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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROCLINAE
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ON THE 1-GENERATED S-NEAR-FIELDS
S. Pellegrini MANARA

Abstract: We continue here the work [5] and study the
s-near-flelds N that are not the gum of near-fields: they are
1-generated, Making the appropriate assumptions on the addi-
tive group we characterize the zero-symmetric case, give some
examples and conclude with a characterization of the constant
1-generated s-near-fields.

Key words: Near-rings, subnear-rings, near-fields, s-
near-fields, En-generated.

Clessification: 12K05, 16A46

1. Introduction. In [5) we define s-near-fields, the near-
rings whose proper subnear-rings are near-fields and discuss
the cases in which such structures are the sum of near-fields.
Here we study the s-near-fields N that are not the sum of near-
fields: they are 1-generated and making the appropriate assump-
tion on the additive group, we show that, in the zero-symmeirioc
case, N i3 an s-near-field if and only if: Np is a near-field
whose subnear-rings are neer~fields, N is abelian haying p2
exponent and each element xe N\ Np generates N, or Np is the
torsion subgroup of ¥ and is & near-field whose subnear-rings
are near-fields and each element x& N\ Np generates N,

We give some examples concerning the first case and in the se-
cond we prove that the additive group ¥ 15 @ semi-direct sum

of Np+ and & divisgible group. We conclude with e characteri-
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zation of the constant 1-generated s-near-fields.

2, Preliminaries. We will indicate with N a left near-
ring; for the definitionsand the fundamental notations we re-

fer to [6) without en express recall.

Definition A, We call g-near-field a near-ring whose pro-

per subnear-rings are near-fields.

In the following, we consider of course near-rings with
proper subnear-rings.

Later on, we will say a near-ring N is n-generated if it
can be generated by n elements; we will say a near-ring exactly
n-generated (and we will write En-generated) if it has & system
of n generators, but it cannot be generated by a system of n-1
elements. Moreover, for McN we will indicate with {M)> the sub-
near-ring of N generated by M. Remember that here the general
results on the s-near-fields (see [5)) exist; however, we re-
peat:

Proposition 1. An s-near-field is at most E2-generated.

Proof: see [5) Prop. 1

Propogsition 2. The N-subgroups and the left ideals of an
s-near-field are maximal,

Proof: see [5) Prop. 2.

Prop. 2 allows us to extend the results of [2, 31 to our
case, We start with the zero-symmetric case end examine the ca~

ses excluded in {5].

3. Zero-gymmetric case
Proposition 3. A zero-symmetric s~near-field, if it has
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nilpotent elements, is 1-generated and it is generated by each
nilpotent element, which hes index n = 2 and is left annihile~
tor of N,

Proof: a nilpotent element of N cannot gemerate a proper
subnear-ring because, acoording to our hypotheses, it must bs
a near-field, thus it generates N that is in this way 1-genera-
ted (see Prop. 1 of [5]). Moreover let x be a nilpotent element
of N and thus x* = O for en integer n. The set Ag(x) = {yeF¥|xy=
= 0% has at least the element x -1 s therefore it is not null
and it is a proper subnear-ring of N. In our hypotheses it is
a near-field, but this is excluded because it has the nilpot-
ent element x™~'. Therefore Ay(x) =N, x° = 0 and 3N = 10},

Besides:

Proposition 4. A zero-symmeiric s-near-field N with nil-
potent elements is:

a, without proper N-gubgroups;

b, nN = N&=Ay(n) ={yeNlny =0 =40%

Proof a: we will show that Y neN is nfN = N or nN = O and
the thesis will follow from this. Let us suppose {034nNc Ny in
this case nN being & proper subnear-ring is a neer-field. If N
has a nilpotent element x, x generates N (see Prop. 3), x° =0
and it is a left annihilator of N, therefore nN cennot be &
near-field (VY neN) because the element nx € nN, if nx 40, can-
not belong to & near-field, but nx cannot equal O because this
would give nN = {0% as x generates N.

Proof b: 1let n be an element such that nN = N; if Ad(n)
is proper, it is an N-gubgroup of N and this is excluded from
a. Viceversa, if A (n) = {03, obviously nN = N, thus the Pro-

position is proved.
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Corollary 1., A zero-symmetric s-near-field, if it has nil-
potent elements is:

a, N-simple, strongly monogenic, faithful and 2-primitives
moreovers:

b. the semigroup (N,) is the union of a right group and
of A (F) ={x€eN|xN = 03}

Proof a: 1t follows immediately from Prop. 4 if we recall
the definitions of N-simple, strongly monogenic, faithful and
2-primitive near-ring (see [61).

Proof b: 1t follows from the Theor. 4.3 of 18], if we re-
call the definition of a right group (see for instance [1]).

Similar results exist for the integer 1-generated s~near-
fields, as we can see in Prop. 5 of [5]. In order to characteri-
ze the zero-symmetric 1-generated s-near-fields weé shall first

show the following:

Lemma 1, If N is a zero-symmetric strongly monogenic s-ne-
ar-field, such that each of its elements has odd order, it is abe-
lian,

Proof: 1if each element ze¢ N has odd order q, each equation

X + x = 2z hag the solution ((q+1)/2)z. This solution is the only

onet if x+ x =y +y = z we have 2Xx = 2y = 2z, If r (odd) is the
order of x, (r-1)x = (r~1)y (because r-1 is even) and then

(r-1)x + 2x = (r~1)y + 2y and x = (r+1)y., Therefore (r+l)y +

+ (r+1)y = 2y end thus 2ry = O, The order of y is also odd, thus
ry = 0, but x = (r+1)y., It follows that x = y. FProm the hypothe-
sis, at least one proper subnear-ring and thus a near-field ex-
ist in N, and its identity e generates a field isomorphic to Zp.
Moreover from Prop. 4 it follows that such an identity ¢ is a
left identity of N. In fact eN = N implies eex = ex and e(ex-x)=0,
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80 exX = X V xeN. Let e be a such left identity and £:K—>N
the map so defined f£(y) = (-e)y V y€N. This map is an auto-
morphism of Nt vecause it is obviously a homomorphism, moreover,
it 1s & monomorphism because f(y) = £(y') = (-e)y = (-8)y'=>
= (-&)y = ((-&)7") = 0= (<g)y + (-&)(~y') = 0 =%

= (-&)(y=y") =0=py =y' es Ay(~e) ={0} (see Prop. 4).
Lestly it is an epimorphism because (-e)N = N and therefore
VzeN 3 xeN| (-e)x = 2z, This eutomorphism is fixed point-free:
if 1t 18 (~¢)x = x and xN = N, it is (~g)xy = xy ¥ ye N, and -¢
is a left identity of N because the product xy, while y varies
in N, describes N and thus ¢ = -¢ and this is to be excluded
because ¢ has an odd order. If (-~e)x = x and xN = {0}, x is a
generator of N and sgein (-g)z = z ¥V ze N and this sgain is ab-
surd. In this way the hypotheses of the theorem of [4] hold and
N is abelian,

Ve know thut the identity of & proper subnear-ring of an
s-near~-field generaies a finite field isomorphic to Zp. There-
fore, fron now on, we will consider as non trivial, the set of
the elements of order p and more generally we will indicate

Np® ={xe¥ | p" = 03 where n is an integer.

Lemma 2, If N is a zero-symmetric 1-generated s-nsar-
field and if the group generated by the elements of order p,
{Np)*, is a proper subgroup of NV, then (Npd* is a left ideal
of N and coincides with the set of the elements of order p, Np.

Proof: the group (Np)+ is a normal subgroup of N+:

Y x e <NpdY 1t is x = Xy + X +eoot X, With px; =0V i €
e {1,2,0..,n} and then V2eN, 2 + X = 2 = 2 + Xy + X+..,

cer + X =2z = (2 +x=2) + (2 + X,=2) +eoot (2 + x -2) and
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this sum belongs to {Np)¥. Moreover, {Np)* is a left ideal of
N: V2z€EN and Vx €(Np)+, zx € {Np>¥. Thus ¢(Np)* is & neer-
field and therefore is abelian, and <Np»* = Np.

In the following we will indicate with _ﬁ- & zero-symmetric
1-generated strongly monogenic near-ring without elements of or-

o
der 2 whose additive group ¥ 1s not perfect ( ).

Lemma 3. If N is an s-near-field in which the set ¥p of
the elements of order p 1s a proper subgroup of 'ﬁ+, then 1t

does not have elements of order qsp.

Proof: from Lemma 2 we know that if <Fp)* is proper, it
is & left ideel of N, Let us suppose that elements of prime or-
der q exist in N and let {Fq)* be the subgroup generated by
the elements of order q. There are two cases:

1. <(FQ*c ¥, 2. <Gt =T,
both will be shown to be absurd.

1. Let <Fq>*c T'. Thus <Fod* 1s a left ideal - see Lem-
me 2 - and {NQ)* = Wq (set of the elements of order q). Let us
consider now the near-rings generated by the identities e and
e' of Tp and Nq. We have {e> = z, end (e = Zqe It P<aq, let
¢ be the following map: f:(¥p,.) —> (Nq,.) so defined: f(ne) =
= (ng)_e_'. for n = 1,2,s0e,p~1, This map is & homomorphism be-
ceuse £((ne)(n'e)) = (ne)(n'e)e’ = (ne)e'(n'ele’ = f(ne)f(n'e).
Therefore,in (Nq,.), a subgroup I(Zp,.) isomorphic to oyclic
group of order p-1, exigts. Let us take now the map ?:I(Zp,.)-»
—>(Zg,.) defined by gt(ne)e'— ng' for n = 1,2,...,p-1.

(°) A group is seid perfect if 1t coincides with the derived
group.
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This mep is & homomorphism as well, thus & subgroup of (zq,.)
exists but this is impossible for a prime p where p=2., Ele-
ments of order 2 do not belong to N and thus case 1. can be
excluded,

2. Let {Fqd* = ¥*. Each element ge¥ is g = B + 8 teee
cootg, wWth qg; = 0Y i€41,2,...,n} We know that Tt is non
perfect, Thus ¥' = {0} or §' is a proper subgroup of X', We
can easily verify that if F' is a proper subgroup of X', it is
a left 1deal of ¥ and thus N' = Np (see case 1), Therefore
§'/E' 1s abelian and YV ge¥, qg + §' = algq + Byteeatgy) + X' =
= (qg) + ') + (qg, + ') +...(qg, + ') = §'. Then Ygeh,
qgeN', and pqg = O. In this way we have shown that each ele-
ment of N has odd order and so N must be abelian (see Lemma 1).
This is absurd, it cannot be the case that N'#{03. Anywey ¥
is abelian and it is a group of exponent q which cannot have

elements of order p. Therefore the case 2 is excluded.

Theorem 1. A near-ring 'I'i', whose additive group is not an
ebelian group of exponent p, is an s-near-field if and only if
it satisfies one of the following conditions:

1. Tp is & near-field whose subnear-rings ere near-fields, N

2 and each xe T\ Tp ge-

is abelian, having & characteristic p
nerates X.

2. T¥p is the torsion subgroup of N, is a near-field whose sub-
near-rings are near-fields and each element xeT \ﬁp generates

N.

r00f: let Np be the set of the elements of order p.
Suppose that {F¥p>' = T*. From the hypotheses W' is not perfect:

HdJ

it W' is a proper subgroup, it is also & left ideal, whose ele-
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ments have prime order q. Thus R*/F' is abelian and
VeeNpg+F' =plg + Eoteeotg)) + B' = pgy + T 4.,
coetpgy, +T' = K' end pqg = 0. Each element of ¥ has 0dd or-
der and so N is abelian (see Lemma 1). Therefore H' is an abe-
lian group of exponent p and this is excluded by the hypothe-
ses. Thus <¥p)* 1s & proper subgroup of ¥*, and <Ep)* = Hp
(see Lemma 2) and it is & left ideal, that is, a near-field
whoge subnear-rings are near-fields. By Lemma 3 we know that
elements of prime order different from p do not exist in N,
Suppose that ¥ has elements of p-power order: let Fp® =

= {x€N|p% = 0}. The group <¥p™>* generated by ¥p™ is normals
in fact VzcF, Vxe® ™', s+ x -2 =2 + 3y + x, +ous

cee Xy -~ 2 with px; = OV i€ U,2,000n} Thus 2 + x = 5 =

= (2 + x4 ~2)+ (v Xy - ) deeat (z+xn-z) and this sum
belongs to <Fp™7'. Morcover (He")* 13 & left ildeal beoause

VY zaW ead ¥xo<Hg™t, 2y iip™t, Then <Hip™> » Tp®, but the
left Ideuls of T -1 muximzl (mne Frop., 2), therefore Np" =

= 10" = ¥, fp 48 ~ nenr-fisld whose subnear-rings are near-
ficids, N is ebelir (sce Lemmn 1) and each element xe N \Kp
generates N, We are in the case 1, If Np™ = ¢ for nz2, the
2luments of X \Np sre torsion free and each of them generstes

ify we are in cose 2. Conversely, the proof is trivial,

Examples: As an additive group we consider 09, cyoclic group

of order 9 and we define the following productas

- 654 =



012345678 012345678
0000000000 00000000000
1o12345678 11000000000
20087654321 2l1000000000
3012345678 3012345678
4087654321 4000000000
5012345678 5000000000
6lo08 7654321 6087654321
7Mo12345678 7000000000
8lo8 7654321 gloooooooo0o0

The first is an integer g-near-field, the second has nil-

potent elements; they are both examples concerning case 1,

We can characterize the structure of the s-near-fields

with torsion-free elements in this way:

Theorem 2, The additive group lT", of en g-near field sa-
tisfying the conditions of the case 2 of Theor, 1, is the semi-
direct sum of Wp and of the torsion free divisible group.

Proof: 1let pN = {pxlxeNi We observe that pNnTp = §0}
because if ze pNnNp there would exist an element y € ¥ such that
Py = 2 and p2y = 0, But now in 'IT, elements of p2 order do not
exist. Therefore pN is & proper subset of N, and it is contain-
ed in T\Fp. If ¥ was abelian, pN would be a left ideal of N:
in fact, px + py = p(x + y) and z(px) = p(zx)e pN end so this
is absurd. Thus ¥ is non-abelian. Let us consider now the sub-
group generated by kN, where k ¢ N , If k>t = §0%, then all
the elements of N have torsion, moreover if <kfi>' is a proper
subgroup of I-V+, it is a proper subnear-ring and thus a near-
field. In this case (kﬁ) = ﬁp and so this is excluded becauge
¥ would have torsion. Lastly if (ki > n Np = {0}, then <k¥) ¢
c ¥\ Np. Therefore (ki =T ¥ k¢ N and ¥ is semi-divisible,
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From the hypotheses ¥t is non perfect, and ¥ is non abelian,

80 ¥ is a proper subgroup of B'. In particular N’ is a left

ideal of N and therefore N' = Np. The factor N'/N' is abelian,
thug it 1s divisible and torsion-free, therefore f+ is a semi-
direct sum of Np with & torsion-free divisible group (see (7]

pag. 68).

At last we give a characterization of the constant 1-ge-

nerated s-near-fields.

4. Constant case

Theorem 3, A constant near-ring N is a 1-generated s-near-
field if and only if the additive group N+ is cyclic of order 4.

Proof:t from Prop. 6 of [5]1 we know that if N is a constent
s-near-field with two ideals, it is E2-generated, so N has only
one ideal I. Let & be the non null element of the ideal I iso~
morphic to M (Z,) - we recall that M (Z,) = {::zz——r Z,/f con-
stant} (see [6] 1.4.8) - and x & generator of N. An integer p
such that px = a exist, but 28 = O, then |N| = |N¥*| = 2p, More-
over, the factor near-ring N/I must be simple because I is ma~-
ximal and thus p is prime, Finally, if p#2, the group N"', cyo~
lic of order 2p, has two proper subgroups and N has two ideals,
but this is excluded. Thus p = 2 and vt is cyclic of order 4.
Conv’erseiy, the proof is trivial.
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