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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
25,4 (1984)

ON THE SET OF WEIGHTED LEAST SQUARES SOLUTIONS
OF SYSTEMS OF CONVEX INEQUALITIES
A. IUSEM, A. DE PIERRO"*

Abstract: This paper studies the set of fixed points of a
convex combination of projections on m fixed convex sets, or
equivalently the set of weighted least squares solutions of a
system of convex inequalities. It is proved that such set is
the intersection of translates of the convex sets and that its
interior is empty when the convex sets have empty intersection.
For the case of a system of linear inequalities, the behavior
of the set as a function of the right hand side and the coef-
ficients of the convex combination is discussed.
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1. Introduction

Let Cl,Cz,...,Cm be closed convex sets in a Hilbert spacc H.

Let P,;: H-+ C; be the projection over C; (i.c. P.x =

i i n
= arg min ||x-z||). Let S = {\ € R s.t. = Ay =1, A; >0
2€Cy i=1
(1< i< m)}., Take ) € S and define P: H-+ H as
m
Po= I MPiXx (1)
i=1

*
The work of this author was partially supported by CNPq, under
grant n¢ 301699/81.
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Let F(A) be the set of fixed points of P:
F(A\) = {x € H : Px=x} (2)

Consider now the function fk: H -+ R defined Ly

n 2
fk(x) = iz ).i”Pix-x” (3)
=1
and let G(A) be the set of minimizers of fy+ Let
m
C= N C,. In[3] it was proved that
1=1 1
i) F(A) =c(d) +1re€ s ()
ii) If ¢ # ¢, then F(A) =G(A) =C ¥ A€ S (5)

iii) If =z,,z, € F(A) then Pz -z, = P z,-z, (lsism) (C)

1"

The set F(A), in view of (4), can be seen as the set
of weighted (with the Ai's) least squares solutions 1o the
problem of finding a point in C. An important particular

case results when the sets Ci are of the form
C; = {x: g;(x) s 0} with g;: H + R convex and continuous. (7)

In this case, the task of finding a point in C is

cequivalent to solving the system
*
gi(x) < 0 (L i< m) (8)

In [2,3,4] it was shown that several iterative algoritms
for solving problems such as (8) have the property that they
converge (whenever the set F(A) is non empty) to a point in
F(A) 4i.c. to a solution of (8) when it is feasible and to a
weighted (with the ki's) least squares solution of (8) otiher-
wisc.

These algorithms, which fall under the category of "row

action methods" introduced by Censor [1], are widely usecd in
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practice for upplications in tho wrea of computerized tomo-
graphy and image reconslruction {rom projections [5,6]. An

example of such algoriilms consists in taking an arbitrary
x® € H and defining

xk41 - ka.

Thus, the study of tlhie scis F(k) has interostinﬁ con-

sequences on the understanding of the behaviour of these

iterative algoritlms,

In section 2 of this paper iwo results are established,
namely:
i) The set F(A) is ihe interscction of translates of the

sets Cl""'cm‘

ii) If € = ¢, the set I'(A) has cmpty interior.

In section 3 we consider the case when the functions gi

of (7) are affine and I = R

. In this casc (8) becomes

Ax < b (9)

mx
with A€ R n' L€ Rm. We are interested in the behaviour

of F(\A) as a function of b, The main result is the follow-

ing: If b dis roplaced by b < b (i.e. ii < by for all i)

then for cach )\ ¢ S there is a Yy € S such that F(u) for

the problem wiih b is contained in F(A) for ihe problem

with b,

2, Some results on F(x) for encral convex scts

We sturt with a lemma related to the formulation given
by (7), i.c. we consider convex sets of the form

C; = {x: ﬁi(x) € 0] with g convex,
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Lemma 1. Assume F(A) # 9. Take z € F(A). Dofino Yy =

= z-Piz. Then
F(A) = {x € H: g (x-y;) s 0}.
Proof: First observe that, by virtue of (6), the vector ¥,

is indopendent of the chosen point z € F(\)
i) ). Take =z € F(A)

Y; = 2Pz » z-y, = P,z = gi(z-yi) = gi(Piz) < 0

because Piz € Cy
ii) D) Take x such that gi(x-yi) £ 0 (1< 1ixg m). Sos
2 2 2 2
x-y; € C; = "x'pfm s Hx"(x'yi)” = ”Yi” = ”z’Piz" .

From the definition of £, it follows that fh(x) < fx(z).

Applying (4) and the definition of G(A) conclude that
x € G(A) = F(\). ]

Now, given a vector y € H, define C,+y = {x € Hs

i

X = X4y with x; € Ci}. i.e. C,+y 4is the translate of Ci

i
by the vector y. We go back to the original formulation

where Ci is just a closed convex set in H.

Theorem 1. There exist vectors y; € H (L < i< m) such

m
that F(A) = N (Ci+yi). The vectors y; can be taken as
i=1

Yi = z-Piz where 2z is any vector in F(A).

Proof: Consider the functions g;(x) = ||Pix-xH. Being dis-
tances to closed convex sets, the functions gi are convex
(sce [7, PP.28,32]). Since gi(x) < 0 iff x€ C; we con-
clude that C; = [x: gi(x) < 0}. Apply Lemma 1:

F(A) = {x € H: |[x-y; - Py(x-y;)|| £ 0} = {x € H: x=y;= P;(x-y)}

m
= {x€ H: x-y, € C,} = N (C,+y;). The second statement of
1€ Cgd = 1 (G
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the thoorem also follows from Lomma 1. n

Lot, for a set B c H, B denote tho interior of B.

Theorem 2. € = ¢ = FO(A\) = ¢ ¥ A € S.

Proof: Suppose F°(A) # ¢. Tako zy € F°(A). So T ¢ >0

such that
lz=zyll < ¢ = z€ F(1). . (20)
Since C = ¢, &, such that z,; 4 Cy = Pyz -z # 0. (11)
Let Yy = min [1,1ﬁ;;f:;—ni. Take any B € (0,Y). (12)
1%

Define z, = z; + p(PJz -zl). So

lzp-2,ll = p"Ple-zlu <e=z,€ F(A) (from (20)).
On the other hand, since z, lies in the segment between
zy and Pyz), Pjz, = Pyz) = z,-P.z, = (1-p)(z, -P; zy) #

1

£ z)-P,2; (using (11) and (12)). This contradicts (6), so

F°(A) = ¢. ]
Corollary 1. Consider a system like (8) with &y strictly
convex (1sism) and continuous. If the system is infeasible and
F(A) # ¢, then F(A) 4s a singleton, i.e. there is a unique

weighted least squares solution of (8).
Proof. Take v,w € F(A). Applying Lemma 1,
gy(v-y;) £ 0, gilw-y;) s 0 (1< i< m)
If v £w, gi(!-;-E - yi) <0 (1s i< m), because of

strict convexity.

Since &y is continuous, for each i1, there is a

V4w

neighborhood of 5 contained in Ci+yi' From Thecorem 1,

!%! € F°(A), in contragiction with Theorem 2. So Vv = W.
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If H 1s finite dimonsional, the hypothesis that
F(A\) # ¢ is redundant. A strictly convex function g in
finite dimension has the property that 1?m g(x) = w.' So
X|| e
{x: g(x) £ 0} is bounded. Then all the slts Ci are boundod.
In [3]) it was proved that if at least one of the C;'s is

bounded, F(A) # ¢.

3. Some rosults on F(\A) in the linear case

Consider now a system like (9). Take A€ R™™, beRr".

Let a> 0 (1< is m) be the rows of A. So
¢, = {x ¢ R™: (ai,x) < bi} and C = {x € R": Ax < b}.

Let us perturbate the right hand side b to b = b-¢
(e € mm, € 2 0). We arc interested in the behaviour of the set
F(A) as a function of ¢. If P is the operator P with b
substituting for b (same for Ei) let F(\,e) be the set
of fixed points of D and C(e) = [x € R™: Ax g b-¢}. With
this notation F(A) becomes F(A,0) and C becomes C(0).

It is clear that if C(e¢) # ¢. C(e) = c(0). It follows

from (5) that in such a case

¥ A, €8 F(u,e) © F(2,0) (13)

We want to extend this result to the case C(e) = ¢.
In this case, an arbitrary u € § will not satisCy (13).
In fact, it will be shown that given A and e there exists
a M € S (in general depending on A and e) which makes
(13) true.

We start with another characterization of the set

F(u,e). For x¢€ R" define x" ¢ R" as
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i if xy = (o]

o otherwise

The projection Pi on the half space ci has the well
known formula
i +
((a 0x>"bi) i
o e (1)
lla™ll
From (4):

m
P(u,e) = arg min T |..11“Pix-x"2 =
x i=1

mooMy i +q2
= arg min I ——Efir[((a ,x)-bi+ci) 1 .
x di=1 |la’

This minimization problem is equivalent to
m u
min I ——%—5 yi
x,y i=1 |lad]

. (15)
sete AX £ b-g+)

y=0
The feasible set of (15) is non empty, because the system is
feasible for big enough y. So (15) consists in the minimiza-
tion of a quadratic function bounded below on a polyhedron.
Frank-Wolfe'!s theorem (see [7, Cor. 27.3.1]) insures the
existence of a solution. Because the minimand is strictly
convex in y, the y part of the solution is unique. Let us

call it y(u,e). It follows that:
Proposition 1
i) Flue) #9¢ “nES, 620

ii) F(u,e) = {x € R™: Ax < b-g+y(u,e)} where y(u,c) is
the solution of (15).

Let Q be the projection of the feasible set of (15) on

the ¥y coordinates, i.e.
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Q={y€ R‘, y2 0 and 3Ix s.t- Ax £ biy-¢].

Take Y€ Q, ¥ 2 y. Clearly any x feasible for (15) re-
mains feasible if ¥y substitutes for y. We rephrase ithis

fact as

Proposition 2. Y€ Q, ¥z2Y¥Y=¥€ Q.

Lemma 2. ZID€ R®*™, D20 and c¢ R®

(for some s)
such that
Q={yeR™ Dy2c¢c, y=z 0. (16)

Proof: The feasible set of (15) is a polyhedron in RE2,
So its projection Q is a polyhedron in R™ (see [7,Th.19.3])
1.6. Q= {yeER™ M Dyzc, y=z O} for some D, c. We still

need to show that D 2 0. If some entry diJ were negative

J

‘take any y € Q and define ¥ = y+MeY where ede R® is

defined as el =1, el =0 for 14 3. Fe€a foran

J
M 2 0 because of Proposition 2, but the i-th constraint is
violated for big enough M, ]

We need some results on systems of inequalities like

sxm with rows ti and entries tij 2 O,

(16). Let TE€E R
Let E= {z€ Rt Tz2u, z32 0}, For vER™, V>0 con-

sider the problem

oy 2
min ¥ vyZy
i=l
(17)
s.t. Tz 2 u
z a2 O
Assume (17) is feasible. Again, by strict convexity and
Frank-Wolfe!s theorem, (17) has a unique solution z(v).
Take any z° € E, 2° > O. Let E={z€E: zg z°) ana
z* a arg min| z|| (18)

3]
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Let I = (11 (t',2*) = u), T a (4t =0}, K= (41 3% >0].

13 = OVJGJ.

Proof: Take k € K. Certainly there exists i € I such that

Lemma 3. k€ K T 1€ I s.t, ¢ >0 and t

ik

ty > 0. Otherwise Ze= z*—nok belongs to E for small

enough n in contradiction with (18). Let ;k' {1€1: ¢, >0},
Assume, by negation, that
¥1€I, T JET sot. t,,>0 (19)
Define
0 = min {zg] (20)
1€ Jsm
Tt
ij
J
§ = min (€7 5 (21)
1T ik

8 = min {z;,c{]

8 > 0 because of (19). Define z as

z'; if § € K-{k]}

¢ if J€J

z;—b if J = k

From (21) 2 € E (in the system Tz 2 u the increase in the

columns in J is greater than the decrease in the k-th column),

From (20) 2 € E. So % = z® + a(2-2*) € E for q € (0,1).

If r is the cardinal of J, [ = 2% - al28zf-a(ro2+s3).
28 zf

Hence ||Z|| < ||z¥| for o <.—?—°—2— in contradictjon with (18).
ro <+

Lemma 4. Given z° € E, 2°> 0. T vE R™, v >0 such

that z(v) s z°.
Proof: Take z* as in (18). Use Lemma 3 to select, for each

k€ K, arow i(k) € I sguch that ti(k),k > 0 and ti(k),J=0
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¥ J€J. Let L ={i(k): k€ K}. Let p = ¢ t¥ By cons-
LEL
truction pJ =0 4if J € J and pJ >0 if J € K. Also

¥ z€E (psz*) = T u < (p,2z) (22)
LEL
Define

p

3 if jJEK
*

%5

VJ =
1 if JeJ

Take any z € E. From (22)

*2

(Pr2*) < (pyz) » £ Vv.z.°< I v.z
jx J

m m m 2 2
2 £ viz* <2 5§ v.z¥z. 2 T v (2*%%42%) =
jo1 39 joy 973 3

So for such v, z* = z(v). Since z* € E the lemma is

established. ‘ ]
We prove now the main result of this section:

Theorem 3. ¥ A€ S, € >0 Hu € S such that F(u,e) c
c F(A,0).
Proof: By Proposition 1l.ii)

F(A,0) = {x € R": Ax £ b + y(1,0)}. (25)

Also 'y(A,0) + ¢ is a feasible y for system (15); i.e.
y(A,0)+¢ € Q. Since e > 0, y(A,0)+e¢ > O and we may apply
Lemma 4 with z° = y(A,0) +¢, T =D and u = c. Conclude
that there exists v > O such that the solution z(v) of

m
min I Vv z2

zZ€EQ j=1 3

satisfies

z(v) < y(1,0) + ¢. (26)
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Take now 2

v lad)
£ vjllad)?
J=1

My =

mouyed
So M€ S and z(v) solves min I —=3 . It follows from
z€EQ i=1 ”ai"

Proposition 1.ii) that

F(use) = {x € B": Ax < b=¢ + z(v)]}. ) (27)

Take any x € F(M,e). From (26) and (27) Ax < b+y(r,0).

From (25) x € F(A,0). So F(u,e) < F(1r,0). [ ]

Geometrically, the theorem states that by a suitable
change of weights the set of weighted least squares solutions
of the tighter perturbed problem is included in the set of
weighted least squares solutions of the original one, extend-
ing the inclusion relationship between the feasible sets of
both problems. Observe that the result also holds when
C(e) =¢ and ¢c(0) # ¢. In such a case the vector u of the
theorem does not depend on ) (only on ¢), since F(A,0) =

=C(0) w2\ € s,
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