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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
25,4 (1984)

TORSION QUASIMODULES
T. KEPKA and P. NEMEC

Abstract: Using the preradical approach, torsion and co-
cyoclic quasimodules are investigated. It is also shown how va-
rieties of quasimodules are constructed from varieties of mo-
dules and 3-elementary commutative Moufang loops.

Key words: Commutative Moufang loop, quasimodule, prere-
dical, variety of quasimodules.

Classification: 20NO5

1. Introduction

A loop Q(+) satisfying the identity (x+x)+(y+s) =
= (x+y)+(x+z) 1is commutative and it is called a commutative
Moufeng loop., We denote by C(Q(+)) the centre of Q(+) , i.e.
a e C(Q(+)) 1iff (a+x)+y = a+(x+y) for all x,y ¢ Q . Then
C(Q(+)) is a normal subloop of Q(+) , 3x e C(Q(+)) for
every x e Q and we have the upper central series 0 = go(Q(+))f
=AM =R+ E ... =6 (QAUH)S oo of Q(+) , where
Ch+1(Q(+))/C,(Q(+)) = Q(Q(*)/QO(QH))) for every n = 0,1,2,4.. o
The loop Q(+) 1is said tc be nilpotent of class at most n 1if
C,(Q(+)) = Q . Purther, for all x,y,z e Q , the associator
[x,¥,2] 1is defined by [x,y,3]= ((x+y)+z) - (x+(y+s)) and we
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denote by A(Q(+)) the subloop generated by all associators.
Then A(Q(+)) 1s a normal subloop of Q(+) and 3x = 0 for
every x ¢ A(Q(+)) . Moreover, we have the lower central series

Q = A (Q(+)) Z 4Q+)) 2 4,QH+NN= .. Z A Q)= ... of

Q(+) , where 5n+l(Q("')) is the sudloop generated by all associ-~
stors [x,y,8], x ¢ 4 (Q(+)) , y,5 e Q, for every n = 0,1,2,...
The loop Q(+) 1is nilpotent of class at most n iff A(Q(+)) &
=6, ,(Q(+)) ifr A _,(Q(+)) SC(Q(+)) and iff A (Q+)) =0 .
As for details and further information concerning commutative
Moufang loops, the reader is referred to[5].

Let Q(+) be a commutative Moufang loop. A mapping £ of
Q intoe Q is sald to be n-central , n being an integer, if
nx + £(X) ¢ C(Q(+)) for every x ¢ Q . Clearly, f is n-central
1ff it is m-central, where m ¢ $0,1,2% and n = 3k+m . The
sero endomorphism x—>0 is O-central, the automorphism x— -x
is 1-central and the identical automorphiesm x-—>x is 2-central,
As proved in [9], the set of all (0,1,2-)central endomorphisms
of Q(+) 1is an associative ring with unit.

‘!hroughoﬁt the paper, let R be an associative ring with
unit, § & ring homomorphism of R onto the three-element field
25 =30,1,2% and I = Ker ¢ . By a (£ -special unitary left RB-)
quasimodule Q we mean a commutative Moufang loop Q(+) equip-
ped with scelar multiplication by elements of R such that the
usual module identities are satisfied, i.e. r(x+y) = rx+ry ,
(r+s)x = rx+sx , r(sx) = (r8)x , 1x=x for all r,seR,

x,y ¢ Q and, moreover, tx e C(Q(+)) forall xe Q and teI.

The last condition says that the endomorphism x-»rx of Q(+)
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is (-f(r))-contral for all r e R . Some information concern-
ing quasimodules and constructions of non-associative quasimo-
dules can be found in [9], [10] and [11].

Let Q be a quasimodule, A subquasimodule P of Q is
normal in Q (i.e. P is a block of a congruence of Q ) iff
P(+) is a normal subloop of Q(+) . Now it is easy to see that
all the members of the upper central series as well as of: the
lower central series of Q(+) are normal subquasimodules of Q .
Hence Q 1is said to be nilpotent of class at most n iff the
loop Q(+) 418 so. Further, we shall say that Q is a primitive
quasimodule if rx =0 for all re ]l and xe Q.

1.1 Exsmple. Every commutative Moufang loop (abelian groups in-
cluded) is a Z-quasimodule, Z being the ring of integers and
® the natural homomorphism of Z onto 2_3 .

1.2 Example, Let Q(+) be a 3-elementary commutative Moufang
loop. Put rx = §(r)x for all reR and xe Q. Then Q=

= Q(+,rx) 1is a primitive quasimodule and we see that the classes
of primitive quasimodules, 53-qnui-odu1u and 3-elementary com-
mutative Moufang loops are equivalent,

1.3 Example. Let Q(+) be a non-asssociative commutative Moufang
loop. Denote by R the ring of central endomorphisms of Q(+) .
Yor every f ¢ R there is a unique n(f) e {0,1,23 such that

f is n(f)-central and the mapping f— -n(f) is a ring homo-
morphism of R onto 2, . Now, Q has an R-quasimodule structure.

1.4 Example. A quasigroup @ is said to be trimedial if every
subquasigroup of G generated by at most 3 elementis is medial,
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i.e. satisfies the identity xy.uv = xu.yv . Trimedial and me-
dial quasigroups appear in meny geometrical situations (see e.g.
[11, [4]1, [15], [16]) end important classes of trimedisl
quasigroups are idempotent trimedial quasigroups (called also
distributive quasigroups snd determined by the identities x.ys =
Xy.X% , Y5.X = yX.3x ), symmetric trimedial quasigroups (better
known as CH-quasigroups or Manin quasigroups and determined by
the identities xy = yx , x.xy =y and xx.ys = Xy.xs ) and idem-
potent symmetric trimedial quasigroups (distributive Steiner
quasigroups known in an equivalent form as Hall triple systems).
Now, let R = g[x,y,x'i,y'd] . As proved in [12] , the classes
of pointed trimedial quasigroups and centrally pointed quasimo-

dules are equivalent,

1.5 Proposition. Let n be a positive integer.
(1) Every quasimodule which csmn be generated by at most n ele-

ments is nilpotent of class at most m = max(1,n-1).

(i1) The free primitive quasimodule of renk n (and hence the

free quasimodule of rank n ) is nilpotent of class precisely m .,

Proof, (1) See [9, Proposition 4.3] ; the assertion is aicemse-
quence of the same result for commutative Moufang loops which is

known as the Bruck-Slaby’s theorem ( [5 , Theorem VIII,10.1]).

(11) See [2, Corollary IV.3.2].

1.6 Proposition., Let Q be a quasimodule, Then both A(Q) and

Q/¢(Q) are primitive.

Proof, Let re I . We have rx e C(Q) for all xe Q and it is

clear that Q/C(Q) 1is primitive. On the other hand, the mapping

- 702 -



f: x—>rx is an endomorphism of Q(+) and Im f< G(Q(+)) . Con-
sequently, Im f is associative, hence A(Q)<=Ker f and ry =0

for all y e A(Q) .

1.7 Proposition. (1) Every simple quasimodule is a module.
(1i) Every meximal subquasimodule of a nilpotent quasimodule is
normal,

(1ii) If the ring R 1is left noetherian then every mbqua'.ninodulo
of a finitely generated quasimodule is finitely generated.

Proof, See [9, Lemme 4.8, Corollary 4.11, Proposition 4.5] .

Let Q bYe a quasimodule. Por all a,b ¢ Q , define a mapping
1a,b by 1‘.,b(x) = ((x+a)+b) - (a+d) . Then 1a,b is an suto-
morphiem of the loop Q(+) and i_ ,(x) = x+ [x,8,0] .

9

1.8 Lemma, Let P be a subquasimodule of a quasimodule Q . The
fo]:lowing conditions are equivalent:
(1) P is a normal subgquasimodule of Q .
(ii) 1a,h(P)c—:-P for all a,be Q .
(111) [x,s,b]e P for all xeP , a,be Q.

Proof. Easy.

1.9 Lemma. Let Q be a quasimodule and 8&,b @ Q . Then i‘.b

is an automorphiem of the quasimodule Q .

Proof. Let r ¢ R be arbitrary end s = -2(r).1 . We have

(r+8)x e C(Q) for every x e Q . Denote ¢C = (r+s)a , d = (r+s)d .
Then ’ia,b(x) + 1a’b(rx) = ia,b((zws)x) = (r+e)x end
(Ns)Ia’b(x) = 1c,d((”')‘) = (r+8)x . Consequently, 1.’b(rx) =

= ria’b(x) .
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2. Preradicals

By a preradical p (for quasimodules) we mean any subfun-
ctor of the identity functor, i.e. p assigns to each quasimo-
dule Q a subgquasimodule p(Q) in such a way that f£(p(Q))=
< p(P) whenever f is a homomorphism of Q into a quasimo-
dule P . The basic properties of preradicals for quasimodules
are the same as in the module case and the reader is referred
to [3] and [9] for details. We shall also use the terminology
introduced in [3] « Recall that a preradical p is said to be
hereditary if p(P) = Pn p(Q) whenever P is a subquasimodule
of a quasimodule Q ., A preradical p is said to be coheredi-
tary if 2£(p(Q)) = p(P) whenever f is a surjective homomor-
phism of a quasimodule Q onto a quasimodule P , If p is
a preradical then by 1.9 p(Q) is a normsl subquasimodule of Q
for every quasimodule Q . Further, p is said to be a radical
if p(Q/p(Q)) = O for every quasimodule Q .

2.1 Example. It is easy to see that for every integer n =20,
4, is a cohereditary radical. On the other hand, C 1is not
s preradical, since the centre is in general preserved only by

surjective homomorphisas.

2.2 Example. Por every quasimodule Q , let B(Q) denote the
least normal subquasimodule of Q such that the corresponding
twto\r is primitive. Then B is a cohereditary radical. By 1.6,
B(Q)= ¢c(Q) .

2.3 Lemma. Let Q be a quasimodule generated by a set M . Then
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B(Q) 1is just the subloop of Q(+) generated by all rx , re I ,

xe X,

Proof, Denote by P that subloop. Since I 1is an ideal, it is
easy to verify that P 1is a subquasimodule and ry e P for all
rel,ye Q. Purther, P is normal and hence P = B(Q) .

2.4 Example. Por every quasimodule Q , let D(Q) denote the
least normal subgquasimodule such that the corresponding ‘factor
is a _2_3-nodn1e, i.e. a vector space over §3 . Then D 1is a co-
hereditary radical and, moreover, D = A + B , i.e, D(Q) =

= {x+y ; x e A(Q) , y e B(Q) 3 for every quasimodule Q .

2.5 Example. For every quasimodule Q , let J(Q) denote the
intersection of all maximal normal subquasimodules of Q ; J(Q) =
= Q 1if there are no such subquasimodules. Clearly, J(Q) is

Just the intersection of all Ker f , f ranging over all homo-
morphisms of Q into simple (quasi)modules. Thus J is a radical

and ASJ <D (use 1.7).

2.6 Proposition. Let Q be a qussimodule,

(1) J(Q) 1is the intersection of all normal maximal subquasimo-
dules of Q .

(1i) If Q 1is nilpotent then J(Q) is the intersection of all
maximal subquasimodules of Q .

(iii) Let Q be finitely generated, P< J(Q) be a normal sub-
quasimodule of Q and let f denote the natural homomorphism
of Q onto QP . If M is a subset of Q such that f£(M) ge-
nerates Q/P then Q is generated dy M .

Proof. (i) and (ii) follow from 1,7(i),(ii), respectively.
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(1ii) Assume, on the contrary, that Q 18 not generated by N
and let N be a finite set generating Q . Purther, let K be
a subset of N maximal with respect to the property that Mo K
do not generate Q and take a e N\ K , There is a subquasimo-
dule G of Q maximal with respect to MUK<SG and agd G .
It is easy to see that G is a maximal subquasimodule of Q and
hence P< G , a contradiction,

Let F be a filter of left ideals of the ring R . For every
quasimodule Q , let p(Q) denote the set of all x e Q such
that (0:x) = freR;rx=03 e F .fThen p = Py is a here-
ditary preradical.

2.7 Proposition. There is a one-to-one correspondence between
hereditary preradicals and filters of left ideals given by

F —> p(Q = §xeQq; (0:x)eFJ ,

P 5 Fp= IISR;p®/D =R1Y.
This correspondence induces a one-to-one correspondence between

hereditary radicals and radical filters.
Proof, See [ 9, Proposition 3.2, Lemma 3.3, Lemma 3.4 ],

Let p be a preradical. Define a preradical p by p(Q) =
= (VKer £ , £:Q—>P , p(P) = 0 , Clearly, p 4is a radical and
it is just the least radical containing p .

2,8 Lemma., Let p be a preradical. Then a quasimodule Q 1is

p-torsion iff there are an ordinal number £ sand a chain Q ’
0< A< K, of normal subquasimodules of Q such that Q =0,

Q =Q and QA"‘/Q sp(Q/Qﬂ) for every 0< B <o, st

= (JQ, for /3 limit.
r<p ¥

- 706 =



Proof. Obvious,

2,9 Lenma, Let p be a hereditary preradical. Then p is a he-
reditary radical,

Proof, See [9, Proposition 3.7].

Let A be a simple module. Then A is isomorphic to R/I
for a maximal left ideal I ; we denote by ¥ = ?I (R = ‘R.I)
the filter (radical filter) generated by I and we pu{: §A = DPg .
By 2.7 and 2.9, 8, = p, .

The field _Z_3 considered as a module is simple and isomor-
phic to RB/I . We shall also use the notation L = -§_Z_3 and
K = 1 . Finally, denote by ¥ (resp, R ) the filter (radical
filter) generated by all maximal left ideals and put S = Pg
8o that § = p Qe

3, S- and §-torsion quasimodules

3.1 Proposition, A quasimodule Q 1is L-torsion iff it is primi-
tive,

Proof., Obvious.

3.2 Proposition. Let Q be a finitely generated primitive quasi-
module. Then Q is finite and |Q| = 3° for some n2 0 .

Proof, The field _Z_;

follows from 1,7(iii) by induction on the nilpotence class of Q .

is clearly a noetherian ring and the result

3.3 Proposition. For every quasimodule Q , A(Q) < L(Q) < K(Q) &
S 8(Q) and A(Q) < L(Q) = S(Q) . Consequently, every K-torsion-
free quasimodule (and also every S_—toraionfree quasimodule) is

a module,
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Proof. This follows from 1.6.

3.4 Corollary. Let A be a simple module not isomorphic to gs .
Then every g‘-toruion quasimodule is a module.

Now, denote by Y a representative set of simple modules

such that g.’n? .

3.5 Proposition. Let Q be an S-torsion quasimodule. Then Q is
a direct sum of subquasimodules §A(Q) yAe ¥ . If AY¥ _§3
then S5,(Q) is a module isomorphic to a direct sum of copies
of A.If A= 5, then §‘(Q) is & primitive quasimodule.

Proof. First, let Be ¥ be arbitrary and let P be the sub-
quasimodule generated by U :_B_A(Q) ,AeY ,A¥fB . Let ¥ ve
the filter generated by all maximal left ideals I such that
B/I 4is not isomorphic to B and let a e S;(Q) n P . Then the
cyclic module Ra 1is both Sp-torsion and py-torsion (both Sg
and pg are hereditary and P 1is p,-toraion), so that a=0 .
Now, suppose that B = Z, . Then (P+C(Q))/C(Q) is both L-tor-
sion and p;-torsion, hence it is a zero module and P = C(Q) .
In particular, P is a module amd the sum L(Q)+P 1is direct.
Finally, A(Q) < L(Q) and Q/A(Q) = (L(Q)+P)/A(Q) . From this,
Q = L(Q)+P and the rest is clear.

3.6 Theorem. Suppose that the ring R has primary decompositions.
Let Q be an S-torsion quasimodule, Then Q 1is a direct sum of
subquasimodules §,(Q) , A e ¥ . If A # Ly then 8,(Q 1e

a module,

Proof, We have A(Q)< L(Q) and Q/A(Q) is generated by the
image of {J §*(Q) ,Ae Y . Hemce Q is generated by this set
and wé can proceed in the same way as in the proof of 3.5.

3.7 Proposition. Let Q be a finite K-torsion module. Then |Q| =
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= 3% for some nZ 0 .
Proof. The assertion is an easy consequence of 3.2.

3.8 Lenma. Let I be an ideal of R and let ® Dbe the radi-
cal filter generated by I . Then:

(1) A left ideal K belongs to R iff for every sequence
843855000 of elements of I there is n > 1 with 8, ...8, @ K.
(11) If I is finitely generated as a left ideal then a left
idesl K belongs to & iff IS K for some n =1 .

Proof, See e.g. [3, Corollary III.4.6, Proposition III.4.4].

3.9 Corollary. Let Q be a quasimodule. Then x e K(Q) iff for
every sequence 2a,,8,,... of elements of I +there is n =1
with B eee8yX = O . Moreover, if I is finitely generated as
s left ideal then x e K(Q) iff Ix =0 for some n=1,

3.10 Lemma. Let I be a finitely generated maximal left ideal
of the ring B such that I is an ideal and A = R/I 1is finite.
Then every finitely generated §A-torsion module is finite.

Proof, Clearly, In/InH is finitely genersted and l_i‘/Ix1 is
finite for every n =1 , By 3.8(ii), every cyclic ﬁ‘-toraion
module is finite and the rest is clear.

3.11 Proposition. Suppose that I is finitely generated as a left
ideal. Then every finitely generated K-torsion quasimodule Q is

finite.

Proof., We shall proceed by induction on the nilpotence class n
of Q.If n=1 then Q is a module and the result follows

from 3.10. Now, let n =2 ., We have 4 (Q) =0, A Q)= CQ)
and G = Q/An_'(Q) is finite by the induction hypothesis. There
are two finite spubsets N and M of %_2(Q) and Q , respec-
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tively, such that (N+A ,(Q))/A _,(Q) = A ,(Q)/A _,(Q) s=nd

(M+A, _1(Q))/A;_1(Q) = @ . Denote by P the subquasimodule gene-
rated by all the associators [x,y,s ], xeN , y,zse X, Then

P is a finitely generated subquasimodule of An_1(Q) and hence

P 1is a normal finitely generated submodule of Q . In particular,
P is finite. On the other hand, if u e Ah_z(Q) and v,we Q

are arbitrary, then u = x+a , v = y+b , w= s+¢c for some x ¢ ¥ ,
y,2e¢e X and a,b,c e C(Q) . We have (a,v,wl= [x,y,:] e P and
we see that P = An-l(Q)"' Thus both An_‘(Q) and G are finite,
so that Q 1is finite, too.

3.12 Proposition, Let I be a finitely generated maximal left
ideal of R such that I is an ideal and A = R/I is finite.

Then every finitely generated gt-torsion quasimodule is finite.
Proof. By 3.4, 3.10 and 3.11,

3.13 Theorem. Suppose that every maximal left ideal of R is an

ideal, finitely generated as a left ideal, maximal ideals commute
and every simple module is finite, Let Q be a finitely gene-
rated §-torsion quasimodule, Then Q is finite and there are
 STRTRY N Y such that Q is isomorphic to the product

§A1(Q) X e X §*n(Q) .

Proof. The ring R has primary decompositions and the result

now follows from 3.6 and 3.12.

3.14 Remark, The assumptions of the preceding theorem are satis-

fied e.g. if R is a finitely generated commutative ring.

3.15 Propoeition. Suppose that R 1a left noetherian.and every

simple module is finite. Then every finitely generated gftornion
quasimodule is finite.

Proof. In the situation of Lemma 2.8, W is finite by 1.7(iii)
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and we can proceed by induction, using 3.5 and 3.2.
4, Cocyclic quasimodules

A quasimodule Q ie said to be cocyclic if it contains
a (non-zero) rnormal simple submodule A such that A is con-

tained in every non-zero normal subquasimodule of Q , °

4.1 Lemma. Let Q be a quasimodule and A be & normal simple

subquasimodule of Q . Then A< C(Q) .

Proof, et a e A and x,y e Q be arbitrary. Denote by P the
subquasimodule generated by a,x,y . Then P is a nilpotent
quasimodule and A €C(P) by (9, Lemma 4.7 ] . Consequently,

(a+x)+y = a+(x+y) and we have proved that A< C(Q) .

4.2 Proposition. Let Q be a cocyclic quasimodule and A Dbe the
normal simple submodule of Q . Then:
(1) AS ¢(Q) and 8(Q) = §,(Q) .
(1i1) Q 4is subdirectly irreducibdle.
(1ii) Either A< A(Q) and A 1is isomorphic to gz or Q is
a module,

(iv) C(Q) is a cocyclic module.
Proof, Easy (use 4.1).

4.3 Corollary. A quasimodule Q is cocyclic 1ff C(Q) # O and
Q is subdirectly irreducible. In particular, a nilpotent (resp.
finitely generated) quasimodule is cocyolic iff it is subdirectly

irreducidle.

4.4 Proposition. Suppose that R is commutative and noetheriam.
Let Q Dbe a cocyclic quasimodule and A the normal simple sudb-
module of Q . Then:
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(1) Q is §,~torsion.

(i11) It Q 1is finitely generated and A is finite then Q is
finite,

(111) If Q 1is non-associative then A is 1ao-o.rphic %o Z,
and Q is R-torsion.

(iv) If Q 4is finitely generated and non-associative them Q 1is
finite,

Proof. Pirst, let Q be a module. By [3, Proposition VI.3.4],
R is a stable ring and so the injective bull E of Q is
é‘—torsion. Now, suppose that A 1is isomorphic to §3 . We have
AS €(Q) and ©(Q) is R-torsion, since it is a cocyclic module.
On the other hand, Q/C(Q) is a primitive quasimodule and thus

Q 1is R-torsion. The reat is clear.

4.5 Exsmple, Let ® be an infinite limit ordinal number and

N = {‘o"l"" } be the canonical basis of the vector space Q =
_z_;“') . Define a mapping t of §> into Q by t(‘v‘aﬂ"aq-z) =
=8, t(a,, 1,8,,8,,,) = -8, for 1=p=x and t(a‘,ar,a,) =0
in all remaining cases. It is clear that t can be extended uni-
quely to a trilinear mapping T of 03 into Q such that
*(x,x,y) = *(T(x,y,s),a,v) = P(u,v,?(x,y,8)) = T(u,’x,y,5),v) = O
for all x,y,s,u,ve Q. Put x% y=x+y+ T(x,y,x~y) for

all x,ye Q. Then Q = Q(%) is a primitive quasimodule nilpo-
tent of class 2 (see (] ). Moreover, a e C(Q") iff T(a,x,y)+
+T(x,y,a)+?(y,a,x) = O for all x,y e Q . Now it is easy to

check that we have C(Q°) = A(Q") = { 0,a ,-a ] . In particular,
Q" is a cocyclic quasimodule. Thus for every infinite cardinal £
there is 8 cocyclic primitive quasimodule (nilpotent of class 2)

of cardinality ¢ .
4.6 Exsmple. Let n=4, Q=3" , 8 = (1,0,...,0) ,..., 8, =

-T2 -



= (0,004,0,1) , N = { 84,...,8 } . Define a mapping t of X’
into Q by t“iv‘u\-‘nz) =8, t(°1+1"’1"1+2) = -a, for
every 1=1=n-3, tlay o8 ;,1) = &, , t(a, 1,8, 51) = =&, ,
t(an_l,!,z) =8, t(l,an__1,2) = -a, . Then t can be extended
uniquely to a trilinear mapping T of Q3 into Q and we put
X%y = x+y+T§x,y,x-y) . Then Q° = Q(%) 4is a primitive quasi-
module nilpotent of class 2 , 1Q°| = 3 and it is not difficult
to check that Q° 4is cocyclic, provided n ¥ 5 and n # 6k+1 .
By (14 ], for every m =1 , m # 2,3,5 , there is a cocyclic pri-
mitive quasimodule of order 3“ , nilpotent of class 2, On the
other hand, it is clear that there are no cocyclic primitive qua-
simodules of order 32, 33 and it is proved in [ 8] that there

is no cocyclic primitive quasimodule of order 35 .

5. Cohereditary radicals and varieties of quasimodules

By a variety of quasimodules we mean a noh-empty class of
quasimodules closed under cartesian products, subquasimodules

and homomorphic images.

5.1 Proposition, (i) If q is a cohereditary radical then the
class \)‘q of all torsionfree quasimodules is a variety.

(ii1) Let ' be a variety of quasimodules. For every quasimodule
Q, let quQ) = N Ker £ , £f:Q >P , Pe V . Then gq, 1is a co~
hereditary radical.

(iii) The correspondence q -» a and V — Qy between co-

hereditary radicals and varieties of quasimodules is bijective.
Proof, Easy.

Let V be a variety of quasimodules. Denote by vn (resp.
'\J'p ) the class of all modules (resp. primitive quasimodules)

contained in Vv and put Lw= aw(R) . Then both \Tm and 7V
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are varieties, Ly is an ideal of R, LyQ = O for every
quasimodule Q e V and a module M belongs to 7V a ire
L, =0 .

5.2 Proposition. Let " be a variety of quasimodules such that

Lyf£I.Ten Vv =V, and ¥, =0.

Ly+ 1, so that Q = RQ = 0 for every

Proof. We have R
Qe '\rp .
5.3 Proposition. Let V' be a variety of quasimodules and let

Pe T be a quasimodule free in V . Then B(F)n A(F) =0 .,

Proof. Let X be a free basis of P and let f denote the
natural homomorphism of F onto G = F/A(F) . Then G is a free
R/Ly-module, f£|X is injective and f£(X) is & free basis of

G . Now, let a e A(F)n B(F) . By 2.3 there are n =0 , pair-

wige different x,,...,X;, ¢ X and elements TyseeosTp ¢ I with

8 = T Xyt.. 4T X (we have r;x; e C(F) ). Consequently, O =

= r,f(x1)+...+rnf(xn) y TygeeesTyeL and a=0.

5.4 Proposition, Let V be a variety of quasimodules. Then v
is just the variety generated by aV 'U’p .

Proof. This is an easy consequence of 5.3,

5.5 Proposition. Let W and W be varieties of modules and pri-
mitive quasimodules, respectively. Denote by U the variety of
quasimodules generated by W u W . Then 'U'lll = WU and \rp =W .
Proof. Let P e V be a free quasimodule of infinité countable
rank, Since V is generated by W u w, F is isomorphic to

a subquasimodule of the product G xP , Ge W and Pe W
being free of infinite countable rank; we shall assume that P

is a subquasirodule ~ " x P , Consequently, L, = 0 and we
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see that W = VW, . On the other hand, B(F)sH=6x 0 ,
B(F) 1is a normal subquasimodule of G x P and F/B(F) is
isomorphic to a subquasimodule of (H/B(P)) x P e W o, However,

'\rp is generated by F/B(F) and therefore W = ‘\rp .

Now, denote by J the dual lattice of the lattice of ide-
als of the ring R and by P the lattice of varieties of pri-
mitive quasimodules (i.e., the lattice of varieties of S-elom;n-
tary commutative Moufang loops). Let ¥ be the subset of ¥ x ¢
formed by all couples (I,W) , where either W =0 ,or O #
FU A, aa ISI.

5.6 Theorem., The lattice of varieties of quasimodules is isomor-

phic to the lattice & .
Proof. Appl’ 502’ 5.4 and 5.5,

5.7 Proposition., Let R be left noetherian, n =0 and V Dbe
a variety of quasimodules nilpotent of class at most n . Then
Y is finitely based (i.e. ' can be determined by a finite
number of identities).

Proof, Using 1.7(iii), we can proceed in the same way as in the

proof of [ 6, Theorem III ].

5.8 Corollary. Let R be left noetherian, n =0 and VY be
a variety of quasimodules nilpotent of class at most n . Then

VY contains only countably many subvarieties.

By [13, §10 ], the lattice of varieties of primitive quasi-
modules nilpotent of class at most 2 is a three-element chain,
Having some information on the lattice of ideals of R (e.g.
if R 1is a commutative principal ideal ring, etc.) and using 5.6,

we can describe the lattice of varieties of quasimodules nilpo-
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tent of class at most 2 . Moreover, applying the methods deve-

loped in [ 7] for medial quasigroups, the results are transfer-

able to various classes of trimedial quasigroups (cf. 1.4).
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