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COMMENTATIONES MATH EM ATI CAE UNIVERSITATIS CAfcOLINAE 

25(3) 1984 

HOW TO DEFINE REASONABLY WEIGHTED SOBOLEV SPACES 
Alois KUFNER, Bohumír OPIC 

Dedicated to the memory of Svatopluk FUCIK 

Abstract: The classes of weight functions are shown for which 
the corresponding weighted Sobolev space is guaranteed to be comp­
lete, i.e. a Banach space. Further, it is shown how to modify the 
definition of the weighted space if the weight functions do not be­
long to the class mentioned. 

Key words: Linear function space, Banach space, Sobolev space, 
weighted Sobolev space, weight function. 

Classification: 46E35 

0. I n t r o d u c t i o n 

Let k e IN , 1 4 p 4 ~ , let a £ (N Q)
N be multi-indices of 

length | a | <. k and S a set of weight functions w , | a | <_ k , 
N a 

defined on an open set SI C P • The Sobolev weight space 
W ^ ^ S ) 

is usually defined as the (linear) set of all functions u = u(x) 

on Q such that Dau»w1/p e Lp(ft) for |a| < k . 

For various reasons one needs w ,p(ft;S) to be a novmed li­

near space and moreover, a complete normed space, i.e. a Banaoh 

space. However, in some cases (i.e. for some weight functions w ) 

not even this is guaranteed, and therefore the question arises for 

what classes of weight functions w it is possible to define a 

weighted Sobolev space in such a way that it is a Banach space. 

Here, such classes are described. 
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1. W e i g h t s o f c l a s s B
p< f i> 

1.1. DEFINITION. Let ft be an open set in |RN . By the symbol 

(1.1) W(ft) 

we denote the set of all measurable, a.e. in ft positive and fini­
te functions w = w(x) , x 6 ft . Elements of W(ft) will be called 
weight functions. 

1.2. DEFINITION. Let ft C RN » P > 1 » w 6 W(ft) . By the symbol 

(1.2) Lp(ft;w) 

we denote the set of all measurable functions u =- u(x) , x € ft » 
such that 

(1.3) IMIp.w.ft = | l u < x > l P w < x > ^x < " • 
ft 

For w(x) = 1 we obtain the usual Lebesgue space Lp(ft) ; in 
this case we write I|u|| „ instead of ||u|| , n . ii •'p,ft '' •'p,w,ft 

The following assertion is well known (see, e.g., [1J, Theorem 
III. 6.6): 

1.3. THEOREM. The space Lp(ft;w) equipped with the norm 

||.|| n from (1.3) is a Banaoh space* , , l l p , w , f t ' 

1.4. DEFINITION. Let p > 1 .We shall say that a weight function 
w € W(ft) satisfies condition B (ft) and write 

(1.4) w € Bp(ft) , 

if 

(1.5) W-1/<P-1> € L{ o c (a) . 

1.5. THEOREM. Let ft C !RN be an open set, p > 1 , w € B (ft) , 
N P 

Q a compact set in R , Q C ^ • Then 

(1.6) LP(ft;w) Q L 1 ( Q ) . 

(Here G^ stands for a continuous imbedding.) 

P r o o f : The assertion follows immediately from the HSlder ine­
quality, since for u 6 Lp(ft;w) we have . 
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í|u(x)| đx = f|u(x)| w 1 / p(x) w~ 1 / p(x) đx < 

£=1 
I U H P > W > Q ( K

1 / ( P - 1 ) ( X ) dx) P <c||u||pfW>a 

Q 

with c independent of u 

1.6. COROLLARY. Under the assumptions of Theorem 1.5 we have 

Lp(fl;w) C Lioc(^) • Using the usual identification of a regular 

distribution from V (Q) with a function from L.. c(ft) we conclu­

de that 

(1.7) Lp(fi;w) C L l o c ( « ) C P'(fl) 

for w 6 B (ft) Therefore, for functions u 6 Lp(0;w) with w € 

£ B (Q) , the distributional derivatives D u of u have sense. 

If w £ B (ft) , then the inclusion (1.7) need not hold. This 

follows from 

1.7. EXAMPLE. For N = 1 , n = (-1/2,1/2) , p > 1 and w(x) = 

= |x|p~1 we have w £ B (ft) since w~1/,(p~1 ̂  (x)= |x|~1 . Let us 

take u(x) = |x|~1|ln|x||X with X 6 (-1,-1/p) . Then 

Hullp,w,8 = f|xfP|ln|x||Xp|x|p-1 dx = 2J|xr1|ln x|Xp dx = 

"** ° 
= 2 t p dt < °° since X < -1/p , i.e. X p < - 1 , and consequent-

ln 2 
ly, u 6 Lp(ft;w) . On the other hand, u £ Lioc(^) since we have 

*£ oo 

X > -1 and so, f|u(x)| dx = 2 J tX dt = * . 

1.8. REMARK. Let w € B (n) , <j> e C (Q) ( = P(f.) ) and let a 

multi-index y € (Nn) *-e fixed. Then the formula 

(1.8) L (u) = JuDY<j> dx , u e Lp(ft;w) , 

n 

defines a continuous linear functional L on Lp(fi;w) . Indeed, 

if we denote Q = supp <f> , then Q = Q C -- and the H51der inequa­

lity implies 
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|L
ү
(u)| <||u|w

1/p
|D

ү
ф|w"

1/p
 dx 

.Eli 
<||u||

p ) W
^((|DM

p /
(

p
"

1
)

w
-

1 / ( p
-

1 )
 dx]

 P 

Q 

Ell 
<l|u||

p f W f n
. max |DM.(Jw~

1 / ( p
-

1 )
 dx]

 p
 ; 

Q
 Q 

here, the last integral is finite in view of (1.5). 

1.9. PRELIMINARY DEFINITION OF THE WEIGHTED SQBQLEV SPACE. Let 

N 
!! C R be an open set, p > 1 . Let 1U be a nonempty set of 

multi-indices of length 1 and let 3H - {0} U 3R- with 6 = 

= (0,0,...,0) . Denote S = {w € W(ft) , a € H} and let us define 

the Sobolev space with weight S > 

W1,P(Q;S) , 

at. the set of all functions u 6 Lp(Q;w ) O Lloc(f.) such that 

their distributional derivatives Dau with a 6 1. are again ele­

ments of LP(Q;w ) flL. (Q) (i.e., Dau are regular distribu­

tions) . 

The expression 

' - • 9 ) " l U " l l . p . S . D - U l | D « u | | P t ) V P 

,tr * a € Jit r a 

obviously is a norm on the linear space W ,P(Q;S) . 

)•1Q» REMARK. If certain of the weight functions w satisfy the 

condition B (Q) , then the assumption Dau e Lp(Q;w ) D L] (Q) 

m Definition 1.9 can be replaced in view of (1.7) by the assump­

tion 

(1.10) Dau 6 Lp(Q;w ) . 

1.11. THEOREM. Let^ w^ € B (Q) for all a € JH . Then W1,P(Q;S) 

is a Banach space if equipped with the norm (1.9). 

P r o o f : Let {un} be a Cauchy sequence in W1,p(Q;S) . Then 

{Daun} is a Cauchy sequence in Lp(Q;w ) for every a e n , and 

by Theorem 1.3 there exist funr.*-?~-- € Lp(Q;w ) u = lim Dau 
a ' a n 

n-*-°° 
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in Lp(ft;w ) . 

For a fixed a £ I. and a fixed <j> € CQ(ft) , let us consider 

the functional L from (1.8). It is a continuous linear functio­

nal on Lp(ft;w ) , and consequently, 

vv — vv for n -* - • 
At the same time, L

fi(
v) defines a continuous linear functional on 

Lp(Q;w ) , and consequently, 

V D " V - Le(ua> f o r n - - • 

By the definition of the distributional derivative we have 

L (u ) = - L (Dau ) (notice that I a I = 1 ), and by a limiting 
a n 9 n ' ' 

process this formula yields 

vv - - vv • 
This relation holds for every <f> 6 C™(ft) and therefore, u is 

the distributional derivative of u : 

e 
u = Dau . 

a 0 

Since DauQ € L
p(ft;Wa) = L

p(ft;wa) C\ L J o c W » w© have uQ e 
£ W1*P(ft;S) and 

H u n - u e H ^ p > s , 0 = ^ M D a u n - D a V i ; L « , 0" ,xr» » a £ JH ^* a* 

= v; | lDau - u I |p —> o 
u _• ' n a' 'p,w ,Q u 

a e W- a' 

for n —• <*> . Hence the Cauchy sequence {u } converges to u Q 

in W1»p(ft;S) , i.e., W1'p(ft;S) is complete. 

The condition w € B (ft) in Theorem 1.11 is essential. This 
a P 

follows from 

1.12. EXAMPLE. Let us take N = 1 , ft = (-1,1) , p = 2 , JJl = 

= {0,1} , X, y e R and S = {wQ(x) = |x|
X, w1(x) = |x|

p} . Obvi­

ously w , w 1 € W(Q) , but for A ̂  1 , u _> 1 we have w £ B?(fi), 
0 I 1 ? 0 ~-

w- j£ B2(ft) . The space W * (ft;S) is noncomplete if the parameters 

A, u are suitably chosen - we will show this by constructing a 

auchy 

space. 

1 2 
Cauchy sequence {u } in W * (ft;S) which has no limit in this 

For this purpose, let us consid*-*- 4-1~ - ~ m e t ion 
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Obviously u e 

Further, u £ W1,2(n,;S) 

0 for x < 0 

( L I D u(X) « ; 
for x > 0 

with Y € ft • If 

(1.12) Y < - 1 

then 

(1.13) u ^ Lloc(ft) • 

Let us denote a. = (-1,0) , a, = (0,1) 

6 W1-2(0l;6) and I|»|I.f2>s>^ = 0 . 

if and only if 

(1.14) Y > - \ - \ and Y > \ - \ , 

1 1 

since MuMi f 2 is,o
 = J x 2 Y X A d x + ^ J x 2 Y~ 2 ^ d x • 
2 0 0 

For 6 € (0,1) we define 

0 for x € (-1, 6/2? , 

g^x) = \ | x - 1 for x € (6/2, 6) , 

1 for x € <6, 1) 

and denote 

v6(x) = u(x)g5(x) . 

Easy computation shows that if (1.14) holds then 

(1.15) lim ||u - v j | = 0 for i = 1,2 . 

1 2 If we denote u = v1 , , then evidently u € W * (Q;S) and n i / n n i o 
(1.15) implies that {un> is a Cauchy sequence in W » (Q.;S) 

for both i = 1 and i = 2 . But then {u } is a Cauchy sequence 

in W1,2(Q;S) , too, since I |v| I i ^ ^ ^ = I |v| l^2>s>fi + 

+ I M I ? f 2 . S t o 2 * 
1 2 Let us suppose that W * (Q;S) is complete. Then there exists 

an element u* € W ,2(Q;S) such that 

(1.16) ||u* - u n|| 1 > 2 f S ) 0 - 0 for n — - . 

A fortiori, this relation takes place if we replace Q by Q. , 

and then in view of (1.15) we have u = u * a.e. in n. , i = 1,2 , 
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1 2 
i.e. u - u* a.e. in n • T n e function u* belongs to W ' (ft;S) 

1 1 
and therefore u* € L-[oc(ft) • Hence also u Q L i o c W

 a n d t h i s 

leads to a contradiction with (1.13). Since the conditions (1.12) 

and (1.14) can be satisfied e.g. by choosing X =- 2 , y =- 4 and 

Y € (-3/2,-1> , the contradiction mentioned shows that in this case 

the space W1,2(ft;S) is not complete. 

1.13. REMARK. In Example 1.12 we have constructed, for a given 

function u € W * (ft;S) , a Cauchy sequence (u }C W **(n;S) 
1 2 1 2 

which approximates u in both W * («1;S) and W ' (ft2;S) . Let 

us mention that we can choose another sequence {u*} with the same 

properties but, moreover, such that u* 6 C (ft) . This can be done 

by using the imbedding 
W1'2(ft) Q W1j2(ft;S) 

which holds for A ̂  0 , w ,> 0 , and the facts that the above 
"" 1 2 00 — 

functions u belong even to W ' (ft) and that C (ft) is dense 
1 2 

in w'^ft) . 

2. W e a k e n i n g t h e c o n d i t i o n s o n w 

In Theorem 1.11 we have assumed t h a t w € B (ft) for all 
<* P 

a € M . These c o n d i t i o n s can be weakened , namely, we can omit t h i s 
assumpt ion for a =- G . 

2 . 1 . THEOREM. Let p > 1 , w € B (ft) for a £ H. , wQ € W(ft) . 
- _ — a p i e 

Then W *F(ft;S) is a Banaoh space if equipped with the norm (1.9). 

2.2. REMARK. For the proof of Theorem 2.1 we need a "one-dimen­

sional" lemma. To this end, let us introduce - for an open set 

G C £RN - the set 

AC(G) 

of all functions absolutely continuous on every compact interval 

T C G . Every function u € AC(G) has a derivative a.e. in G ; 

we will denote it by 

2.3. LEMMA. Let G be an open set' in |R , TL « {0,1} , S -= 
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= fw0»
w<,} » p > 1 . Let 

(2.1) w.j € I 

and let (u } be a Cauchy sequence in W ,p(G;S) sucft t h a t 

(2.1) УЙЛ £ B (G) , WQ ç Цf(G) 

u° in L
P
(G;w

Q
) , 

1 

u 
in L

P
(G;

W l
) . 

u° can Ъe changed on a 

(2.2) 

Then the function u can he changed on a set of zero measure so 

that it satisfies 

(2.3) u° B AC(G) , 

•0 1 

(2.4) u
U
 = u . 

P r o o f : Since for an open set G C R we have G = U I. 
j = 1

 3 

where I. are disjoint open intervals, we can assume that G is 

an (open) interval. It follows from the definition of the space 

W
1,P
(G;S) that u

n
 £ W1,P(G;S) implies U R e

 w{oc(
G> • So we can 

change u on a set of zero measure in such a way that u e AC(G) n m n 
and that the derivative u coincides a.e. in G with the distri-

n 
butional derivative u' of u (see, e.g., [2], Theorem 5.6.3). 

From (2.2) it follows that there exists a subsequence (u } 
nk 

of {u } such that, for n —• «> , i n j » 

(2.5) 
u —• u a.e. 
nk 
u' —• u a.e. 

n к 

in G , 

in G . 

>e a point from G such that 

u (x) -> u°(x) 
n
k 

f or n —> °° (2.6) 

Since u € AC(G) , we have 
nk 

(2.7) u (x) = f u' (t) dt + u (x) 
k ± k nk 

x 
for x 6 G . Let us define the function u* on G by 

x 

(2.8) u*(x) = f u1(t) dt + u°(x) . 
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Since w1 e B (G) , in view of (2.2) and of Corollary 1.6 we have 

u 6 L- (G) , and consequently, u* £ AC(G) , t6o. 

In view of (2.7) and (2.8) we have, for every x € G , 

(2.9) |u (x) - u*(x)| < 
nk 

x 
< |u (x) - u°(x)| + I f|u' (t) - u1(t)| dtl . 

nk 'i k ' 
x 

Since the closed interval with the endpoints x and x is con­
tained in G , by virtue of Theorem 1.5 it follows from the second 
relation in (2.2) that the last term in (2.9) tends to zero for 
n, —-*• » . This combined with (2.6) yields, in view of (2.9), that 

u (x) —* u*(x) , x 6 G 
nk 

( x is arbitrary but fixed), and this together with (2.5) implies 

u (x) = u*(x) a.e. in G . 

If we change u in such a way that u (x) = u*(x) for all x 6 G, 
then we have (2.3) since u* 6 AC(G) . 

Further, for the derivatives we have 
•o • 1 u = u* = u , 

the last equality being a consequence of (2.8), and hence (2.4) is 
proved as well. 

2.4. PROOF OF THEOREM 2.1. Let {U R} be a Cauchy sequence in 

W ,p(ft;S) . Then for every a € 3H there exists a function u , 

(2.10) u = lim Dau in Lp(fl;w ) . a n a n->"» 

For a i£ $L* we have, moreover, u € L i o c ^ ) • It remains to prove 
that 

(2.11) U Q € L{QCW , 

(2.12) ua = D«u0 . 

For i £ {1,2,...,N} let us write x = (x-,...,xi-1,xi,xi+1,.. 
...,*N)€

 R N in the form x = (x(,x.) with x?6IRN"~1 .If H is 
an open set in fc , then we denote by P.(H) the projection of H 

545 



onto the hyperplane x. = 0 and by H(x.) the cut 

H(xp = {t € |R, (x£,t) e H} , x'± G P±(H) . 

Let a 6 11 be fixed, so that a * (0,...,0,1,0,...,o) with 

the component one on the i-th place. If we denote 

(2.13) fa(x|) = J |D°un(x£,t) - ua(x^,t)|
p wa(x^,t) dt 

ft(xp 

for x'. £ P. (ft) then we can rewrite (2.10) as follows: 

(2.14) f|Dau (x) - u (x)|P w (x) dx = f f"(xj) dx. —»• 0 , 
J ' n a ' a j n i i 
ft Pi(fi) 

i.e. fa(x.) —*- 0 in L1(p.(fi)) . Therefore, there exists 

a subsequence jfa } such that fa (xC) —*• 0 a.e. in P. (ft) , and 
nk nk X 

in view of (2.13), this implies that for a.e. x' € P.(ft) , 

Daun (xp.) -*u a(xp-) in Lp(ft(xp; wo(x£,.)) . 

This relation also holds if we replace a by G . 

For a fixed xf € P.(ft) , let us denote u (t) = u_(x{,t) , 

u (t) = u (x',t) , t G ft(x.) C IR • Using Lemma 2.3, we can change 

u on a set of zero measure so that u € AC(ft(x!)) and 

(2.15) u° = Dau0(x|,.) = u
1 = ua(xf_,.) 

(note that Da means d/dx. ). 

Now, l e t Q be an a r b i t r a r y b u t f i x e d bounded open s e t , QC 

C Q C ft , l e t <j> = <j>0c})1 w i t h <f>0 € C~(a) such t h a t $ - (x) = 1 

on Q and <p. (x) = x . [so t h a t <j> e C0(.Q) and 

(2 .16) Da<j,(x) _ 1 fo r x £ Q [ ] . 

Further, let H be an open set with diam H < » and such that 

supp <\> C H C H C ft • Then we have 

ІІSІ dx = ||u_|.D ф dx 4 |uJ.|D"ф dx 

| ( | |u
Q
(xpt)|.|D

a
ф(xpt)| dt] dx^ 

,(H) H(x.') 
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P
±
(H) н (

X
p 

( | ( D
a
|u

0
(x^,t)| (|D

a
Mx^,x)| dx dtj dx[ < 

P
±
(H) H(xp 

D
a
|u (x't)| diam H • max |D

a
<j)| dt] dx' 4 

( |D
a
u

0
(x^,t)| dt] dx^ = c

0
(|D

a
u

G
| dx 

P
±
(H) H(xp H 

with c = diam H • max |D
a
<j>| . In view of (2.15), 

U
 H 

J|u
Q
| dx 4 c

Q
(|u

a
| dx < -

Q H 

1 1 since u £ L, (Q) . However, this implies that u^ £ L, (Q) a loc ^ 0 loc 
and so, (2.11) is proved. 

Finally, (2.12) follows from the fact that, for every <J> £ 
£ CQ(«) , (2.15) and (2.11) imply 

(2.17) (V̂ * d x = ( ( ( ue(x[tt)D
a<|>(x[ft) dtj dxf

± = 
n Pi(Q) *n(x[) 

J [ ( Dau0(x^,t)«j,(x^,t) dtj dx^ = 
Pi(Q) Q(xp 

( ( ( ua(xj_,t)d»(xj!ft) dtj dx^ = - (ua<j, dx . 
P±(Q) «(x[) n 

The following example shows that the condition w £ B (ft) 

cannot be omitted for a £ 1. : 

1 2 2.5. EXAMPLE. Let us consider the space W ' (Q;S) from Example 
1.12, but now with A € <0,1) , u >. 1 . Then wQ £ B2(Q) . w.. £ 
fL B2(Q) . Let us consider the function u(x) from (1.11) with 

Y = 0 , i.e. 

(2.18) u(x) = 0 for x 4 0 , u(x) = 1 for x > 0 . 

Let us mention that now the conditions (1.14) have the form 

(2.19) X > - 1 , u > 1 . 
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Proceeding analogously as in Example 1.12 we construct a Cauchy 
1 2 

sequence ^u
n^ --

n w ' («-»S) , and the assumption of completeness 

of this space implies the existence of the function u* = lim u 
«_^ n 

1 2 n 

in W ' (ft;S) such that u = u* a.e. in n . But this leads to a 
1 2 

oontradiotion: The function u* as an element of W • (n;S) has 

the distributional derivative (u*)' € L | (a) O L2(ft;w..) . How­

ever, the distributional derivative of the function u from (2.18) 

does not belong to L, (n), since it is the Dirao distribution. 

1 2 
Consequently, the space W ' (fi;S) is not complete for 

(2.20) X € <0,1) , y £ (1,«) . 

2.6. EXAMPLE. All the foregoing examples have been one-dimensio­

nal, but it is easy to construct more-dimensional examples. For 

instance, if we take p = 2 , N = 2 , ft = (-1,1) x (-1,1) , H = 

= {(0,0),(1,0),(0,1)} , w(0^0)(x,y) = |x|
X , w(1)0)(x,y) = |x|

y , 

w(Qjl)(x,y) = 1 , with A , y from (2.20), then w(0^Q),
 w ( 0 -|)€ 

6 B2(n) , w,.. . f£ B2(Q) and the space W * (B;S) is not comp­

lete since the distributional derivative du/3x of the function 

u defined by u(x,y) = 0 if x e (-1,0> , u(x,y) =1 if x e 

G (0,1) , is not a regular distribution, so that du/3x <£ L, c(ft)-

3. E x c e p t i o n a l s e t s D e f i n i t i o n o f 

t h e w e i g h t e d S o b o l e v s p a c e 

In Example 2.6, the "bad" set which causes the noncompleteness 

of W » (n;S) was the open segment { Q),y]; -1 < y < 1} . So, we 

are led to 

3.1. DEFINITION. Let w 6 tl(0) , p > 1 and denote 

(3.1) M (w) - (x c si; [ W~
1/ (P~ > (y) dy = . for every 

Qrt U(x) 

neighbourhood U(x) of x} . 

Obviously, M (w) = 0 for w € B (Q) . Now, we have 

3.2. LEMMA. Let ft Q RN be open, p > 1 , w € ft/(n) y w 4 B (ft). 

Then 
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(i) M (w) is a nonempty olosed set in ft ; 

(ii) w e Bp(ft - M (w)) . 

P r o o f : Let us denote M = M (w) . Definition 3.1 implies 
P , M 

that if x e ft - M , then there exists a ball U(x,e) = |z £ R ; 

|x - z| < e} such that 

(3.2) J „-1/<P-1>(y) dy < - . 
fto U(x,e) 

Now, let K be a compact set, K Q Q - M . The system of all 

balls U(x,e) from (3.2) with x € K forms an open covering of 

K ; from this covering we select a finite covering {J V. , and 
i=1 x 

since 

|w-1/<P-1>(y) d y 4 E \ w-1/<P-1>(y) dy < - , 

K i 1 U. 

we have w"
1^p""1) € L1 (K) . The set K C ft - M was arbitrary, 

which proves the assertion (ii). 

The assumption M = 0 implies by (ii) that w 6 B (ft) , and 

this contradicts the assumption w f* B (ft) . Consequently, M is 

nonempty. Further, let x € ft - M . Then there exists a neighbour­

hood U(x) such that U(x) C ft - M , namely, the ball U(x,e) 

from (3.2) with e > 0 such that U(x,e) Q ft : Indeed, for every 

z € UCx,e) we have z € ft - M since 

[ w-1/(p~1)(y) dy < -
ftn u(z,6) 

i i N 

for 6 = e - |x - z| . Consequently, ft - M is open in |R and 
the assertion (i) is proved, too. 

Another property of the exceptional set M (w) is described 

by the following theorem, whose proof is left to the reader: 

3.3. THEOREM. Let S. C RN be open> p > 1 Let w € W(ft) be 

continuous a.e. in ft . Then 

(3.3) meas (M (w)) = 0 . 

3.4. REMARK. Let W1,p(ft;S) be the space from Definition 1.9. 

Let us denote 
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( 3 . 4 ) 8 = U M
n
(wa> 

a G ^ p 

W £ B (fi) 
a P 

with M (w ) from (3.1). Theorem 1.11 implies that if B = 0 , 

then W *P(0;S) is a Banach space, while Examples 2.5 and 2.6 in­

dicate that if B f 0 , then W *p(fi;S) need not be complete. 

Therefore, we are led to the following definition of the weighted 

Sobolev space: 

3.5. DEFINITION. Let Q , p , 3H , JU and S be as in Definition 

1.9, with w € W(Q) for a £ 1 . Let B be the set from (3.4). 

Then we define the Sobolev spaoe with weight S , 

W1,P(ft;S) , 

as the space W ,P(S1 - B; S) , considered in the sense of Defini­

tion 1.9. 

It follows from the assertion (ii) of Lemma 3.2 that w G. 

€ B (Q - B) for every a € 1 . Hence, by Theorem 2.1, the space 
P 

p0 
sense of Definition 3.5) is complete> i.e. a Banach space 

W1*P(Q - B; S) and, consequently, the space W1,p(fi;S) (in the 

3.6. REMARK. Another way how to guarantee the completeness of the 

weighted Sobolev space is to define it as the completion of the set 

W *P(Q;S) from Definition 1.9 with respect to the norm (1.9). How­

ever, in this case the completion could contain nonregular distri­

butions (see Example 1.12) or functions whose distributional deri­

vatives are not regular distributions (see Examples 2.5, 2.6, which 

indicate that it is the set B C & which makes difficulties). 

Therefore, Definition 3.5 seems to be more natural. 

4. C o n c l u d i n g r e m a r k s . T h e s p a c e 

W1,p(ft;S) 

4.1. REMARK. The classical Sobolev space W ,P(Q) is often defi­

ned (for a "reasonable" domain si ) as the closure of the set 

C°(H) in the corresponding norm M • I | 1 Q . If we want to pro­

ceed analogously in the case of .weighted spaces, we need first of 

all that 
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(4.1) C°°(ft) C W1,p(fi;S) 

hold. This relation excludes a great number of weight functions, 
-A 

fixed. On the other hand, such weight functions evidently belong 

to the class B (ft) . 
P 

At the same time, Remark 1.13 shows that even if the condi­

tion (4.1) is fulfilled, the completion could lead to spaces as in 

Remark 3.6, i.e. to Banach spaces with elements which are nonregu-

lar distributions. 

4.2. THE SPACE W *P(Q;S) . In various applications, in particu­

lar, for the investigation of the Dirichlet problem for elliptic 

partial differential equations, we need the space W'p(ft;S) de­

fined as the closure of C°°(ft) with respect to the norm (1.9). In 

order to be able to introduce this space, we need the inclusion 

(4.2) CQ(A) C W 1 ' P ( 0 ; S ) 

which is evidently fulfilled if 

(4.3) w e L1 fn) for all a € 1 . 
a IOC 

Hence we are able to introduce the following 

4.3. PRELIMINARY DEFINITION OF THE SPACE W1,P(Q;S) . Let fi , p , 

X* , lit and S be as in Definition 1.9. Let w £ B (Q) for a e 
' ., a P 

£ JR. and w e L, (n) for a e I . Then we define I a loc 

(4.4) wJ»p(fi;S) = CjJ(fl) , 

the closure being taken with respect to the norm | I * I I i D s 0. 

from (1.9). 

Condition (4.3) is not only sufficient but also necessary for 

(4.2): 

4 4 LEMMA. The inclusion (4.2) is fulfilled if and only if (4.3) 

holds. 

P r o o f : If the condition (4.3) holds then evidently (4.2) is 

fulfilled. Conversely, let us suppose that (4.2) holds. Let a e ^ 

and let Q C si be a compact set. Then there exists a function 
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<j> £ c
0 ( f t ) s u c h t n a t D%(x) = 1 for x € Q (see (2.16)), and 

this identity together with (4.2) implies 

0 < \ \ dx = ( | D % | P w a dx < ( | D % | P w a dx < I M I ? f P f S , n < -

Q Q Q 

and c o n s e q u e n t l y , w £ L, (n) . 

It follows from Lemma 4.4 that for some weights S the in­

clusion (4.2) need not hold. So we are led to the notion of anot­

her exceptional set: 

4.5. DEFINITION. Let w € W(n) and denote 

(4.5) MQ(w) = (x 6 n; w(t) dt = « for every 

n oU(x) 

neighbourhood U(x) of x} . 

This set is an analogue of the set M (w) from Definition 

3.2 (we obtain it formally by setting p = 0 in (3.1)). Obviously 

M (w) = 0 for w 6 L, (n) . Similarly to Lemma 3.3 and Theorem 

3.4, we have 

4.6. LEMMA. Let fi C & N be open, w € 0/(n) and w £ Lloc(fi) . 

Then 

(i) M (w) is a nonempty closed set in ft , 

(ii) w e LJ O C(G - M 0 ( W ) ) . 

If w is continuous a.e. in Q > then 

meas(MQ(w)) = 0 . 

Now, we are able to introduce the definition of the weighted 

Sobolev space W ,p(n;S) : 

4.7. DEFINITION. 

1.9. Denoting 

Let n , p , JH- , JH and S be as in Definition 

(4.6) C = U M_(w ) 
a ejR U a 

Wa * LLc ("> 

with Mrt(w ) from (4.5) we define 
0 a 

(4.7) W0»
P(ft;S) = V 

where 
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v = {f; f = g|a_B , g e %(n - o] 

with B from (3.11), the closure in (4.7) being taken with res­

pect to the norm ||'|li p s n
 f r o m V1*9)-

Thus we have obtained again a Banach space, which is a sub-

space of W1,P(fl;S) . 

4.8. REMARK. If w € B (n) for every a € M- , then B = 0* and 

(4.7) yields 

W1,P(fl;S) = C0(fl - C) . 

If we suppose in addition that wa € L, (ft) for every a G 3H , 

then C = 0 and the space W *P(Q;S) from (4.7) coincides with 

the space W 'P(ft;S) from (4.4). 

4.9. REMARK. For various purposes, in particular in weighted ine­

qualities for maximal functions and other (integral) operators, 

the class A of weight functions introduced by B. MUCKENHOUPT [3j 

plays an important role. Here w e A means that 

p-1 
(4.8) sup (—-— |w(x) dx) (—-'— |w '' v^ ''(x) dx) ^ const -5- fw(x) dx) (— íw"1/(P"1)(x) dx) 

l-l i Id i 

for w E w(R ) where Q C IR are arbitrary cubes with edges pa­

rallel to the coordinate axes and |Q| is the volume of Q . For­

mula (4.8) indicates a close connection between the class A and 

the classes B (fc ) and L1 (R ) essentially used in the fore­

going considerations. In particular, we have 

A
p c 4 o c (* N )n Bp(B

N) . 

4.10. REMARK. In this paper, we have considered for simplicity 

the case of spaces of order one only. Nevertheless, our considera­

tions can be extended to the space w *p(ft;S) with k > 1 men­

tioned in Introduction. If we introduce the set M of multi-indi­

ces containing some a with |a| = k , the weight S = {w e W(ft), 

a € J!l} and define wr,p(ft;S) as the set of all functions u = 

= u(x) such that Dau € Lp(ft;wa) for a €. $. , then analogous 

assertions as in the case k =* 1 can be obtained at least for 
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certain special sets Jl . For example, JH should have the follo­

wing structure: If we denote 1. - (a e K., |a| = i} , then 

(i) JK H \ ¥ 0 ; 

(ii) 9 6 1 ; 

(iii) if a e Ifl 1. , 1 < |i| < k , then there exists at 

least one 3 € 311 O-TC.* such that 

o - B 6 11 • 
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