in (20). Repeating
the calculations leading to (24) we arrive at the following

inequality for the numbers

© 2 2
z, = j_'mdg j;‘:bw.\Gu_f.,s\B\ @2 +» 17T Ydx, P = Oye..,k-12

c
10 0
By =2 Z_,q + Oy _[’adg j;‘:

1 2 ;.2
e z(;l?l + 1811212 +

kepet Gﬁb-‘p-

c
2 210 ~
+ % lij‘ ) dx..c Zp+1 + 012 qp M.‘

1o+1
~ ot

where T =‘}§,4 (2,5 + Ry_3) + 2y, satisty (6):
- natsa
Tt = Up *5 T an ( Ripeay + %y y) &

pit+l .
L ., sj=p=-1 " e %
S * B0 %5 ipe1 ¥ %y p ){h%«»za" £8 9p &

-~
21£0q3 M1Q €0y, My 2y

C1o+1

10
'11'63)1’1/2(QT,9€), and the estimate (14) for V=T + +9d

follows immediately with C(T) = Ce®T,

provided a,£ . This inequality shows that

The second part of the theorem can be proved by similar

estimates of the integrals
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L‘:d? j}lk(lslz 112 + 5 18l IV§I2) dx and

L":dg f"’«'k(\s\2 1212+ » 18l B1®) ax.

With Theorem 1 established, it is not hard to prove the
solvebility of (16),(17) by successive approximations. Theorem
1 holds also for T =c0 under slightly more restrictive assump-
tions on £ end 3 (see [4]), end if the data P, @’ , @ are small
in an appropriate sense, then the problem (16),(17) has a solu-
tion for all t>0. This is completely analogous' to the result
of O.A. Ladyzhenskaya [5] obtained in the three-dimensional ca;
se for flows with a finite "energy integral". The question, whe-
ther there exists the global solution ?‘_@%.1/2(%'”) of the
problem (16),(17) in the two-dimensional case is still open.

A different approach to the problems (11),(12) and (16),
(17) is proposed by M.E. Bogovski [12] who proved coercive esti-
mates in the spaces w§'1(QT) for the solutions of (11),(12).
Thig is & generalization of the present author ‘s results for
"interior" and “"exterior" domains with a compact boundary
[13, 141. On the base of these estimates, the solvability of a
non-linear problem is established locally for n = 3 and global-
ly for n = 2, For p large enough, the space w§'1(QT) contains
vector fields with an infinite "energy integral", but in some
important cases, for instance, in the case of cylindrical fL
end o = fi V.7 dS + 0, the solutions of (11),(12) and (16),
(17) do not vanish at the infinity emd do not belong to
worl (ap).

The exterior problems are considered also in the Holder
spaces C2+°°’1+°c/2(QT) without any assumption of the stabiliza-

tion of the solution as |x| —» a0 . For the problem (11), for
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instance, the following theorem is established in [14],

Theorem 3. Let (L be an exterior domain with 3Q ¢ CZ+°“'
& € (0,1), and suppose that Fe c2*(Q) is a divergence free
vector field venishing on 8Q , f = 0, %601""’"(1*"")/2(%)
and the compatibility condition holds
of.(x,0)
ny ’ 2
Pyl -5, ———+ »U%P )| eag = ©
T axj

-7
where P; H = h - Vo and @ is e solution of the Neumann pro-
blem

2 - dw > l

= » I =hen .
YV @ v ’ a—n \a.Q. 20
Then the problem (11) has a unique solution ve 02+°°’1W2(QT),
Vre C"“/Z(QT) and, in addition, p(x,t) possesses the finite
norm .
-(1+¢.—f_2

1p1 %) = sup |- Ix - 3= ¥lo(x,t) - p(y,t) -

x,“l,f,'ﬁ -
- p(x,x) + p(y,*)l, ¥6(0,1). For the solution a coercive
esf™mate holds

17

02+ot,1+efJ2(QT) ¥ * |p\(°c.z') £

|7
pl0“1"‘/2(%)

& ?, .
o(m (%\ 3l 14+, (14e0) /2 * lﬁ"cz’"’"(n))
c (ap)

The restrictions on ?, ?j can be weakened, but it should
be pointed out that the formulation of this theorem given in
£14] (see Theorem 9.1) needs some corrections. For the nonli-
near problem (16) an analogous local theorem is established.

Becauge of the conditions (18), Theorem 2 does not seem

to be applicable to exterior domains, and it would be interest-
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ing to find en appropriate generalization of this theorem. In
this connection it should be noted that for linear parabolic

second order equations some more sharp estimates are found, which

makes 1t possible to work in the class of weak solutions whose

"energy integrals" in the domains Q. = {x €Q:l|xl<r} may grow

as fast as e for r >> 1 (see [15, 16]).
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