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REDUCTION OF THE DIMENSION IN THE LINEAR MODEL
WITH STOCHASTIC REGRESSORS
W. JAHN and M. RIEDEL

ABSTRACT: First of all we introduce the linear model with gto-
ochastic regressors. The estimates of the parameter B and wa

of this model are influenced by multicollinearity. As one of the
possibilities to reduce the degree of multicollinearity subset re-
gression is proposed. As a criteria for the selection of a model for
the best extrapolation we use the mean square error of extrapola-
tion. Some important properties of the estimates of the selected
model will be shown.

KBY WORDS: Linear model with stochastic regressors, multicolline-
arity, mean square error of extrapolation, subset regression.
AMS: 62 J 99

1. INTRODUCTION

First of all we will give a short introduction to the linear model
with stochastic regressors. It will be shown that the estimates for
the parameters of this model such as the vector of regression co-
efficients and the conditional variance possess the usual proper-
ties as unbiasedness and consistency. In this model the multicolli-
nearity plays an important role. Its effect on the estimates is
also shortly demonstrated and by an example illustrated. To correct
the estimates from this effect it 18 necessary to reduce the degree
of multicollinearity. One of the possibilities for this is the sub-
set regression which can be considered as a kind of the reduction
of the dimension of the parameter space. As a criteria for the se-
lection of a model for the best extrapolation of the regressand

by all or a subset of the regressands we use the mean square error
of extrapolation which will be stated in theorem 3. For all se-
lections k we show thatI,B - a(k)”2 converges uniformly for all k
from a certain set K to [B - B(k}ﬂz.
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2. THE LINEAR MODEL WITH STOCHASTIC REGRESSORS

Consider an 1 x (n+1) random vector Z with the expectation s and
the covariance matrix Z . Z, pu and L are partitioned as

Z = (Y) x)t R = (uyv ux)
LS

6. G,
Y é‘.x -
.y XX

where Y and By are 1 x1, X and}px are 1 x n, and ZXX is n x n.

The problem is to determine the regressand Y by the regressors
X. For convenience we will let NVn+1 denote the class of 1x(n+1)

random vectors Z having the NM_1 (0,Z) distribution with positive

definite matrices £ ., It is well known that for ZENV .4

B =X E 16 -8
XX
and

2 -1 2
var (Y/X) = 63 - GY-XZ o Gy.y=: G'le .

Moreover, the random variable € := Y — XB and the 1 x n random

vector X are independent and £~ N1 (o, Gslx). In other words,X
and £ determine Y in a linear manner, as

Y=XB+¢g . )

In order to obtain the maximum likelihood estimators of B and

GYIX it is not necessary to restrict our_selves to normally dis-
tributed regressors. Therefore, we introduce a generalized para-
metric family F instead of NV.

As suggested by (1),we now consider random vectors Z which are
defined by X and £ according to

Z= (XB+€g, X) = (Y,X)
Let F be the class of 1 x (n+1) random vectors Z possessing
following properties:

(1) X and € are independent
(11) €~ N(0,82) for some 6 27 0
(111) X~ G‘, for some & © , where

& = G, : Je © is an arbitrary family of distribu-
&
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tions on R" with the parametric space © and positive
definite covariance matrices Z:XX’

Note that NV + C F 1ffll(0 p x)é ¢ for allz

Further suppose that for all &€ ® there exists a density [ X%
of G.g and denote the density of N, (o, 62) by f‘;, . Then the density
of Z with the parameter ( B, 62 JL) is given by

£(y,x) = gy(x) £ o(y - x B (@

where, as before X is a row vector and B is a column vector.
Estimating B and Czwe take a sample of size N»n of Z and de-
note it by
?=(Y, ¥
where the results of the i-th trial 2, = (Yi’xi) are written in
the i-th row of Z.

Obviously, from (1) we get the representation
Y=X%XB+¢g "

with N x 1 random vector ¢VN"(0,611N) where IN is the N x N iden-
tity matrix. Using now (2) we get the logarithmic likelihood func-
tion

N N
1 B 62 19" = 1 £ -x,B) + 1
(B,8,%; =) E 08 £ 2(y,-x;B) E o &,(x;

(B8,6% =) + 1,(#; »).
By the property (ii) of F we obtain

1,(8,6%7 -2 (y- 2B + 3§ 108 (27EH.

A result of Okamoto [1973] yields that for all % & @
T
G"{ Ix'2[>0] = 1;

here |A| denotes the determinant of a ﬁztrix A. Hgﬁoe, there
exist the maximum likelihood estimates /B of B and 6101 6*and they
have a similar structure as in the linear model (with non-random

regressors).
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Note that
B-n ' -2y
where f is the Moore-Penrose inverse of ¥. As in the classiocal
Ea)
case instead of % we use the estimate
2 N-n g2 1 AT A
S -T‘ -F;n—(ﬂ-lm) (Y - M)

which is unbiased (see theorem 1).

The following theorem gives some properties of the estimators
B anad 82.
Theorem 1: For Z€F we take a sample of size N> n. Suppose

that the expectation of (XTI')-1 exists then

B @B/Y) -8B (4)
cov (QII) - Gz(!‘})" (5)
and

B(s%y) - ¢* (6)

In particular, B and S° are unbiased.

Remark 1: If Zean+1 then the n x n random matrix iTl from a
sample of size N and the expectation of (ITY)-1 exists if N> n+1;
moreover (see Kshirsagar [1972])
-1
-1 15
S S I 7

Proof: Clearly
rah? - 'n!

and the existence of the expectation of (1117_1 implies the
existence of the expectation of ¥'. Using (1') and (ii) of ¥ we
conclude

E@®Ip) -B(B+ Xg/¥) =B ; 1.e. (4).

Further we need a result for conditional expectations of random

matrices. Let A, be u, x vj random matrices for j=1,2,3,4 and

suppose that M1 and AB are measurable with respect to the 6 -al-
l gebra generated by ‘1& and vy = up, Vp = ug.

Then

By My Agfn,) = Ay E@,[A,) Ay (8)
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provided that the expectation of IA2 exists.
It is easy to see that

@-8 G- -ve T @M. (9
Using now (3) and (8). With A, =M; = ¥*, A, = €¢ T, A, =¥ the
statement (5) is an immediate consequence. Putting

+
M=Iv-XX

we can write
(N-n) s2 =gT M= trmee”).

Applying again (8) with A, =N, A, =g T, A3 = I, and A,‘ = ¥ we
get
(N-n) B(S3/¥) = tr (M B($€ TJ¥) = (Non)G*

as N is idempotent and (6) is established. For our next purpose
the maximum likelihood estimate of /B of a sample of sisze N is
written as &(N).
Theorem 2: For ZGNVn+1 we take a sample of size N.

Then the sequence of utinates{a(n)&il consistent to B.

Proof: From theorem 1 and remark 1 the estimates 6(!) are unbiased.
Then for the consistence of {B(")} it suffices to show that

lim tr{oov (8(“))}- 0. (10)
(00

From theorem 1 and (7) it follows

” ™
trfeov (@)} = ﬂG:n'_l—«,
hence (10) is valid.

3. MULTICOLLINEARITY AND ITS CONSEQUENCES

As a measure of the dependence of the regressors X we use the de-
terminant of the correlation matrix mx of X, namely, the regressors
X are said to be multicollinear of degree ' , 1686, 1t

1
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In application there are no possibilities giving a‘bound d:, for
the degree of multicollinearity in such a way that for 6'4{,,
the properties of the estimate B are scarcely influenced by the
multicollinearity but for crhdf; this estimate is not useful. The
only way to study the effeot of § is to investigate its influence
on the estimate. From theorem 1 we see that cov (ﬁ) depends on
the degree of multicollinearity. Note that also the statistics tJ
for testing the hypothesis HO: B, = 0 are dependent of & . The
larger the degree of multicollinearity the smaller are tj'

The complicated dependence also of parameters like GIY'IX of the
multicollinearity i1s now studied in the following simple example.

Bxample: Consider ZE€NV with n = 2 and var (Y) = var (X1) =
var (Xa) = 1. Then

1 % S
o= | 9y ! $23
$31 S32 9

d-
and X = (X1,X2) 18 multicollinear of degree d if 933 = —2:1 .
In this case it follows for 6 d) = G"le

i 1-(8%,+ 83506 +28,,8,7V0-6)8 11 5),20
6°(d) -

2 g2
LS PP 913)6' -2 912 ?13'\/(1-6)6‘ 1f 8§55 20 .

Because Z 1is positive definite we have 91124 1, 9$341 and
?23 € (a,b)

with ab = 8, 52 N1 - 62, - €2 4 02 92 .

Only for 912 = 913 we get b = 1, Further, put

1
— for az0
A= {1‘5

1 for a<0
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and

.
—— for §,*6€
22 127 13
B =
60 for 45 &3

It is easy to see that

for azo
(A =
G +) { 2 »
1—(§12+§13) for aco
and 0 c ¢ i
or
6B - ) = { \ 12 13
-f12 for §12 = $13

In order to study the behaviour of 6°(& ) we have to distinguish
three cases: (1) a z0, (41) b£0, (1i1) a <0 <b.

~ N -~
As the tranuffrmation S4p0 = - §’12, §’13 = f13, ?23 = - 923 is in-
variant for © we only have to consider the case a z0 or a<0<b
and 923 20. Then the function 6*(d ) is monotonously increasing in

(A,d,) and monotonously decreasing in ( d5, B) where

2 2
max ( §£35,, §72)
do = -—"‘——2——1—2—'—2'1—2— for 5,12'1= ‘913
19342 - 8151
« for £, = &3 -
The function 6*(d& )reaches its maximum 1- max ( 9?2, 933) at aro.

This example shows that GZY'/X depends on the degree of multicolli-
nearity as well as on the correlation structure. If fﬂ/yu goes
to one then ﬂtends to infinity and consequently, high degree of
multicollinearity may be combined with great 6';.”{ .

A sequence of simulation examples of more complicated structure
have shown us the same effect, see Jahn [1984] .

From these examples we get the intention that the mean square
error of the extrapolation of the regressand by n regressors
would be reduced using only m<n regressors with a greater deter-
minant of correlation matrix than the one of the original re-
gressors. In this way the subset regression is a method to re-
duce the degree of multicollinearity and therefore to improve
the estimate B.
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With problems like this have among others alse delt Oliker
[1978], Akaike [1970, 1973, 1974, 1977, 1978, Bierens [1980],
Mallows [1973] , Hooking [1976] , Shibata [1981] .

4. DRTERNINATION OF THE DINENSION

In this section we study the subset regression for the linear mo-

del with stochastic regressors (2.1) with Ziann+1. Suppose that

we select the regressors xk1,...,xk s 1ém$n, and remoye the re-
m

gressors xh1""'xhn_- and put k = (k1,...,k-), k1 Lous tk- and
h=(hyyeeeyh )y hygooo gh o . Moreover, we set

X(K) = Xy yeeeidy ), BGE) = (B 1,...,akm)".
Then the model (2.1) can be written as
Y = X(k) B(k) + X(h) B(h) + £ . 1)
Takying a sample of size N>n we denote its result by
7= (Y, ¥k), Xh) ;
hence we have
¥ = 2(k) B(k) + ¥(h) B(h) + & . (2)

The main object of regression analysis is to extrapolate Y(B)
by a random vector X(E) which is independent of ¥ and Z(B)

and each row of 7 are identically distributed. As above the re-
striotion of X(B) to the variables k is denoted by X(B,k).

The maximum likelihood extrapolation of the future observation
on Y(E) at X(B) is given by

? (B,k) = X(B,k) B(x).

For fixed k and h the covariance matrix Z:XX is partitioned as

- zkk zkh
x -
Tk Zph

where 3 18 m x m and z:hh is (n-m) x (n-m).
kk

- 754 -



Por simplioity put
-1
Zpwx ™ Ton - S Bk T
- -7
P/ ' Trn
Theorem 3: If N> n+1 then
2[Cx®) - T (3,62 2x), 1(8,10]

- 13,0 @" 1T @0f BT x,,, B+ 67T+ 67,

and
B (B - 28,0002 = (1 + Py )60 BT 2, BOY] ()
In particular,

Tl B (X - 3,002 - B0)TE,, B + 67y (4"
Proof: Prom (1) and (2) we conclude

Y(B) - T(B,k) = X(B,k) B(h) +¢£ - X(B,k)¥ (k) ¥(h) B(h)
- X(3,k) ¥'(x)g.

As X(B) and € , & and ¢ , as well as X(B) and € are independent
we then obtain

2 [Q(®) - 1(8,x0% 2,x(®)]
= B(8)TX(E, )X, 00BC)+ 631 (1 + X(E, 10 @0 Tr)) xR, 100T)

+ (1) B()) T(X(B, 1) ¥)TX(B, ) W) X(b) BR))
- 2 B X(E,0)TX(E,b) X(x)* 2(h) B(n) 5

-xI1+12+I3-ZI“.

Prom the usual normal theory we can derive the following conditio-
nal expectations:

Bx(E,mxEn (x0T - I, + B (XEOXE0 B, (6)
B[X(B,h)[X(B,k)] = X(B,k) By, @
Ble(w)/¥()] = ¥k) By, @
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and
3 [30) B() BT X0/ ¥(0)]
=BT X, B Iy + X0 B B ROT (9)

Now we are able to study the conditional expectation of 11,1

3
and I, under ¥(k) and X(B,k). By virtue of (6) we get

3[1,/x8,0] = BT B\ x(E,0T x(5,0 B, B
+BM)TE L B (10)

Note that
B[ 1,/%(k),X(8,k)] = B(h)T B [X(B,h)/X(R,k)]
"X(E,k) ¥(x)* B [ ¥(h)/¥(x)] B(h) .
In according to (7) and (8) we derive
B[ 1,/¥(),X(8,k)] = B(h)" th‘T X(B, 10T X(B,K) B, BCh)  (11)
Finally using (9) we see
B[15/¥00] = B[ tr{ X(8,0) ¥00*}T {x(8,10 ¥0)*} .
+¥(h) B(h) B(h)T ¥(n)T/ ¥x) J
- x(8,10 @)™ 16,0 BWTE |, B0
+ B By, T X(E 0T X(B,K) By, BCR) (12)

From (5), (10), (11), (12) the statement (3) follows immediately.

Now we show (4). Using remark 1 we conclude

B[ (8,100 30T 2x))™ xT(®,1)] = FE and statement

(4) follows.

Next we give the expected extrapolation error if all n re-
gressors are applied in regression.

Corollary 1: If N> n+1 then

B [(1(®) - ¥(&,n0?] ¥, x(B)]

(13)
- Sy [+ xma™ xm'7
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and
B (X(E) - T(5,00)2 = 60 (1 + 2 ) . (14)

In order to consider a sequence of linear models with stochastic
regressors we start with a sequence (X jé M) of regressors and

suppose that we select from it m, namely X(k) = (Xk e ) with
k = (k’,.. km) and m>1. As before we assume L(k) = (Y, X(k))ENV e
and
Y = X(k) B(k) + £(k) (15)
with B(k) = (B oo oDy e w™
m

In other words we obtain this model by putting in (1) B(h) = 0 and
n =® , This means that the selection of regressors k is strongly
connected with parameter 1B, Further put

610 = Sy)pqxy -

Taking a sample of size N> n we denote its result by Z(k) = (¥,¥(k)),
i.e. we have

Y = ¥(k) B(k) + €(k). (16)

For an m x 1 random or not random vector c put

ter* = T yaoTva) ¢
IIC!IZ = ¢ Zw) ¢ .

Using remark 1 we get
2
ElB-BOO* =B - LOUNES - ) =2 MGk, W), (17

A
Obviously, for all selections k, | B - lB(k)/z converges in proba-
bility to ﬂm - m(k)n:as N —> o ., Now we show even that this is
valid uniformly for all k from the set

7§
Kn,N, 8 = = f ks kgen §

where 0 <« ?4 %
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Theorem 4: For all 027 <« 1 we have
-~ 2
lim P{IB - BU)I>(1 -T) M(k,N) ¥k €Ky g b =1
provided that for all N
2

e - BG) 0,
Ry := sup —_——— L 0O

keKp, N g 6%x)

For the proof of theorem 4 we need following result.
Lemma 1: Let)(ﬁ be a 7(" random variable with n degrees of freedom.

Then for any 04% < n , we get

1/2. /2
Fn(n-"l) := P( 'X:z.n )t e 1 -% ) (19)
Proof: Using the moment generating function of)(i we see for t 20
E oo
(1-2t) 2 o § ot B(dx)
0
n-v
tx
z g e lfn(dx)
> et(n-l) {(n _4L) ;
t.e. Kn-7)¢ et (=) (4 pyy-u/2
For 2
t = 3=y

the upper bound of the last inequality is minimal and (19) is
established.
Proof of theorem 4: Obviously, we have

ay i= P(IB - Baolte -7 )“(k’N)gkeKﬂl,Nr?) “

ST pae - B
e, F0° - BUOI=2(1-T Mk, X)) &

é:{fc p¢ UBk) ~BGN ., = fu’_gk,ug)
m, N, § &(k) Ne-m-1 & (k)
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It is easy to see that |B(k) - ﬁ(kﬂf//dik) is X‘dittributed

with m degrees of freedom.Hence, it followvs

‘néZ, Fm(n-:-i’rnk: )

wvhere
! ,_m - "5‘!'?
Kmangj “ {k‘Km,“‘g * N-m-1 T X >0 } .

Applying nov lemma 1 for n = m and

M(k,N
”Z"ﬁ%*z k) T o*
B - B(x)lg
-m(l—n-m-)ﬂ-'r 72(x

we see that for kel(m'x §

M(k,N)
Py CFmi - T gty )

<e /2 ( Nl;f" Iy w - ekgkwg )m/2 = "'7/2‘:; 12X )41/2

So we obtain by definition of Ry and n

T
ay < () e 21 - N m- 1’*"’“ b [losm +1] .

As V = Ni_f and log Nl;}; +1 <0

for sufficiently large N, we see

1 mloe v+ 4O - g ] [ -log K+ 1+ log(1-%) +o(1)]

o x [Brmt - hn 055 020 - g5 [

g+ 2 - LI —T‘%)(! + log(1-7) + o(1)) =
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and the statement is shown.
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