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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

25,4 (1984) 

TORSION QUASIMODULES 
T. KEPKA and P. NEMEC 

Abstract: Using the preradical approach, torsion and oo-
oyclic quasimodules are investigated* It is also shown how va­
rieties of quasimodules are constructed from varieties of mo­
dules and 3-elementary commutative Ifoufang loops. 

Key words: Commutative Moufang loop, quasimodule, prera-
dical, variety of quasimodules. 

Classification: 20H05 

1. Introduction 

A loop Q(+) satisfying the identity (x+x)+(y+8) » 

* (x+y)+(x+s) is commutative and it is called a commutative 

Moufang loop. We denote by £(Q(+)) the centre of Q(+) , i.e. 

a e £(Q(+)) iff (a+x)+y • a+(x+y) for all x,y e Q • Then 

C(Q(+)) is a normal eubloop of Q(+) f 3x e £(Q(+)) for 

every x e Q and we have the upper central series 0 -= C (Q( + ) ) ^ 
""V 

^*£ t(Q(+))^"£ 2(Q(+))^ ...S<k<W+>> — ... of Q(+) ,-whe.ee 

£n.f1<Q(-,'>>/£!l(Q( + )> * £(Q(^)/ .S f l(Q( + ))) for every n * 0,1 f2 f... . 

The loop Q(+) is said tc be nilpotent of class at most n if 

Cfl(Q(+)) « Q . further, for all xfyfz e Q f the associator 

£xfyf-_] is defined by [xfyf»]-s ((x+y)+z) - (x+(y+i)) and we 
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denote by A(Q(+)) the eubloop generated by all aeooeiatora. 

Then A(Q(+)) ie a normal eubloop of Q(+) and 3z « 0 for 

erery x e A(Q(+)) • MoreoTer, we haTe the lower central eeriee 

Q « A^QC*))^ A1(Q(+))HA2(Q(+))^ ...^4l(Q(+))S... of 

Q(+) , where 4i+1(Q(<f)) i B the 8utlooP generated by all asBoci-

•tor0 [xtyts] f x e Ato(Q(+)) , y,* e Q , for eTery n « 0,1,2,... 

The loop Q( + ) ie nilpotent of class at moat n iff A(Q(+)) ^ 

^ ^ ( Q C * ) ) iff Ata-1(Q(^))-^C(Q(+)) and iff A^Q**)) * 0 . 

JLB for details and farther information concerning commutatiTe 

Moufang loope, the reader ie referred to [ 5 ] • 

Let Q(+) be a commutatiTe Moufang loop. A mapping f of 

Q into Q ie said to be n-central , n being an integer, if 

nx + f(I) e C(Q(+)) for eTery x e Q . Clearly, f ie n-central 

iff it ia m-central, where m e {0,1,2} and n « 3*+m . The 

aero endomorphiam x—>0 ia 0-central, the automorphism x—*-x 

ie 1-central and the identical automorphism x-> x ie 2-central. 

As proTed in r 9 ] , the eet of all (0,1,2-)central endomorphisms 

of Q(+) is an asBOciatiTe ring with unit. 

Throughout the paper, let R be an aesociatiTe ring with 

unit | $ a ring homomorphiam of £ onto the three-element field 

% « £0,1,2 I and I « K0r § . By a (^-©pecial unitary left R-) 

quaeimodule Q we mean a commutatiTe Moufang loop Q(+) equip­

ped with scalar multiplication by element a of R such that the 

usual module identities are satisfied, i.e. r(x+y) = rx+ry , 

(r+s)x « rx+BX , r(sx) « (rs)x , 1x « x for all r,s e £ , 

x,y e Q and, moreoTer, tx e C(Q(+)) for all x e Q and t e I 

The last condition says that the endomorphiam x-*rx of Q(+) 
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1B (-f(r))-cantral for all r e R . Some information concern­

ing quaslmoduleB and constructions of non-associative quasimo-

dules can he found in [9] , [JO J and [ll] • 

Let Q be a quasimodule • A subquaslmodule P of Q 1B 

normal in Q (i.e. P is a block of a congruence of Q ) iff 

P(+) is a normal subloop of Q(+) • Now it is easy to see that 

all the members of the upper central series as well as of' the 

lower central series of Q(+) are normal subquasimoduleB of Q • 

Hence Q is said to be nilpotent of class at most n iff the 

loop Q(+) is so* Further, we shall say that Q is a primltlTe 

quasimodule if rx » 0 for all r e I and x e Q • 

1-1 Example• ETery commutatiTe Moufang loop (abelian groups in­

cluded) 1B a Z-quaeimodule, Z being the ring of integers and 

$ the natural homomorphism of Z onto Z, • 

1*2 Bxample• Let Q(+) be a 3-elementary commutatiTe Moufang 

loop. Put rx » 2(r)x for all r e E and x e Q • Then Q = 

= Q(+,rx) 1B a primitiTe quasimodule and we see that the claeeee 

of primitiTe quasimodulee, Z,-quaslmodules and 3-elementary com­

mutatiTe Moufang loops are equiTalent. 

*•-* Example, Let Q(+) be a non-associatiTe commutatiTe Moufang 

loop. Denote by B the ring of central endomorphiBme of Q(+) • 

for eTery f e 1 there is a unique n(f) e £0,1,2 3 such that 

f is n(f)-central and the mapping f—>-n(f) is a ring homo-

mo rphi am of 1 onto Z, • Vow, Q has an R-quasimodule structure. 

1 •* faamnle. A quaeigroup * 1B said to be trimedial if eTery 

eubquaeigroup of <* generated by at most 3 elements is medial, 
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i.e. satisfies the identity xy.UT « xu.yr . Trimedial and me­

dial quasigroups appear in many geometrical eituatione (see e.g. 

E H i T4] t [15j i [16] ) and important classes of trimedial 

quasigroups are idempotent trimedial quasigroups (called also 

distributee quasigroups and determined by the identities x.ys * 

xy.xs , ys.x » yx.sx ), eymmetric trimedial quasigroups (better 

known as CH-quasigroups or Manin quasigroups and determined by 

the identities xy -* yx , x.xy * y and xx.jm -= xy.xs ) and idem-

potent symmetric trimedial quasigroups (distributee Steiner 

quasigroups known in an equiTalent form as Hall triple systems) • 

Now, let fi • Z[x,y,x" ,y~ J • As proTed in £l2j , the classes 

of pointed trimedial quasigroups and centrally pointed quaeimo-

dules are equiTalent. 

1*5 Proposition. Let n be a positiTe integer, 

(i) ETery quasimodule which can be generated by at most n ele­

ments is nilpotent of class at most m • max(1fn-1). 

(11) The free primitiTe quasimodule of rank n (and hence the 

free quasimodule of rank n ) is nilpotent of class precisely *m . 

Proof. (1) See [9, Proposition 4.3] ; the assertion is a^oenee-

quence of the same result for commutatiTe Xoufang loops which is 

known as the Bruck-Slaby'B theorem ( [5 , Theorem Till, 10.1 J ) . 

(ii) See £2, Corollary IV.3.2 J . 

1*6 Proposition. Let Q be a quasimodule. Then both A(Q) and 

Q/C(Q) are primitiTe. 

Proof. Let r e I . We haTe rx e C(Q) for all x e Q and it is 

clear that Q/C(Q) is primitiTe. On the other hand, the mapping 
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f: x->rx i s an endomorphism of Q(+) and Im f^"C(Q(+)) . Con­

sequently. Im f i s associative, hence A(Q)i~ Ker f and ry « 0 

for al l y e A(Q) . 

1*7 Proposition. (1) Irery simple quasimodule is a module. 

(11) Erery maximal suhquaslmodule of a nilpotent quasimodule is 

normal. 

(ill) If the ring B is left noetherian then erery subquaaimodule 

of a finitely generated quasimodule is finitely generated. 

Proof. See [9, lemma 4.8, Corollary 4.11, Proposition 4.6J • 

Let Q he a quasimodule. For all a,b e Q , define a mapping 

i a b hy i m ^(x) « ((x+a)+b) - (a+b) . Then 1 b is an auto­

morphism of the loop Q(+) and ift b(x) « x + txfafb] . 

1 *8 -ksmma. Let P he a suhquasimodule of a quasimodule Q • The 

following conditions are equivalent: 

(i) P is a normal euhquasimodule of Q • 

(ii) i a b ( P ) ^ P for all a,b e Q . 

(ill) [x,a,b] e P for all x e P , a,b e Q . 

Proof. Easy. 

1.9 Lemma. Let Q be a quasimodule and a,b e Q • Then i ^ 

is an automorphism of the quasimodule Q . 

Proof. Let r e I be arbitrary and s * -$(r).1 . We hare 

(r+s)x e C(Q) for every x e Q . Denote c * (r+s)a , d • (r+s)b 

Then sia b(x) + i a b(rx) * ift b((r+s)x) « (r+s)x and 

(r+s)Ia b(x) -= ic d((r+s)x) «- (r+s)x . Consequently, i a ̂ (rx) « 
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2. Preradicale 

By a preradical p (for quaeimodules) we mean any subfun-

etor of the Identity functor, i.e. p assigns to each quasimo-

dule Q a BUbquaaimodule p(Q) in such a way that f(p(Q))!~ 

£ p(P) wheneTer f is a homomorphiBm of Q into a quaeimo-

dule P . The basic properties of preradicals for quaeimodules 

are the sane as in the module ease and the reader is referred 

to £3 ] «-d £9 2 tor details • We shall also use the terminology 

introduced in £3J • Recall that a preradical p is said to be 

hereditary if p ( P ) « P n p ( Q ) wheneTer P is a subquasimodule 

of a quaaimodule Q . A preradical p is said to be cohered!-

tary if f(p(Q)) « p(P) wheneTer f is a surjectiTe homomor-

phism of a quasimodule Q onto a quasimodule P . If p is 

a preradical then by 1.9 p(Q) is a normal subquasimodule of Q 

for eTery quasimodule Q • Further, p is said to be a radical 

if p(Q/p(Q)) » 0 for eTery quasimodule Q . 

2»* Example• It is easy to see that for eTery integer n ̂  0 f 

A^ is a cohereditary radical. On the other hand, C is not 

a preradical, since the centre is in general preserred only by 

surJectiTe homomorphisms. 

2» 2 Example. Por eTery quasimodule Q , let B(Q) denote the 

least normal subquasimodule of Q such that the corresponding 

fmotor is primitiTe. Then B is a cohereditary radical. By 1.6, 

B(Q)^C(Q) . 

2*3 Lemma. Let Q be a quasimodule generated by a set M . Then 
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B(Q) is just the subloop of Q(+) generated by all rx , r e I , 

x • M . 

Proof. Denote by P that subloop. Since I is an ideal, it is 

easy to Terify that P is a subquasimodule and ry e P for all 

r e I , y « Q . Further, P is normal and hence P « B(Q) . 

2-* Example. for eTery quasimodule Q , let B(Q) denote the 

least normal subquasimodule such that the corresponding factor 

is a Z,-module, i.e. a Tec tor space oTer Z_ . Then D is a co-

hereditary radical and, moreover, D * A + B , i.e. D(Q) * 

« £ x«*y ; x e A(Q) , y e B(Q) J for eTery quasimodule Q . 

2«5 Example. For eTery quasimodule Q , let J(Q) denote the 

intersection of all maximal normal subquasimodulee of Q ; J(Q) = 

- Q if there are no such subquasimodules. Clearly, J(Q) is 

just the intersection of all Ker f , f ranging OTer all homo-

mo rphisms of Q into simple (quasi)modules. Thus J is a radical 

and A ^ J ^ D (use 1.7). 

2« 6 Proposition. Let Q be a quasimodule. 

(i) J(Q) is the intersection of all normal maximal subquasimo­

dules of Q • 

(ii) If Q is nilpotent then J(Q) is the intersection of all 

maximal subquasimodules of Q . 

(iii) let Q be finitely generated, F<^ J(Q) be a normal sub­

quasimodule of Q and let f denote the natural homomorphism 

of Q onto Q/P . If M is a subset of Q such that f (M) ge­

nerates Q/P then Q is generated by M • 

proof, (i) and (ii) follow from t.7(i),(ii), respectiTely. 
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(iii) Assume, on the contrary, that Q is not generated by M 

and let H be a finite set generating Q . Further, let K he 

a subset of N maximal with respect to the property that M <j K 

do not generate Q and take a e H \ K • There is a subquasimo-

dule G of Q maximal with respect to l u K ^ f i and a e7 6 • 

It is easy to see that G- is a maximal subquasimodule of Q and 

hence P ^ <* , a contradiction. 

Let / be a filter of left ideal* of the ring R . For every 

quasimodule Q , let p(Q) denote the set of all x e Q Buch 

that (0:x) « {r e R | rx = 05 e / , fhen p « p ^ is a here­

ditary preradical. 

2»7 Proposition. There is a one-to-one correspondence between 

hereditary preradicals and f i l ters of le f t ideals given by 

$T — ^ p <Q) * | x e Q ; (0:x) e . F j , 

P > ^ - f l S H ; p(g/I) - E/l} • 

This correspondence induces a one-to-one correspondence between 

hereditary radicals and radical filters* 

Proof* See [.9, Proposition 3*2, Lemma 3.3, Lemma 3.4J . 

Let p be a preradical. Define a pre radical p by p(Q) » 

* O Ker f , f:Q->P 9 p(P) » 0 • Clearly, p is a radical and 

it is just the least radical containing p • 

2.8 Lemma. Let p be a preradical. Then a quasimodule Q is 

p-torsion iff there are an ordinal number oC and a chain Q_ , 

0 ̂  ft> ^ pi , of normal subquasimodule a of Q such that Q * 0 f 

Q^ « Q and Q^+t/Q » P(Q/<U> f o r eT«*y ° ^ fi><oCt 0^ * 

= (JQ^ for /3 limit. 
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Proof. Obvious. 

2.9 Lemma. Let p be a hereditary preradical. Then p is a he­

reditary radical. 

Proof. See [9, Proposition 3.7 ] . 

Let A be a simple module. Then A is isomorphic to R/I 

for a maximal left ideal I ; we denote by T « f * (HI « l*) 

the filter (radical filter) generated by I and we put S. = pj. . 

By 2.7 and 2.9, §A * p^ . 

The field Z, considered as a module is simple and isomor­

phic to B/I • We shall also use the notation L = S7 and 

K = 1 . Finally, denote by V (resp. & ) the filter (radical 

filter) generated by all maximal left ideals and put S » p^ , 

so that § = p« • 

3. S- and S-torsion quasimodules 

'•1 Proposition. A quasimodule Q is L-torsion iff it is primi­

tive. 

Proof. Obvious. 

'•2 Proposition. Let Q be a finitely generated primitive quasi­

module. Then Q is finite and lQ| = 311 for some n -* 0 . 

Proof. The field Z» Is clearly a noetherian ring and the result 

follows from 1.7(111) by induction on the nilpotence class of Q . 

5»5 Proposition. For every quasimodule Q , A(Q) £ L(Q) £ K(Q) £ 

<E S(Q) and A(Q) c: L(Q) c. s(Q) . Consequently, every K-tors ion-

free quasimodule (and also every §-torslonfree quasimodule) is 

a module. 
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Proof. Thie follows from 1.6. 

3*4 Corollary. Let A be a siwple wodule not isomorphic to Z, . 

Then every 5.-torsion quaeiaodule is a module. 

low, denote by J a represent at ire set of simple wodule 8 

euch that Z, • if . 

3*5 Proposition. Let Q be an S-torsion quasi module. Then Q is 

a direct sum of Bubquaaiwodules S^(Q) , A e !f . If A / Z, 

then S. (Q) 1B a wodule isomorphic to a direct sum of copies 

of A • If A = Z, then S.(Q) is a primitive quasimodule. 

Proof. First, let B e If be arbitrary and let P be the sub-

quasimodule generated by U S. (Q) , k e V , A / B . Let 3* be 

the filter generated by all maximal left ideals I such that 

B/I 1B not isoworphio to B and let a e SU(Q) n P • Then the 

cyclic wodule Ha is both SL-torsion and pf-torsion (both S.» 

and p^ are hereditary and P is p?-torsion), so that a = 0 . 

How, suppose that B « Z, • Then (P+£(Q))/C(Q) is both L-tor-

slon and py-torsion, hence it is a zero module and PS^C(Q) . 

In particular, P is a wodule and the sum L(Q)+P is direct• 

Finally, A(Q) c L(Q) and Q/A(Q) « (L(Q)+P)/A(Q) . Prom this, 

Q = L(Q)+P and the rest is clear* 

3*6 Theorem, Suppose that the ring B has primary decompositions. 

Let Q be an §-torsion quasimodule. Then Q is a direct sum of 

subquaeiaoduleB S^Q) , A e if .If A / Z^ then §A(Q) is 

a wodule• 

Proof. We have A(Q) s L(Q) and Q/A(Q) is generated by the 

image of U S*(Q) » A e if • Hence Q is generated by this set 

and we can proceed in the same way as in the proof of 3.5. 

3-7 Proposition. Let Q be a finite K-torsion module. Then I Q | = 
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* ? for some n ̂  0 . 

Proof. The assertion is an easy consequence of 3.2. 

3.8 Lemma. Let I be an ideal of R and let 01 be the radi­

cal filter generated by I . Then: 

(i) A left ideal K belongs to (fc, iff for eTery sequence 

a.,a2,... of elements of I there is n 2: 1 with a ...a. e K • 

(11) If I is finitely generated as a left ideal then' a left 

ideal X belongs to ft iff In &. K for some n > 1 . 

Proof. See e.g. [3, Corollary III.4.6, Proposition III.4.4 ] . 

3*9 Corollary. Let Q be a quaaimodule. Then x e K(Q) iff for 

eTery sequence a.,a2,... of elements of I there is n 2r 1 

with a •••a.z = 0 . MoreoTer, if I is finitely generated as 

a left ideal then x e K(Q) iff Inx = 0 for some n z. 1 . 

3.W Lemma. Let I be a finitely generated maximal left ideal 

of the ring E such that I is an ideal and A = R/I is finite. 

Then eTery finitely generated §.-torsion module is finite. 

Proof. Clearly, In/In+1 i» finitely generated and £/In is 

finite for eTery n z 1 . By 3.8(ii), eTery cyclic S.-torsion 

module is finite and the rest is clear. 

3.11 Pro po ait inn. Suppose that I is finitely generated as a left 

ideal. Then eTery finitely generated K-torsion quasimodule Q is 

finite. 

Proof. We shall proceed by induction on the nilpotence class n 

of Q . If n s i then Q is a module and the result follows 

from 3.10. How, let n 2: 2 . We haTe A^Q) * 0 , A^jCQ)-^ C(Q) 

and G = Q/A^jCQ) is finite by the induction hypothesis. There 

are two finite subsets N and M of i-p^Q) and Q > respec-
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tiTely, such that ( H + ^ . ^ Q J V ^ ^ Q ) « ;4fc_2(Q)/4i-1(Q) •ad 

(M+Afa--(Q))/Aka-1(Q) » 0 . Denote by P the subquasimodule gene* 

rated by all the associators [x,y,« ] , x e N , y,s e M . Then 

P is a finitely generated eubquasimodule of An*(Q) a n d b« n c« 

P is a normal finitely generated eubmodule of Q . In particular, 

P is finite. On the other hand, if u e A*. 2
( Q ) and v , w 8 Q 

are arbitrary, then u « x+a , T « y+b , w « i+c for eome x e I , 

y,z e M and a,b,o e C(Q) . We haTe [U,T,W ] * [x,y,i] e P and 

we see that P « A ^(Q) . Ihue both A^_-(Q) and G are finite, 

so that Q is finite, too. 

3.12 Proposition. Let I be a finitely generated maximal left 

ideal of R such that I is an ideal and A = B/l ie finite. 

Then every finitely generated §.-torsion quasimodule is finite. 

Proof. By 3.4, 3.10 and 3.11. 

3.13 Theorem. Suppose that every maximal left ideal of £ 1B an 

ideal, finitely generated as a left ideal, maximal ideals commute 

and every simple module is finite. Let Q be a finitely gene­

rated §-torsion quasimodule. Then Q is finite and there are 

A-,... ,An e !f such that Q is isomorphic to the product 

S. (Q) x ... x S. (Q) . 
A1 *n 

Proof. The ring R has primary decompo sit ions and the result 

now follows from 3.6 and 3.12. 

3.H Remark. The assumptions of the preceding theorem are satis­

fied e.g. if R is a finitely generate* commutatlTe ring. 

3.15 Proposition. Suppose that R is left noetherian.and eTery 

simple module is finite. Then eTery finitely generated S-torsion 

quasimodule is finite. 

Proof. In the situation of Lemma 2.8, <*/ is finite by 1.7(iii) 
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and we can proceed by induction, ueing 3*5 and 3.2. 

4* Cooyclic quaoimodulee 

A quaeimodule Q ie said to he oocyolic if it contains 

a (non-zero) normal elmple eubmodule A such that A is con­

tained in every non-zero normal sub quaeimodule of Q , ' 

4*1 Lemma. Let Q he a quaeimodule and A he a normal elmple 

sub quaeimodule of Q . Then A S C(Q) • 

Proof. Let a e A and x,y e Q he arbitrary. Denote by P the 

Bubquaeimodule generated by a,xyy • Then P is a nilpotent 

quaeimodule and A SC(P) by [9, Lemma 4.7 ] . Consequently, 

(a+x)+y « a+(x+y) and we have proved that A S C(Q) . 

4*2 Proposition. Let Q he a cooyclic quaeimodule and A he the 

normal elmple submodule of Q • Then: 

(i) A S C(Q) and |(Q) - §A(Q) . 

(ii) Q ie Bubdirectly irreducible, 

(lii) Either A S A(Q) and A la isomorphic to Z^ or Q is 

a module, 

(iv) C(Q) ie a cooyclic module. 

Proof. Eaey (use 4.1). 

4*3 Corollary. A quaeimodule Q ie cocyclic iff C(Q) / 0 and 

Q ie subdirectly irreducible. In particular, a nilpotent (reap, 

finitely generated) quaeimodule la cooyolio iff it ie subdirectly 

irreducible• 

4*4 Propooition. Suppoee that R la commutative and noetherian. 

Let Q be a cocyclic quaeimodule and A the normal elmple sub-

module of Q • Then: 
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(I) Q la S^-toralon. 

(II) If Q is finitely generated and A ie finite then Q la 

finite. 

(III) If Q ie non-aeeociatiTe than A Is isomorphic to Z, 

and Q Is £-» torsion. 

(IT) If Q Is finitely generated and non-aasociatiTe then Q is 

finite. 

Proof. First, let Q be a module. By [3, Proposition VI.3.4] , 

R is a stable ring and so the inject ITS hall E of Q is 

S.-torsion. low, suppose that A is isomorphic to Z, • We hare 

A S C(Q) and C(Q) Is i-torsion, since it is a cocyelic module. 

On the other hand, Q/C(Q) is a prlmitiTe quasimodule and thus 

Q Is f-torsion. The rest is clear. 

4*5 Example. Let oc be an infinite limit ordinal number and 

* * (i0)ftp«M ) be the canonical basis of the Tec tor space Q * 

zi*'' . Define a mapping t of **' into Q by t(afifad+-9*$+%) s 

* *0 » *<•»•! »*f*»Vi-2
) * ~*o f o r 1=s&- * a n d *(a/ftfa|lfa<r) * 0 

in all remaining cases. It is clear that t can be extended uni­

quely to a trilinear mapping T of Q into Q such that 

T(xfx,y) m T(T(xfyfs)fufT) * T(ufTfT(xfyf*)) * T(u,T(xfyfa) ,T) * 0 

for all xfyfsfufT t Q • Put x * y - * x + y + T(xfyfx-y) for 

all x,y e Q . Then Q'-= Q(*) is a prlmitiTe quasimodule nilpo-

tent of claas 2 (see [f|] ) . MoreoTer, a e C(Q') iff T(afxfy)+ 

•T(xfyfa)+T(y,afx) « 0 for all x,y e Q . low it is easy to 

check that we hare £(Q#) « A(Q') « { 0i«-o»-«o J • In particularf 

Q* is a cocyelic quasimodule. Thus for eTery infinite cardinal fc 

there is a cocyelic prlmitiTe quasimodule (nilpotent of class 2) 

of cardinality t • 

4.6 Example. Let n 2 4 , Q - Z*n) 
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=- (0,...,0,1) , N « { ap.,.,8^ } . Define a mapping t of X5 

into Q by t U ^ a ^ fai4.2) * a^ , t(a±^ - a ^ a ^ ) *- -a^ for 

every 1 -< i -S n-3 , ̂ a ^ , * ^ ,1) = a^ , tCa^- t^.g,!) « -an t 

t(an-1>1,2) -= a^ , t(1 f\^ 12) * -a^ . Then t can he extended 

uniquely to a trilinear mapping T of Q5 into Q and we put 

x* y * x+y+T|x,y,x-y) • Then Q' » Q(#) is a primitive quasi-

module nilpotent of class 2 , I Q' I « 3 and it is not difficult 

to check that Q' is cocyclic, provided n / 5 and n / 6k+1 . 

By [ H ] , for every m > 1 , m / 2,3-5 , there is a cocyclic pri­

mitive quasimodule of order 3 , nilpotent of class 2. On the 

other hand, it is clear that there are no cocyclic primitive qua-

simodules of order 3 , 3 and it is proved in [8] that there 

is no cocyclic primitive quasimodule of order 3 • 

5. Coheredltary radicals and varieties of quaslmodules 

By a variety of quaslmodules we mean a non-empty class of 

quaslmodules closed under cartesian products, subquasimodules 

and homomorphic images. 

5.1 Proposition, (i) If q is a coheredltary radical then the 

class IV of all torsionfree quaslmodules is a variety, 

(il) Let D* be a variety of quaslmodules. For every quasimodule 

Q , let qv(Q) * f\ Ker f , f:Q -«*P , P e V . Then qv is a co-

hereditary radical. 

(iii) The correspondence q -*• ^ and V —*- q v between co-

hereditary radicals and varieties of quaslmodules is Directive. 

Proof. Easy. 

Let 13" be a variety of quaslmodules. Denote by *\r (resp. 

*w ) the class of all modules (resp. primitive quasimodules) 

contained in V and put L-*«- a-XlO . Then both W and If 
m p 
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are varieties, L<y is an ideal of R , LVQ « 0 for every 

quasimodule Q e If and a module X belongs to ? iff 

L^M « 0 . 

5»2 Proposition. Let t he a Tariety of quasimodules Buoh that 

\^1 • Ihen V • ^m and f « 0 . 

Proof. We haTe R * L^ + I , so that Q « EQ « 0 for eTery 

Q . irp . 

5»3 Proposition• Let V he a Tariety of quasimodules and let 

.? e ? be a quasimodule free in *tf . Then B(P) n A(f) « 0 • 

Proof. Let I be a free basis of f and let f denote the 

natural homomorphism of f onto (J « f/A(f) • Then Q is a free 

R/L^-module, f I X is injeotive and f(X) is a free basis of 

(J . Now, let a e A(f) n B(f) . By 2.3 there are n 2r 0 t pair-

wise different x.,...,x e X and elements r.,...,r e I with 

a = r|X|+,..+rr (we haTe r^x^ e C(f) ). Consequently, 0 « 

« r - f ( x . j ) + . . . + r n f ( x n ) , r1f...,rn e L and a « 0 . 

5»4- Proposition. Let V be a Tariety of quasimodules. fhen if 

is just the Tariety generated by W ij V_ • 
m p 

Proof. This is an easy consequence of 5.3. 

5*5 Proposition. Let U and W be Tarieties of modules and pri-

mitiTe quasimodules, respectiTely. Denote by IT the Tariety $f 

quasimodules generated by U u W . Then If « U and tt « 11/ , 
m p 

Proof. Let f e *V be a free quasimodule of infinite countable 

rank. Since V is generated by U u 1W, f is isomorphic to 

a subquasimodule of the product G x P , <* e U and P e Vf 

being free of infinite countable rank; we shall assume that f 

is a subquasirodule * n x P . Consequently, Luf » 0 and we 
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see that U » Vm . On the other hand, B(f) S H « 0 x 0 , 

B(I) is a normal sutoquasimodule of G x P and F/B(9) is 

isomorphic to a subquasimodule of (H/B(P)) x P e % . However, 

w is generated toy f/B(f) and therefore W • V . 

How, denote toy 3 the dual lattice of the lattice of ide­

als of the ring R and toy P the lattice of Tarieties of pri-

mitiTe quasimodules (i.e. the lattice of Tarieties of 3-elwnen-

tary commutative Mouf ang loops) • Let £ toe the subset of 3 x IP 

formed toy all couples (I,U) , where either U * 0 , or 0 / 

/ U / U n and I £ I . 

5»6 Theorem. The lattice of Tarieties of quasimodules is isomor­

phic to the lattice £ • 

Proof. Apply 5.2, 5.4 and 5.5. 

5*7 Proposition. Let R toe left noetherian, 112.O and 1T toe 

a variety of quasimodules nilpotent of class at most n • Then 

V is finitely based (i.e. V can toe determined toy a finite 

number of identities)• 

Proof. Using 1.7(iii), we can proceed in the same way as in the 

proof of [ 6, Theorem III ] . 

5*8 Corollary. Let R toe left noetherian, n 2: 0 and If be 

a variety of quasimodules nilpotent of class at most n • Then 

W contains only countatoly many sutovarleties. 

By 113, § 10 ] , the lattice of Tarieties of primitiTe quasi­

modules nilpotent of class at most 2 is a three-element chain. 

Having some information on the lattice of ideals of R (e.g. 

if R is a commutative principal ideal ring, etc.) and using 5.6, 

we can describe the lattice of Tarieties of quasimodules nilpo-
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tent of class at most 2 • Moreover, applying the methods deve­

loped in 17 3 for medial quasigroups, the results are transfer­

able to various classes of trimedial quasigroups (cf. 1.4). 
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