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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
25,4 (1984)

CONSTRUCTION OF MEDIAL SEMIGROUPS
Reinhard STRECKER

Abstract: Every medial semigroup, satisfying a certain
condition, Is & subsemigroup of a medial semigroup, which is
constructed by means of commutative semigroups and their com-
muting and idempotent endomorphisms.

Key words: Semigroup, medial semigroup, endomorphism.
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Let (H,+) be a commutative semigroup and ¢, y its idem-
potent permutable endomorphisms, 92 = &, 1|f2 =Y, @y =
=Yg . By the definition
¢D)] ab = @(a) + y(b)

we obtain a medial semigroup (H, ), that is, a semigroup satis-
fying the identity uvxy = uxvy. Moreover (H,¢) is satisfying
the implication

(%) ab = cd =3 axb = oxd for all a,b,c,d,x6cH (see [4])).
It is easy to see that not every medial semigroup with (%) can
be constructed in this way ([4)). In the case of groupoids the-
re are several theorems giving conditions for a '.-dial groupoid
to be constructable from commutative groupoids by the defini-
tion (1) ([11,{21,(33,0(5]). We prove in this note that every
medial semigroup, satisfying (%), is a subsemigroup of a medi-

al gemigroup (H,), obtained from a commutative semigroup (H,+)
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by its idempotent permutable endomorphisms ¢ and ¥ , where the

multiplication is defined by (1).

Let ({x;%, 1€ I;+) be & medial semigroup

1. The lemmas.
be the following relations

satisfying (*). Let v, ¥, Y
xJ = X, or there are Yjjeess¥, 6 X, n>1, and g

permutation ¥ of the numbers 2,3,...,n with

LG " ot

Xy = Fyreesdp and Xy = YqJy(2)r°° 2 ¥y(n)°

xj = X, or there are y1,....ynex, n>1, eand a
xj 5 xkg:} permutation 3¥ of the numbers 1,...,n-1 with

Xy = FyreeooInr Xy = In(1)re e 2Iy(n-1)7n°

There are Yiseees¥p€ X, nZ1, and & permutation
x‘,I T xk@ JU of the numbers 1,2,...,n with

: x:j = YyseeesYpr X = ygf(‘])!""yn(n)'
Lemma 1, a) The relations 3 , ¥ » 7§ 8re reflexive,

symmetric and stable with respect to the multiplication.

b) ey end & F .
c) x5 T x => 4y = oy for all yeX,

xJ ¥ = :)rx.j = yx, for all yeX,

xj T xkﬁxdy T Y and ,w,'x:j v yx, for all yeX.

The transitive closures of /‘1’ N /‘1:’ ’ T are congruen-

ces and we denote the congruence classes containing y by [y],,
(y), and [y], respectively.

Lemma 2. From [yl = [5,]; and [x1y = [x), 1t follows:
Lyyxqly + [3,%,)4. From [y} = [y,], end lx1]t a llet it fol-
lows [x,y4) . = [x,5,) o Prom [y,], = [y,], end {x1lr = [x)) 1t

follows Y1Xq = JoXpe
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For a given medial semigroup (X,+) = ({x;}, 1€1I;-) let
P = (F,+) = l‘(a.i,bi,ci,di), i€ I, be the free commtative semi-
group with the free system of generators {a,3uin,} u{cil viad,
i€l (PFNnX = @). We denote the elements R, S of P by formal in-
finite sums
R=Zctya + Byby + ¥yop + yay, ZToty + By+ ¥+ I,21,
Let ~~ be the following relation on F
(1) R~S&#R =S or
(2) R= £d,4, and 8 = ZJ"4, with [ﬁxiJilt = [ xfil 4 oF
(3) R=by, +Z*d,a,s = by + =* e, with
[xh“*x:'i}1 = [xj “‘11111 or
(4) R=cy+Z'da,, s« oy + E¥4' a, with

*d‘i ] s‘;.i 1
LM =yl o= [T Hxgd o

(5) R =Dy +o0 +3%,4,, 5= by + oy + E’d"'idi with

d Ly

xh“'xijxk - xa'“"xii .

By the starlet at the sums or products we denote the possi-
bility of being empty.

Lemma 3. Let X wd, ~ X (""'idi'
a) If R~S according to (2), then X (dJ + wy)d, ~

T (Y + @y,
b) If R~ S acoording to (3), then

bh + Z’(d‘i + Mi)diN bJ + z*(ddi + c"i)di'
¢) If R~ S according to (4), then

op + T (g + y)agrv oy + ZX(IY + py)ay.
d) If R~ S according to (5), then

by + o + ¥ d':L + (ﬂ-i)tiif\lb3 +op + E”(J'i + eb'i)di.



. ®
Proof, We know [TT Iii] = U'T x:l.i]t'

a) We have [T xy ]t = [T X ] and therefore
J' ! 3’y "ria-l"i]
[.“ xi 1 {.“ xi ] t " [“ xi j [ xi ] = [T‘ Ii t

'yl
Mxy ] t ., '
b) Using Lemma 2 from [!h-""liil 1= [13 Tr*xii'] 1 We have

6. 1
Lx, e Tf’xi“ 19 ;

1 '[Xj

¢) analogous to b) .

'y
d) Ve have x, ™ xi X = X4 Ak xy © x,. With respect to

the condition (*) it follows xy m*x J‘i T*x; ¢i Xy =
6'
= xy ™ xi xi Im’ This is by Lemma 1 equal to

xy ™ ) i " xy “1 x, and beceuse of the mediality of X we ha-

&+ m, dh+m!
O ey Ty V%1 2, Ustng the relation

~~s we define & relation 2 on (P,+):

R = Ecﬁa +(31b1+ ‘3"1c1+ d'd Qs-icc'ie.ii-[&'ib +

ve xh“'x

+ Tici + ‘Sidi 17 there exist Aj,... A, A1,...,Ane(F +)
with R = 2.4 Ay, S = s, A' and A~ A;.

The relation £ 1is reflexive, symmetric and stable with res-
pect to addition. The transitive closure = is a congruence
on (F,+). By [R] = [ £ et 8y + 3,0, + Y36y + I 4d44] we de-
note the class c\ontaining R= = K8y + 3 4by + Fyoq +

+ d'idi.

Lemma 4. B) [3] -{a’ko

b) Ifa=Db +c + Z¥J5,4 eand A= B, then A~/ B fol-
lowsa,.

Proof, &) Since a is an element of the free system of
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generators of F, from a 2R it follows a ~R and therefore a =
= R.

b) Let AZSB; then there exist Aq,...,Ap, Ay,...,A} with
A= = Ay, B = = A‘j and AJNA'j for § = 1,...,n, b end ¢, are
elements of the free system of generators and therefore only the
following two cases are possible.

1) One of the elements Aj, say Ay, 1s of the form A; =

* ' * !
=by +c + Z Wd,. It follows A} = b, + oy + =¥ A, d; and
ell other elements A; are of the form = ‘%idi' In view of Lemma
3 we can write A = A} + A, B = Ay + A, where A, = X oeydy, A’z-
= = 'ae'idi and A,/ A'z. Again in view of Lemma 3 we get A~B,

2) One of the elements Aj, say Aq, is of the form A4 = b+
+ Z’(bidi, another, say A,, of the form 4, = c, + =*2,4;. Then
Ay = b, + E*‘M’idi and K, + ¢, + T* *‘.1‘11' In view of Lemma 3
we may write A = A, +A2+A3,B=A'1 +A!2+A',whereA3-
= ¥ A4y, A‘3 = Z* N'yd; and Ay~ A3, We have

¢ ¢y [Tr*, i i

* * ] *

bxp Tix 71 2 Lxy Txy i Xy xm]r'[TT x x,l
l1‘. i “ .
and [“"x:l 'J 4 = [Tr*xi Jt‘ Lemma 1 gives fmeT’xi 1ﬂ‘xrl ]1=
s DU

=[x, T™x;, T"x; 1, and Lemma 2 the equality

“ A » % I X 2
xmﬂ’xiiﬂ*xi in xii xn’kaT xy iﬂ‘xi iﬂ'xii Xy s

al

therefore we have A~/ B,

The relastion ~» is transitive, therefore from A= B it follows
A~ B,
2. The theorems., We define homomorphisms %o and Yo from

(F,+) into (F,+) by
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(6) @okay) = by, P (by) = by, Foley) = djy G(dy) =q
N ‘Vo(&i) = Cy» Vo(bi) = di' ‘q’o(ci) = Cy» Wo(di) = di'

Lemma 5. a) The endomorphisms Y, and Vo are idempo-
tent and permutable, @2 = P, ¥ 5 = ¥, end P Y, = ¥, .
b) R =S implies P, (R) = 9,(8) and v (R) = ¥ (D).

Proof, =a) Easy, since the conditions are satisfied for
the system of free generators.

b) It suffices to prove that R~/ S implies ¢ (R) ~ 9,(8)
and y,(R) ~ ¥,(S). This is clear for the cases 1) R =5 and
2) R=Xdd;, S =X d' 4. Let R~ S according to (3). Then
we have ¢ (R) =R, @,(5) =8, ¥ (R) = 4 + ¥ 44,

Yy (8) = ay + =* 3'd4,. In view of Lemma 1 we have -y € Y end
thus ¥ (R)~ w,(S). Anelogously we prove the case 4), R~’S
according to (4). Case 5, let R~ S according to (5), hence

]
thT*xiJi Xy = Xy TT*xfi Xpe We have ¢ (R) = by + 4 +
+ £*d,4,, ¢, (8)= by + 4, + £*d"d;. The relation

Jd J;
Q,(R) ~ @ (S) follows from [xhxk T* x4 11 3 = [x.h ™ x; ixk]1=
d-l a.l
- [x;l ﬂ*xi i xml 7 = [xdxm‘n*xi i, 10 VO(R)N ‘l-Yo(S) follows
analogously.,
We know by Lemma 5b) that the endomorphisms @, and ¥,
induce endomorphisms ¢ end ¥y of P/= , satisfying again the

condition (6) and (7). From this we have by en easy calculation:

Theorem 1 (see [4)). F/= 1is a medial semigroup with res-
pect to the multiplication [R1[8] = [@(R)] + Ly (S)].

" d
It xh'TT Xy

x
[bh +o + z d"idi by T . By the lemmes 4 end 5, this notation

1 X = Xy then we denote the class
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does not depend on the chocie of the representatives.

Theorem 2, &) The set
2
T ={[aj] : xjé; xlu (Ue)
is a medial subsemigroup of (F/= ,-)
b) The mapping @
[a.) 1f x. & x2
) = J J
e (x4 2
Td if xj € X
is an isomorphism from X onto TS F/=

2

Proof, &) Let xy and x, & X°. We have [ad][ak]= plag)+
+1y(ak) = bj + ¢, and thus this expression is of the fomm (5).
Let xj¢ X2, T, =[b + ¢ + Z*d’idi]. We have {aj]Tn =
=glay) + y(by + oy + TFFyay) = by + d) + o + T4, end
thus this expression is of the form (5). We have Tn[aj]

* x
=cp(b1 + oy + > d“idi) + w(aj) =Dy + 4 + = d‘idi + ey and
thus this expression is of the form (5). Further we have
X X ot *

[b) + ¢ + Z%d,4,] [bj top+ TIyd 1 =b) + g + ZT4;
+dy+op+ =* d'yd; and this expression is of the form (5).
T is & subsemigroup of F/ = .

b) @ is & bijection. Let x x = Xye

b1) Let xr,xse!a X°, We have e(x,) = lad, E(xy) = Lag),
le,) [as] =lg(a)) + w(adl =1b, + c ] =1,

b2) Let x ¢ x2, Xg€ X2, We have @(x)) =la) and E(x,)=
=1, =lby + o + Z*0,a,], with x; T¥x, 1 x = x_. It holds
e(x)p(xy) = [aj]'rs =0b) + [y (?)) =[b, + d) + oy +

+ Z*d"idi] = T,, because of x X, T\'*xii Xy = XX, = Xy
2 2
b3) Let x.€ X%, x ¢ XdJ. We have ©(x,) =T =0[by + ¢ +
+ = d’idi], where xle* xy 1 Xy = Xpo It holds go(xr)go (xs) =

=7 .la] = [by + ay + E*¥d 4] + ¢y = Ty = @ (x.x.), because
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TT* Ji = = X
of XX x5 Xg x X, te
b4) Let xr.xje X2, We have go(xr) =T, = [bl +ooy +

J
+Z*04,), @(x,) =T =Lby + o + Z*o i, with xp TFx, 1x=

= Xp Xy ™ xy i x, = Xg. Hence, go(xr)p(xs) =T,y = qv(Tr) +
+ y(1T) = [b1 + 4 +Z"d’id:L +dy + ey +Z*‘d"1di] =T, =

=P (xrxa).

Theorem 3. Let X =-{xi, ie I} be a medial and archimedean
semigroup. Then (F/= ,+) is archimedean, too.

Proof, Let A = = oC;a; + 3;b, + ¥ ey + d,d; and
B=ZX &, + Ajby + ey + YV d,. Since X is archimedean,
there exist a natural number nZ1 and elements X, and Xg with

L+ + 7y 4+, R4 b +Y
erT x; 17717 x, = (TTxii 171740 pperefore we have

GoWoldAdy) = dL +Z (g +By + 7y +Jy)a; +d, ~
nZ (e +A + Wy + V)4 = gy (B, From this Bd_ Ad_B =

= B2 ang consequently (F/= ,+) is an archimedean semigroup,
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