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SERIES-PARALLEL GRAPHS AND WELL- AND 
BETTER-QUASI-ORDERINGS 

Robin THOMAS 

Abstract: We discuss some r e s u l t s concerning w e l l - and 
better-quasi-ordering s e r i e s - p a r a l l e l graphs. 
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The well-quasi-ordering theory (abbr. wqo) deals with s e t s 

on which a qiasi-ordering ( i . e . re f l ex ive and t rans i t i ve r e l a ­

t ion) i s defined. Such a se t Q i s said to be well-quasi-order­

ed by a quasi-ordering 4t i f for any f: cO —* Q there are i<C j 

such that f ( i ) . £ f ( j ) . An important quasi-ordering i s "the minor" 

defined on the c lass of a l l graphs as fol lows: G«$* H i f H con­

ta ins a subgraph contractable onto G. Now we are able to s t a t e 

the so-ca l led Wagner s conjecture, which p lays a prominent r o ­

l e in the wqo theory. 

(Conjecture) The c la s s of a l l f i n i t e graphs i s wqo by -^ • 

This conjecture, i f true, imp l ies the Kuratowski's theorem for 
x) 

higher surfaces. ' But there are other properties of graphs, 
which should be useful to characterize in terms of a Kuratowski-

x) The proof of the Kuratowski's theorem for higher surfaces 
has been recently announced by Robertson and Seymour. 
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like theorem, perhaps for relations different from =^ • In the 

light of this, the following theorems may be thought of as ne­

gative results. 

Theorem 1. (i) The class of outerplanar graphs is wqo 

by,4
c
. 

(ii) The class of series-parallel graphs (= graphs which 

contain no subdivision of K,) is not wqo by *»•{ , where G ^ H 

if H itself can be contracted onto G. 

Proof of (ii): The bad sequence is given by 

a 
o л o <C> ' <£?>"" 

Theorem 2. ( i) The class of series-paral lel graphs i s wqo 

*y - ^ 

(ii) The class of planar graphs is not wqo by -^^ , whe­

re G «-?£ H if H contains an induced subgraph contractable onto 

G. 

Proof of (ii): The bad sequence is given by 

The methods in wqo theory are based on the following well-known 

Key lemmas If Q is wqo, then Q<co=- {the set of all fini­

te sequences of elements of Q\ is wqo by the following canoni­

cal quasi-ordering (which is denoted <& as well): 

(a.j,... ,a )£ (b.j,... ,b ) if there is a strictly increasing map 

fs {1,... ,nj—> { 1,... ,m\ such that a ^ bf ,^y 

Proofs Since now on, X, Y will always denote infinite 

subsets of a . W e call a sequence f:X—> Q* good, if there 
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are i < j e X such that f ( i ) 4 f ( j ) and we ca l l i t had otherwise. 

Let f:X—•Q*61 , g:Y—» Q*6*, We define f < # g if 

(1) XS.Y 

(2) f ( i ) 6 g ( i ) for any i e X 

(3) The sequence f(i) is shorter than g(i) for any ieX. 

We claim that there is a minimal (with respect to «£ # ) bad f: 

: o) -> Q 4 ^ . Indeed, choose f(1) so that it is a first term 

of a bad sequence of elements of Q ^ ^ and the sequence f(1) is 

the shortest possible. Then choose f(2) so that f(1), f(2) (in 

that order) are first two terms of a bad sequence of elements 

of Q<0> and the sequence f(2) is the shortest possible. Conti­

nuing this process we get a bad f: o> —• Q < c J . We claim that 

this is the desired one. For if there is a bad g<i*rff g:X—> 

— • Q < u * » then the sequence h:Y—> Q < w defined by 

Y » Xu*i: i< min X^ 

rf(i) KrainX 

>g(i) iGX 

is bad which contradicts the choice of f. 

Define 

f-.(i) = the first term of f(i) 

f2(i) = the rest of f(i). 

Clearly 

(4) ^ < * f, f2-<* f. 

By Ramsey theorem there^ i s an X £ W such that either 

f - jd )* f t ( j ) for any i< rjeX or f ^ i ) 4~ fjCj) for any i < j e X . 

The l a t t e r case i s impossible since f « | / X < # f and f i s mini­

mal bad. By the same argument there i s a YSX such that f2(i)-£ 

-4f2(3) for any i<- j ^ Y . Fix such i , j . We have 

(5) f - C D i f ^ l ) and f2(i).« f2(j) implies f ( i ) -£f( j ) 
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which contradicts th^ badness of f. D 

Sketch of the proof of Theorems 1(i) and 2(i)s We are try­

ing to imitate the proof of the Key lemma. Thus we consider map­

pings f:X —• <£, , g:Y —-> Cy , where Cy is the corresponding 

class of graphs. Then condition (3) can be replaced by 

(3#) f(i) has less vertices than g(i). 

Sequences f1,f2 satisfying (4),(5) can be defined due to a cha­

racterization of series-parallel graphs - see 11 J. D 

The detailed proofs will appear elsewhere, for Theorem 2 

see L5l» We have considered finite graphs so far, only very lit­

tle is known in case of infinite graphs. Nash-?filliams, invent­

ing a new stronger concept called better-quasi-ordering (bqo) 

has proved that the class of trees (finite or infinite) is wqo 

(in fact bqo). A nice explanation of the bqo theory can be found 

in [41. Using this theory and ideas of Laver [2] we obtained 

Theorem 3» The class of all (finite or infinite) series-

parallel graphs is wqo (in fact bqo) by *4 • 

The proof of Theorem 3 is based on a characterization of 

(infinite) series-parallel graphs, which is in the spirit of La­

ver s scattered type characterization 123. We are not going to 

state this theorem here, because it requires some additional 

definitions. Another important feature of the proof of Theorem 

3 is that any series-parallel graph can be written as a count­

able union of series-parallel graphs, each of them contains no 

infinite path. That is an easy consequence of our characteriza­

tion theorem for series-parallel graphs. The details will appe­

ar elsewhere. 
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