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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

25,4 (1984) 

APPENDIX TO THE PAPER „AN EXISTENCE THEOREM FOR 
THE URYSOHN INTEGRAL EQUATION IN BANACH SPACES" 

Stanisfav SZUFLA 

Abstract; The paper contains a result concerning the Kura-

towski measure of noncompactness in the space L (DfE) of Bochner 
integrable functions with values in a Banach space E. 

Key words: Urysohn integral equations, measures of noncom­
pactness. 

Classification: 45N05 

Assume that E i s a Banach space and D i s a compact subset of 
the Euclidean space Rm. Denote by oc and ot., the Kuratowski mea-
sures of noncompactness in E and L (D fE) f respect ive ly . Let V be 
a countable set of strongly measurable functions from D into E 
such that there e x i s t s ^ & L (DfR) such that Ux(t)l l4- ^a(t) for 
a l l X G V and t e D . For any t e D put V(t) «- i x ( t ) : x c V $ and v ( t ) = 
- <*,(V(t)). 

Recently Heinz 12} proved that the function v i s integrable 
on D and 
( D o c U / x ( t ) d t i x 4 V j ) . 4 2 J^r ( t )d t 

for each measurable subset T of D. 

Now we shall prove the following 

Theorem 1. Assume in addition that 
lim sup / Ilx(t + h) - x(t) II dt - 0. 

Then *>-J>° ^ V 3) 

<*-|(V)-*2 f v(t)dt. 

Proof. For any positive number r put V • tx :xeVj f where 

and Q r is the closed ball in R
m with center 0 and radius r. It 

is well known that under our assumptions the set Vp is equiconti-
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nuous and uniformly bounded, and lim II x - 3Cj.il ̂  * 0 uniformly 
in xeV. Hence tt~*° 
(2) oC-(V) « lim oC|(VJ 
and, by Lemma 3 of [33, 

(3) " M V -*jCecOrr(*>
)dt* 

Moreover, by (1)t we have 

<*<v*» ^«ie i i7 .{ a i t
x ( a ) a 8 ! l 6 T i ) 6 55h; ±W(B)d8' 

so that 

(4) o C ( V r ( t ) ) ^ 2 v r ( t ) for tfeD. 

where v r ( t ) » m£ea\— . / f t v ( s )ds . Since lim II v - v r II -, » 0, 

from (2) - (4) i t follows that G C , 0 0 4 2 f v ( s )ds . 

Using (1) and Theorem 1, and repeating the argument from 
[43, we conclude that the main resul t (Theorem 2) of [4 ] remains 
va l id also for arbitrary Banach space E i f we rep lace ft by oC 
and the assumption \ !K\ < p by |:Al < % («> • 
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